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Abstract –. This study will focus on the investigation of 
the effect of electrical discharge on physical, chemical, 
electrical properties of transformer oil, and on the 
development of a mathematical model describing the gassing 
of insulating oil under electrical discharge, using the 
information contained in the measured values.   

For predicting the gassing tendency for extensive ageing 
periods, we use the model developed, for an intelligent 
system design. The predictor’s parameters are chosen based 
on their influence degree by the electrical field. 

Various scenarios were considered. The study was 
carried on two types of fluids, under electrical stress for 
different ages. The 6802, 6181 and 924 ASTM tests methods 
were used for the measurements of parameters in 
degradation. All the results obtained are summarized and 
compared.  

The properties which are strongly dependent have been 
specified, a multiple linear regression model for each fluid 
as a function of its DDP, DDF, turbidity and aging period is 
developed. This model is for the estimation of the gas 
quantity cumulated under electrical discharge. The 
prediction is made, by implanting the stepwise regression 
results into a neural network system, which has been tested 
on experimental results obtained from  laboratory samples, 
and high prediction accuracy has been achieved. 

 
Keywords- insulating fluids, electrical discharge, 
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1. Introduction 

Power  transformers  are  critical,  highly  loaded  

and  expensive  part  of  the  electricity  generation  and  

distribution network.  In  these  expensive  equipments, 

large  quantities  of fluids  are  used,  with  a  two-fold  

function:  to  insulate electrically and to dissipate the 

heat generated by the windings. [1]. 

In previous studies [2,3], the prediction of 

parameters degradation had been carried on insulating 

fluids in service.  The behaviours of some properties 

had been investigated and predicted under thermal 

aging only. The necessity to study and predict the 

parameters degradation under other service condition 

mode has become highly important.  

The decay products which darken the color of in-

service-aged oil, cannot be formed without breaking 

the hydrocarbon chains. The ageing process is 

attributed to the decomposition of hydrocarbon 

molecules by either thermal or electric stresses and the 

chemical aggressiveness of dissolved oxygen [4,5]. 

The energy required for the decomposition of weakly 

bonded hydrocarbons is supplied in this case by the 

high voltage stress. The absorption of large amount of 

energy causes electronic excitation of molecules, 

which in certain cases leads to the haemolytic 

breakdown of weak chemical bonds generating gases. 

When this process takes place, the evolve gas leaves 

behind in the liquid phase the bulk of the broken 

molecule Since this remaining part of the decomposed 

hydrocarbon is a free radical, there is a high probability 

that  it will react with a similar free radical which is no 

longer soluble in the blend of hydrocarbons. This is an 

invisible solid suspension, known under the generic 

name of x-waxes.[4-6] 
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In this contribution, investigations were performed 

about fluids during the electrical aging for extended 

period, by studying the turbidity, spectrophotometer 

(ASTM D6181 and D6802), and electrical parameters 

(ASTM 924). The experimental results obtained are 

used to developing stepwise regression model by 

selecting the most significant predictors. 

The developed model was trained by neural 

network technique; it can predict the evolution of gas 

in the transformer insulating fluids in high periods. 

The results used for testing the robustness of the 

neural network model, are obtained from experimental 

test in Laboratory of Research, in Insulating Liquids 

and Mixed Dielectrics for Electrotechnology 

(ISOLIME), University of Quebec at Chicoutimi, Qc, 

Canada [7] 

 

2. Background 

2.1 The transformer oil parameters 

The insulation oil used in power transformers consists 

of saturated hydrocarbons as paraffin and naphthen, 

and can neither conduct current nor solute water. Oil 

conductivity depends on oil type and increases with 

aging by-products. Contaminants such as residues from 

refinery, pollution and particularly ageing/oxidation 

products enable the oil to conduct ionic current. Oil 

oxidation/degradation by products is subdivided into 

soluble (dissolved) products and insoluble (suspended) 

products. [8] 

The dominating an ageing product of oil oxidation 

contribution is made by carbonic acids. Carbonic acid 

and water can dissociate to ions and hence increase 

conductivity considerably [8]. 
 

 
 

According to M. Koch et al. [9], only a combination 

of water and a dissociable substance will increase 

conductivity. Some authors found out, that water will 

not increase the conductivity: It  increases the 

conductivity because of its self-dissociation, but this is 

hardly measurable. In a combination with a dissociable 

substance like acid the conductivity will increase 

considerably. [8] 

 

2.2 Electrical stress 

The free electrons are the primary source of energy 

for bond breakage covalent chemical (approximately 

4eV ≈ 386 kJ mol-1). The free electrons injected into 

the liquid insulation are accelerated by the electric 

field. The collision of a fast electron with a 

hydrocarbon molecule M may be either elastic or 

inelastic [8]. Whereas stable molecules reaching their 

singlet excitation level (M*) usually release the 

absorbed energy as a quantum of harmless fluorescent 

light (h), vulnerable molecules (R-R’) decompose and 

generate a pair of free radicals (R and R’). As their 

population increases, some gaseous or liquid fractions 

may capture a free electron and form an ion. [8] 
 

R-R’ + h  R + R’ 

R  +  e
-
   R

-
 

 

The accumulation of such ionized molecules 

increases the dissipation factor of the insulation. 

Alternatively, large free radicals may combine, leading 

to the formation of an insoluble colloidal suspension. 

Electrical discharge produces gases, carbon and free 

radicals. When discharges-by-products or oxidation-

by-products accumulated in the oil ducts or at oil-paper 

interface, heat transfer will be very poor which result 

in paper overheating [5, 8]. 

 

2.3 Artificial Neural Network (ANN) 

Neural networks have been developed to be 

analogous with the neural system in the human body 

with simple units called neurons. The neurons are 

collecting signals from other neurons after being 

weighted in connection links.  

The input samples in the first layer are sent to the 

hidden layer through weighted connection links. The 

hidden layer calculates its net activation as in the 

following equation: [10-12] 

 
Where d is the number of inputs features, xi is the 

i
th
 input node, and wij represents the weights between 

the i
th
 input node and the j

th
 hidden node. The output of 

the hidden layer, which is a nonlinear function of its 

net activation, is given by[11, 12] 

 
The output layer calculates its net activation as 

follows:  

 



Where Nh is the number of hidden nodes and  

 is the weights between the K
th
 input node and the 

jth  hidden node.  

Since gradient descent with momentum is used for 

neural network learning,, continuous tan sigmoid 

activation function to map the nonlinear correlation 

between the proposed inputs and outputs as defined in 

the following equation: [11,12] 

 

 
 

: the learning factor   

The  αm.wij(t-1),  is the momentum. m can tacking 

the  values between 0.1 and 0.9. The adaptation of its 

values as well as , give a good  results [13,14] 

The optimum weights  are learned by minimizing 

the training error given in the following equation: [12] 

 

 
 

Where E is the mean square error and y is the 

target output at the k
th
 output node.  

The weight values and the number of neurons in 

hidden layers will be maintained until reaching the 

highest prediction accuracy.  [11-13] 

ANN has proven their efficiency in different 

power system applications. The Multi Linear 

Perceptron (MLP), has been successfully used in 

predicting transformer insulation diagnostics 

parameters with high accuracy. [13, 15] 

 

3. Experimental Results and discussions 

3.1 Insulating Fluids Under Electric Discharge 

The amount  of  gases evolved  under the impact of 

electrical stress by a sample of  fluid  was  accurately  

measurable  by  using  the  ASTM  Test Method 

D6180 [16], which simulate conditions close to real 

life conditions.  A  Merell-based  test  cell  type,  was  

used  (Figure  1). The  free  electrons  were  generated  

by a  cylindrical  copper  electrode  15 mm in diameter  

and 10  mm long sealed in  the  center of  Erlenmeyer  

glass, and suspended above the oil. A volume of 100 

ml of oil was used. [7,16]. 

Before  applying  the  voltage,  the  discharge  cell  

was vacuumed  down  to  1 Torr  (133 Pa).  After    the 

degassing, the insulated  fluid  specimen  was  

subjected  to  high  voltage discharge  of  10  kV for  

5h, 12h, 24h,50h and 75h. 

 
 

Fig.1. Discharge cell according to ASTM D6180 [16] 

 

The increased pressure inside the discharge cell was 

recorded to assess the amount of evolved gasses.[7,16]. 

The results was reported in figure 2  
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Fig.2. Fluids samples gassing diagram 

 

Obviously, the gassing tendency of natural esters is 

much lower than that of mineral oils. This is well-

known fact as emphasized by German and Fuoss [2,3]. 

According to these authors, vegetable fluids are 

generally better than mineral oils. This low gassing 

tendency of natural esters is most likely due to the 

amount of unsaturated, non-aromatic molecules as 

compared to mineral oils [5, 8]. 

 



3.2 Dissolved Decay Product 

The ASTM D 6802[17] method is based upon the 

observation that in the range of visible spectrum, all 

brands of new insulating liquids are almost completely 

transparent to a monochromatic beam of light. On the 

contrary, when the fluid contains decay products, the 

absorbance curve, as determined by a scanning 

spectrophotometer, significantly shifts to longer 

wavelengths [5]. The numerical integration of the area 

below these absorbance curves permit the relative 

content of dissolved oxidation decay products (DDP) 

in the fluid samples.[5,6]. The results are reported in 

Figure 3 and 4. 
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Fig.3. Absorbance curve illustrating the Dissolved Decay 

Products of natural ester 
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Fig.4. Dissolved Decay Products of mineral oil and 

natural ester after D6180 test 

 

. 

 

3.3 Insoluble Decay Products 

The energy of electrical field can generate not only 

soluble decay products that darken the color of aged oil 

[5], but also produce large insoluble molecules. Indeed, 

large free radicals may combine, leading to the 

formation of insoluble colloidal suspensions that affect 

the properties of the insulating fluid. The collision of 

two large free radicals leads to the formation of large 

colloidal compounds having a molecular weight 

between 500 and 600. [5,6] 

The increase in turbidity under electrical discharge, 

proves the formation of colloidal suspensions 

measured by ASTM Test Method D6181[18], the 

results reported in figure 5, show that the turbidity goes 

up, in reason of the secondary chimical reaction 

between the hydrocarbure chains breakdown.  
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Fig.5. Turbidity of mineral oil and natural ester after 

D6180 test 

 

3.4 Electrical properties 

As the population of free radicals increases, their 

unpaired electrons can be coupled with a free electron 

to become a charge carrier that tends to increase the 

dissipation factor of the fluid. [5] 

The measurements of the loss factor were 

performed with the Insulation Diagnostic Analyser 

IDA200 using the liquid test cell type 2903 for liquid 

insulation by Tettex [19]. The frequency scans of the 

loss factor of the two fluids samples measured at 

100°C are given in Figures 06 and 07, these figures 

reflect the impact of electrical discharge on mineral oil 

and the natural ester. 
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Fig.6. Frequency scans of the dissipation factor for 

mineral oil after  6180 test 
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Fig.7. Frequency scans of the dissipation factor for 

natural ester oil after  6180 test 

 

4. The Transformer fluids parameters Model 

From above results, we can remark that the 

physical and electrical parameters of the insulating 

fluids effect gassing tendency under electrical stress. 

These results propose correlation between pressure of 

the gas accumulated in the discharge cellule, and the 

fluids parameters influenced by the gassing process. 

However, such correlation is complex and nonlinear.  

The experimental results obtained indicate that 

insulating fluids gassing is strongly dependent on their 

DDP, Turbidity and DDF. Also there is a mutual 

dependence and interaction between the DDP, DDF 

and Turbidity. Therefore it can be concluded that a 

model for the gassing that incorporates the three 

parameters and aging period, will be comprehensive 

and this represents a justified conclusion from this 

study. 

 4.1 Modeling technique 

In this section modeling of the results has been 

carried out as follows: 

1. Modeling of the aging period dependent 

properties namely pressure, DDP, DDF and turbidity  

2. Modeling of the gassing evolution of each fluid 

as a function of its three parameters and aging time. 

3. Combining the results into a single equivalent 

model, called the general model, this later will be 

implanted in neural network system for gassing 

prediction. 

A polynomial regression is proposed for modeling 

the gassing tendency (pressure value) as a function of 

its DDP, DDF, turbidity and discharge period; The 

least squares technique is implemented for the 

derivation of these models [10,14]. 

  

a)  Modeling of parameters as function of 

period: 

The experimental results presented in this paper, are 

obtained from ASTM tests in ISOLIME laboratory in 

Canada, this ASTM tests are : 

 ASTM  6802-10,  Test  Method  for  Determination  

of  the Relative Content of Dissolved Decay 

Products in mineral oil [17]. 

 ASTM 6181–12 Method for Measurement of 

Turbidity in Mineral Insulating Oil [18]. 

 ASTM 924–08, Test Method for Dissipation Factor 

(DDF) [19]. 
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Fig.8. Modeling parameters as function  of discharge 

period (natural ester) 

 

The approach model for the gas pressure, DDP, 

Turbidity and loss factor as a function of its electrical 

discharge period has the following form: 



 

 
 

Where: Y (x ) is the dependent variable A0, A1… 

are the model constants which are required to be 

determined, and x is the aging period. 

In figure 8, we can see that the approach model in 

function of time aging give a good results, there is a 

high approximation between the pressure measured 

values and the modeled ones. 

 

b)  Modeling of gassing evolution as a function 

of the fluids parameters and the discharge period: 

The gassing diagram can be modeled by a 

multiple linear regression model which has the 

following form: 

 

 
 

Where: 

F(x1,x2,x3,x4) : is the pressure of gas generated 

under electrical discharge. 

x1 : is the DDP value,  x2 : is the turbidity, x3,: the 

Dissipation factor at 0.1 Hz and  x4 is the aging time 

(hours). 

B0, B1, B2, B3 and B4 are the model constants, 

which can be determined by the least squares technique 

[12,13]. The measured and predicted values for the 

pressure are included in Table 1. This prediction has 

been carried out by two methods; the first one depends 

on the substitution of the measured values of the 

parameters at the aging period in the multiple linear 

regression model. This value will be given by the 

designation Pred. value (1) 

In the second method the values of the parameters 

are predicted first from their individual models as a 

function of electrical discharge period, Eq. (8) using 

their corresponding constants, and then these values 

are substituted in the pressure multiple linear 

regression models. This value will be given by the 

designation Pred. value (2) 

Table 1 shows some of the predicted and 

measured values of the gas pressure generated under 

electrical discharge. From this table we can see 

amelioration in the results using the second method; 

the predicted and measured values are in good 

agreement.  For best seen, the results of the two 

methods are reported in figure 9. 

 

 
     Table.1. gassing prediction results  

 Mineral oil Natural ester  

A0 18.1398 7.1942 

A1 9.7761    -5.0481 

A2    15.3734     0.6117 

A3   -83.1098    -7.1448 

A4   -56.8409     -1.0753 

Measured Value 182.2 13.2 

Pred. Value (1) 176.9630 12.1061 

A0 108.9386 -8.0831 

A1 21.7637 -4.7459 

A2   -13.3247     0.6959 

A3   -28.5974    -4.1989 

A3   -72.2839    1.1701 

Pred. Value (2) 180.7131 14.0211 
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Fig.9. Model of gassing as a function of the fluids   

parameters and the discharge period (natural ester) 
 

5.   Neural network prediction  

The model developed in the previous section 

gives good results. We adapt this model and implant it 

in neural network system, for predicting the evolution 

of gas of the insulating fluids submitting a electrical 

discharge, for a long period superior to 75h.. Figure 10 

shows the MLP ANN architecture used for this 

application. 

 

5.1 Learning phase: 

We used LM network with one hidden layer. The 

input layer is made up of 4 neurons. The hidden layer 

contains 5 neurons, and the output layer has one 

neuron presenting the gas pressure. The input vector is 



X=[Period, DDP, Turbidity, Loss factor at 0.1Hz] and  

the  output vector is presented Yout= [pressure].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
         Fig.10. ANN structure used for prediction  

 

The Levenberg-Marquardt back propagation neural 

network converge at 100 epoch with MSE=1.252E-5, 

(figure.11). 

 

 
          Fig.11. Error at training phase  

 

Table 2, presents the result of neural network 

system designed. The error in ANN system is low than 

error in the model, then there is a clear amelioration in 

the NN system results. 
 

Table.2. Gassing prediction by neural network  

 Mineral oil Natural ester 

NN Result 180.7491 12.5840 

Experimental  results 182.2 13.2 

Error in Model 1.4869 0.8211 

Error in NN system 1.4509 0,616 

 

5.2 Testing phase: 

To test the robustness of adopted ANN system, 

and to predict the gassing tendency under electrical 

discharge for a high period: over than 75 hours, six 

(06) samples extracted from the experimental results in 

Isolime laboratory [7], will be tested by the Neural 

network system., we obtain the results presented in 

table 3    
 

Table.3. Gassing prediction by neural network  

(natural ester) 

Time DDP Turb DDF 

0.1 Hz 

Pressure NN 

predict values 

24h 48 2.0000 60 41.9391 

36h     70 2.6000 75 43.7493 

50h     80 3.8500 81 40.1346 

75h   130 10.0000 115 20.6573 

100h   160 16.2500 135 28.9249 

150h   208 20.0000 150 34.7012 

 

From the comparison between the ANN results and 

the experimental results of natural ester (-o-NE) 

showed in figure 12. We can conclude that the 

proposed ANN model can predict the gassing evolution 

for extended time, and give a good accuracy. The ANN 

values follow the curve presented in figure 12. 

 

 
Fig.12. Insulating fluid samples gassing diagrams.[7]. 

 

6. Conclusion  

In  this  contribution,  a  study  of   the  stability  to 

electrical  stresses  of two new insulating fluids  is  

undertaken. The D6180 stability test and the laboratory 

testing procedures, developed by ASTM (D 6802, 

D971 and D6181) have been used to monitor 
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degradation parameters. The results indicate that the 

gassing tendency of mineral oil under electrical stress 

follow an exponential curve and it is much lower in the 

natural ester than it in the mineral oil.  

The dependence between the gas pressure in 

discharge cell and the oil properties is used for a 

mathematical model conception.   A regression method 

is therefore applied, using the most significant 

parameters. This model has been implanted in a neural 

network system for two principal objectives: the 

verification of the results obtained from the regression 

model, and the prediction of the gassing for extended 

aging periods; the results obtained have showed a good 

accuracy. 

As part of an overall maintenance strategy, the 

technique developed in this work, can be used to 

predict the level and severity of gas generated under 

electrical discharge, and can help taking restorative 

measures before deterioration reaches a point where 

failure of the transformer is inevitable 
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