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Abstract: Flexible Alternating Current Transmission 

Systems (FACTS) devices have been proposed as an 

effective solution for controlling power flow and 

regulating bus voltage in electrical power systems, 

resulting low system losses, and improved stability. 

Placement of these devices in suitable location can lead to 

control in line flow and maintain bus voltages in desired 

level and so improve power system security. This paper 

presents a novel algorithm for allocation of FACTS 

devices based on Elitist Non Dominated Sorting Genetic 

Algorithm (NSGA-II). The proposed algorithm is tested on 

IEEE 14 bus power system for optimal allocation of multi-

type FACTS devices and results are presented. 
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1. Introduction 
     As the load increases, power utilities are looking for 

ways to maximize the utilization of their existing 

transmission systems, therefore controlling the power flow 

in the transmission lines is an important issue in planning 

and operating of power system. 

     In recent years, advances in the high power solid-state 

switches, e.g. Gate Turn Off (GTO) thyristors, have led to 

the development of transmission controllers that provide 

controllability and flexibility for power transmission. A 

new technology program is known as Flexible AC 

Transmission Systems (FACTS) [1]. 

     The ability of FACTS devices to control those 

parameters like series impedance, shunt admittance, bus 

voltage, voltage drop and phase angle that govern the 

operation of transmission system, provides the possibility 

of improving such system operating issues as 

static/dynamic stability, system security, system 

loadability, total generation fuel cost and so forth. 

However, this potential depends mainly on the location, 

type and rating of F ACTS devices installed in the system. 

     The optimal allocation of FACTS devices has been 

investigated in several papers from different issues of 

system operation and performance. Sensitivity-based 

approaches have been used in [2-4] for this purpose. To 

enhance power system static security, the FACTS devices 

are located according to the sensitivity of security indices 

to line power flows or bus voltages or losses, and then the 

value of the sensitivity is used for sizing the device. 

     Although these approaches show acceptable results for 

some case studies, because of high nonlinearity of power 

system equations, there is no guaranty to the efficiency of 

first order sensitivities particularly for bulk and large scale 

power systems. Artificial Intelligence (AI) Based 

approaches like genetic [5-7], particle swarm algorithms 

[8-11], Simulated Annealing (SA) Algorithms [12], Low 

Discrepancy Sequences (LDS) [13], Bacterial Swarming 

Algorithm (BSA) [14], Differential Evolution (DE) 

technique [15] are successively used for optimal allocation 

of FACTS devices problems. The most attractive feature 

of these methods is their ability to find the global optimum 

solution. 

     For multiple-objective problems, there are two general 

approaches. One is to combine the individual objective 

functions into a single composite function (weighted sum 

method) such as [5]; this approach is very difficult to 

precisely and accurately select the weights. Compounding 

this drawback is that scaling amongst objectives is needed 

and small perturbations in the weights can sometimes lead 

to quite different solutions. An approach based on a fuzzy 

evaluation technique, combined with a genetic algorithm, 

is used to overcome these problems [16]. 

     The second general approach is to determine a set of 

optimal solutions (an entire Pareto optimal solution set). 

[17] Presents a multi-objective genetic algorithm (MOGA) 

to determine the optimal allocation of FACTS devices into 

power systems, from both technical and economical point 

of view, in order to provide a better security level. [18] 

Non-dominated Sorting Particle Swarm Optimization 

(NSPSO) algorithm is used to solve a Multi-objective 

Optimization problem. [19] Proposes an approach based 

on the evolutionary algorithms (EA) to solve this problem. 

It is about the NSGA-II method (Elitist Non Dominated 

Sorting Genetic Algorithm). 

     In this paper, a new multi-objective optimization 

algorithm based on Elitist Non Dominated Sorting Genetic 

Algorithm (NSGA-II) is used to determine the optimal 

location and size of FACTS devices to enhance power 

system security considering power system losses. 



 

 

Proposed method is tested on IEEE 14 bus system and 

results are presented. 

 

2. FACTS devices model 

 

2.1. FACTS devices 
     In this paper, three different FACTS devices have been 

selected to place in suitable location to improve security 

margins in power system. These are: TCSC (Thyristor 

Controlled Series Capacitor), SVC (Static VAR 

Compensator) and UPFC (Unified Power Flow 

Controller). These are shown in Fig. 1. 

Power flow through the transmission line i-j namely Pij is 

depended on line reactance Xij, bus voltage magnitudes, Vi 

Vj, and phase angle between sending and receiving buses 

δi – δj . This is expressed by eq (1). 

 

Pij = 
������� ���(	� − 	�)                                                 (1) 

 

     TCSC can change line reactance and SVC can be used 

to control reactive power in network. UPFC is the most 

versatile member of FACTS devices family and can be 

applied in order to control all power flow parameters (i.e. 

line impedance, bus voltage, and phase angle). Power flow 

can be controlled and optimized by changing power 

system parameters using FACTS devices, so optimal 

choice and allocation of FACTS devices can result in 

suitable utilization in power system. 

 

 
Fig. 1 Considered FACTS Devices (a) TCSC (b) SVC (c) 

UPFC 

 

2.2. SVC model 
     SVC can be used for both inductive and capacitive 

compensation. In this paper SVC is modeled as an ideal 

reactive power injection at bus i: 

∆Qi = QSVC                                                                       (2) 

The values are between -100 MVar and 100 MVar [6]. 

 

2.3. TCSC Model 

TCSC acts as the capacitive or inductive compensator by 

modifying reactance of transmission line. This changes 

line flow due to change in series reactance. In this paper 

TCSC is modeled by changing transmission line reactance 

as below: 

 

Xij = Xline + XTCSC                                                             (3) 

XTCSC = rTCSC . Xline                                                           (4) 

 

Where Xline is reactance of transmission line and rTCSC is 

compensation factor of TCSC. Rating of TCSC is 

depended on transmission line where it is located. To 

prevent overcompensation, TCSC reactance is chosen 

between -0.8 Xline to 0.2 Xline [8]. 

 

2.4. UPFC Model 
     The unified power flow controller consists of two 

switching converters. These converters are operated from 

a common dc link provided by a dc storage capacitor (Fig. 

1.c). 

     Converter 2 provides the main function of the UPFC by 

injecting an ac voltage with controllable magnitude and 

phase angle in series with the transmission line via a series 

transformer. The basic function of converter 1 is to supply 

or absorb the real power demand by converter 2 at the 

common dc link. It can also generate or absorb 

controllable reactive power and provide independent shunt 

reactive compensation for the line. Converter 2 supplies or 

absorbs locally the required reactive power and exchanges 

the active power as a result of the series injection voltage . 

     Since the series voltage source converter does the main 

function of the UPFC, it is appropriate to discuss the 

modeling of a series voltage source converter first, and 

then the shunt connected voltage source converter is 

incorporated [4, 20]. 

 

2.4.1 Model of series Voltage Source Converter 
     Suppose a series connected voltage source is located 

between nodes i and j in a power system. The series 

voltage source converter can be modeled with an ideal 

series voltage Vs in series with a reactance Xs. 

 
Fig. 2 Representation of a series connected VSC 

 

     In Fig. 2, Vs models an ideal voltage source and Vi' 

represents a fictitious voltage behind the series reactance. 

We have: 

 

Vi' = Vs + Vi                                                                     (5) 

 

The series voltage source VS is controllable in magnitude 

and phase, i.e : 

VS = r Vi e
jγ
                                                                       (6) 



 

 

Where r and γ are the control variables of the series 

compensation (0< r <  rmax    and    0 <  γ  <  2π). 

The injection model is obtained by replacing the voltage 

source VS by the current source IS = - jbS VS, in parallel 

with the line where bS = 1/ XS: 

 

 
Fig. 3 Replacement of a series voltage source by a current 

source 

 

The current source IS corresponds to the injection powers 

SiS and SjS, (the injection power at bus i and j respectively), 

where: 

SiS = Vi (-IS)
*
                                                                     (7) 

SjS = Vj (IS)
*
                                                                      (8) 

The injection power SiS and SjS are simplified to: 

SiS = Vi [ jbS r Vi e
jγ
 ]

*
 

= -bS r vi
2
 sin γ - jbS r vi

2
 cos γ                                          (9) 

If we define: θij = θi - θj , we have: 

SjS = Vj [ -jbS r Vi e
jγ
 ]

*
 

=bS r vi vj sin(θij + γ) + jbS r vi
 
vj cos(θij + γ)                  (10) 

 

     Based on the explanation above, the injection model of 

a series connected voltage source can be seen as two 

dependent loads as shown in Fig.4.  

 
Fig. 4 Injection model for a series connected VSC 

 

2.4.2. Insertion of shunt Voltage Source Converter 

in UPFC Model 
     In UPFC, the shunt connected voltage source 

(Converter 1) is used mainly to provide the active power 

which is injected to the network via the series connected 

voltage source. We have: 

 

PCONV1 = PCONV2                                                             (11) 

 

      The equality above is valid when the losses are 

neglected. The apparent power supplied by the series 

voltage source converter is calculated from: 

SCONV2 = Vs I
*
ij = r e 

jγ
 Vi 
��� − �� ���� �		             (12) 

Active power supplied by Converter 1 is distinguished as: 

PCONV1 = PCONV2 = Re (SCONV2) 

             =r bS vi vj sin(θij + γ) – r bS vi
2
 sin γ                 (13) 

     The reactive power delivered or absorbed by the 

converter 1 is independently controllable by UPFC and 

can be modeled as a separate controllable shunt reactive 

source, QCONV1. The UPFC injection model is constructed 

from the series voltage source (Fig. 4) with the addition of 

a power equivalent to PCONV1+j QCONV1 to node i as shown 

in Fig. 5. The model can be incorporated to the power flow 

equations by adding the UPFC injection powers at buses i 

and j. 

 

 
Fig. 5 UPFC injection model 

 

3. Problem formulation 
 

3.1. Objectives 
     The goal of optimization was the determination of 

optimal allocation of FACTS devices into a power system 

in order to enhance the systems security level, keeping in 

the same time low system losses. Therefore, the presented 

problem becomes a multi-objective optimization problem 

(MOP), and this can be expressed, in equation form, as: 

 

Min F(x) = [ FV(x), FS(x), FPL(x) ]                                 (14) 

Subject to x Є Ω 

                 Cj(x) = 0    j = 1….n 

                Hk(x)  0   k = 1….p  

 

     Where F is known as the objectives vector, x represents 

a decision vector, Ω is the solution domain and Cj(x) and 

Hk(x) are the equality and inequality problem constraints 

respectively. In this MOP, FV(x), FS(x), FPL(x) are 

objective functions represent the voltage deviation, system 

over load, and real power losses as follows: 

 

FV = ∑ ��� − ��������                                                      (15) 

FS = ∑ 
�� ������ �
�

�                                                    (16) 

FPL = ∑ � ��                                                                    (17) 

  

Where: 

Vi
ref

: is Nominal voltage magnitude which is assumed to be 

1pu for all load buses. 

Vi: is the voltage magnitude for ith load bus 

Sj: is the apparent power for jth line 

Sj
max

: is the max apparent power for jth line 

PLi: is the real power at i
th

 line. 

 



3.2. Constraints 
  The optimization problem is bounded by the following 

constraints 

 
3.2.1. Equality constraints 
      These constraints represent the load flow equations 

corresponding to both real and reactive power balance 

equations, which can be written as: 

 

PGi – PDi – ∑ ��!"��#$�(%��&�'( ) ) *�����
QGi – QDi – ∑ ��!"�����(%��&�'( ) − *��#$�
 

Where: 

PGi and QGi: generator real and reactive power at i

respectively; 

PDi and QDi: load real and reactive power at i

respectively; 

Gij and Bij : transfer conductance and susceptance between 

buses i and j, respectively. 

 

3.2.2. Inequality constraints 
Generation reactive power constraints: 

QGi
min

  <  QGi  < QGi
max

      for i = 1,…,N

FACTS constariants: 

For SVC      Qc
min

   <    QSVC   <   Qc
max

                   

For TCSC    r
min

     <    rTCSC    < r
max

                       

For UPFC     γ
min 

  <      γ        <  γ
max

                     

             and   Qc
min

  <   Qconv1    < Qc
max

                   

 

r is set at r
max

  = 0.1 , because it is found that it gives best 

results at that value. 

 
4. Solution algorithm 
     Seeing that the optimization process was oriented 

towards two parameters: FACTS location, and their rates,

which can take discrete and continues values, the case

discussed above becomes a combinatorial optimization

problem. we chose to use local search (or 

methods), which is a robust way to obtain good solutions 

to real problems in a reasonable time. 

from the class of the heuristic methods, we used the G

[21] which are stochastic search techniques based on the 

mechanics of natural selection and natural genetics. They 

search for a solution inside a subspace of the total search 

space, being able to give a good solution in an acceptable 

computation time. 

     Furthermore to the aspects presented above, the 

problem multi-objective character imposes the 

consideration of suitable solving methods which are able 

to provide acceptable solutions. 

  

4.1. Genetic Algorithms 
     GAs start with an initial set of random solutions called 

population. A population of candidate solutions, or 

individuals, is maintained, and individuals made to 

compete with each other for survival. Once evaluated,

through the fitness function calculation, stronger 

individuals have a greater chance to contribute to the 

 

The optimization problem is bounded by the following 

represent the load flow equations 

corresponding to both real and reactive power balance 

���(%��)+ , 0     (18) #$�(%��)+ , 0    (19) 

: generator real and reactive power at ith bus, 

: load real and reactive power at ith bus, 

: transfer conductance and susceptance between 

for i = 1,…,N                       (20) 

                         (21)  

                             (22) 

                             (23) 

                          (24) 

= 0.1 , because it is found that it gives best 

Seeing that the optimization process was oriented 

parameters: FACTS location, and their rates, 

which can take discrete and continues values, the case 

combinatorial optimization 

we chose to use local search (or heuristic 

robust way to obtain good solutions 

 More particularly, 

, we used the GAs 

search techniques based on the 

and natural genetics. They 

subspace of the total search 

solution in an acceptable 

Furthermore to the aspects presented above, the 

objective character imposes the 

solving methods which are able 

GAs start with an initial set of random solutions called 

population. A population of candidate solutions, or 

individuals, is maintained, and individuals made to 

compete with each other for survival. Once evaluated, 

through the fitness function calculation, stronger 

individuals have a greater chance to contribute to the 

production of new individuals (the offspring) than weaker 

ones, which may not even contribute at all (selection 

procedure). Offspring are produced th

recombination, whereby they inherit features from each of 

the parents, and through mutation, which can confer some 

truly innovative features as well. In the next selection step 

(next generation), offspring are made to compete with 

each other, and possibly also with their parents. 

Improvement in the population arises as a consequence of 

the repeated selection of the best parents, which are in turn 

more likely to produce good offspring, and the consequent 

elimination of low-performers. 

the algorithm converges to the

hopefully represents the optimal

Fig. 6 shows the flow chart of GA with FACTS Allocation 

Problem. 

 

Fig. 6 flow chart of Genetic Algorithm

 

4.2. Multi-Objective Optimization
     The problem described in 

objective combinatorial optimization problem

was necessary to use a multi

solving it. The use of multi-objective techniques gives

information on the consequences of the decision with 

respect to all the defined objective functions. While 

traditional optimization procedures result in one solution 

point only, the MOP usually has no unique, perfect (or 

utopian) solution, but a set of 

 

production of new individuals (the offspring) than weaker 

ones, which may not even contribute at all (selection 

procedure). Offspring are produced through 

recombination, whereby they inherit features from each of 

the parents, and through mutation, which can confer some 

truly innovative features as well. In the next selection step 

(next generation), offspring are made to compete with 

sibly also with their parents. 

population arises as a consequence of 

the best parents, which are in turn 

offspring, and the consequent 

performers. After several generations, 

the algorithm converges to the best individual, which 

hopefully represents the optimal solution to the problem. 

Fig. 6 shows the flow chart of GA with FACTS Allocation 

 

Fig. 6 flow chart of Genetic Algorithm 

Objective Optimization 
The problem described in Section (3) is a multi-

objective combinatorial optimization problem, and thus it 

was necessary to use a multi-objective technique for 

objective techniques gives 

information on the consequences of the decision with 

to all the defined objective functions. While 

optimization procedures result in one solution 

MOP usually has no unique, perfect (or 

a set of non-dominated, alternative 



 

 

solutions, known as the Pareto-optimal set which define 

the POF. The principle of dominance can be defined in the 

following form: a solution is clearly better than 

(dominating) another solution, if it is better or equal in all 

objectives, but at least better in one objective. Using this 

principle, the set of best compromise solutions results by 

removing all solutions that are dominated by at least one 

other solution. The remaining solutions are all of equal 

quality (indifferent). For a given Pareto optimal set, and 

the corresponding objective function values in the 

objective space are called the Pareto front (Fig. 7). 

 
Fig. 7 Illustration of Pareto front for a bi-objective 

optimization problem 

 

     The POF offers complete information about the optimal 

solutions of the problem and becomes an important 

knowledge for the Decision Maker (DM). In this paper, 

the aim of the optimization is to determine the POF of the 

problem described in the section above. The choice of the 

optimal solution among the POF points remained to DM. 

For these types of problems the Genetic Algorithms (GAs) 

represent a standard tool. GAs can exploit the population-

based feature and converge in parallel to the Pareto front. 

There are many EAs described in the literature, reviews of 

this can be found in [22]. For the present work, among the 

GAs, we choose to employ NSGA II technique.  

 

4.3. Non-dominated Sorting Genetic Algorithm 
     NSGA (Non-dominated Sorting Genetic Algorithm) 

implements the idea of a selection method based on 

classes of dominance of all solutions. This algorithm 

identifies non-dominated solutions in the population, at 

each generation, to form non-dominated fronts, based on 

the concept of non-dominance of Pareto. After this, the 

usual selection, crossover, and mutation operators are 

performed. 

     However, there are some faults in NSGA. It has been 

generally criticized for its computational complexity, lack 

of elitism and for choosing the optimal parameter value for 

sharing parameter. A modified version, NSGA-II [23] 

wasdeveloped, which has a better sorting algorithm, 

incorporates elitism and no sharing parameter needs to be 

chosen a priori. In this study NSGA-II is used. 

 
      

Fig. 8 Proposed flow chart of NSGA II 

 

One iteration of this algorithm procedure can be written as 

follows: 

Step1: Initiate a random population with size N 

individuals (parent population (Pt)) 

Step 2: Evaluate Objective Values and assign Rank (level) 

Based on Pareto dominance sort 

Step 3: Use crossover and mutation operators to create the 

offspring population Qt (with size N) from the parent 

population Pt 

Step 4: Combine the two populations Qt and Pt to form 

new population Rt 

Rt = Pt ∪ Qt    (Rt has size 2N) 

Step 5: Perform Non-dominated Sort on Rt and assign 

ranks to each pareto front with fitness Fi  

Step 6: Apply elitism as follows: 



 

 

- Starting from Pareto front with fitness F1, add each 

pareto-front Fi to the new parent population Pt+1 until a 

complete front Fi cannot be included. 

- From the current pareto-front Fi, Sort this front using the 

crowding distance in descending order and add the first 

individual members to new parent population Pt+1 until it 

reaches the size N. 

Step 7: Apply selection, crossover and mutation to new 

parent population Pt+1 and obtain the new offspring 

population Qt+1 

Where: 

t: represent the generation number 

i: represent the pareto front number 

     Fig. 8 shows the flow chart of the proposed 

implementation of NSGA II in FACTS allocation 

problem. 

 

4.4. Individual (chromosome) structure and 

solution encoding 
  To apply multi objective GA to solve a specific problem, 

one has to define the solution representation and the 

coding of control variables. The goal of the optimization 

is to find the best location and size of FACTS devices, 

thus each chromosome consists of two geneses 

corresponding to the location and size of each FACTS 

device. 

 
Fig. 9 chromosome structure of (a) general FACTS (b) SVC (c) TCSC  

(d) UPFC  

 

5. Results  
     Simulation studies were done for different scenarios in 

IEEE 14 bus power system. Four different scenarios are 

considered: 

- Scenario1: power system normal operation (without 

FACTS devices installation). 

- Scenario2: the Genetic Algorithm with single objective 

function (power losses or Voltage deviation or power 

system over load) will be applied in case of:  

a) One TCSC is installed 

b) One SVC is installed 

c) One UPFC is installed 

- Scenario3: Then repeat scenario 2 but with the Multi-

Objective Genetic Algorithm (using all objectives above) 

- Scenario4: study the effect of optimal locations and sizes 

f TCSC, and SVC, and UPFC on the real power losses, 

voltage, and overload profiles of the electric power 

system. 

     Table 1 shows total power losses, system overload, and 

voltage deviation of IEEE 14 bus system without FACTS 

devices installation, then the Genetic Algorithm is applied 

to find the optimal location and size of FACTS devices 

(TCSC, SVC, and UPFC). GA is applied three times, one 

for power losses and other for system overload and for 

Voltage deviation as objective functions, and in each time 

the results are presented.  

  
Table 1 Optimal location of FACTS devices using GA 

 

     The main observation of table 1 is that the optimal 

solution for one objective function is not a good solution 

for other objectives. 

     Table 2, 3, and 4 present the pareto optimal set for 

FACTS allocation using NSGA II. Table 2 shows the 

pareto optimal set for TCSCS allocation, individuals (1, 2, 

and 4) are the optimal solutions corresponding to the 

losses, overload, and V. deviation respectively. The 

remaining individuals are the remaining non dominant 

solutions for TCSC allocation problem. 

 

Table 2 Pareto optimal set for TCSC allocation 
individual Line 

No. 

rTCSC Losses Overload V. dev 

1 2 -0.2261 13.4602 10.8842 0.0289 

2 4 -0.7243 15.7237 9.0780 0.0220 

3 4 -0.7991 16.4766 9.3298 0.0209 

4 1 -0.6411 14.5825 10.2619 0.0191 

5 10 -0.7007 13.9254 14.1421 0.0259 

6 10 -0.7935 14.0866 18.4620 0.0232 

7 10 -0.7665 14.0485 16.5877 0.0233 

8 2 -0.6392 14.5407 12.3880 0.0239 

9 3 -0.7140 14.1856 9.3927 0.0291 

10 10 -0.7995 14.0955 18.9803 0.0232 

11 10 -0.7011 13.9259 14.1553 0.0259 

 

 

Results 

Objective Location Size Loss Overload V. d 

w/o 

FACTS 

- - 13.5929 10.5508 0.0289 

TCSC Line 

number 

rTCSC    

Losses 2 -0.226 13.4602 10.8840 0.0289 

Overload 4 -0.725 15.7292 9.0784 0.0220 

V. 

deviation 

1 -0.624 14.5525 10.2696 0.0191 

SVC Bus number QSVC    

Losses 9 30.3 13.3783 9.9068 0.0428 

Overload 9 29.9 13.3784 9.9066 0.0426 

V. 

deviation 

7 -26.4 14.1266 10.7822 0.0095 

UPFC Bus line QCONV1 γ    

Losses 1 1 0 1.25 8.7846 9.0108 0.0328 

Overload  4 -20 1.39 10.9264 8.1169 0.0346 

V. 

deviation 

7 15 29 1.559 14.2225 12.9588 0.0093 



 

 

Table 3 Pareto optimal set for SVC allocation 
individual Bus 

No. 

QSVC Losses Overload V. dev 

1 9 29.90 13.3784 9.9066 0.0426 

2 7 - 26.41 14.1267 10.7828 0.0095 

3 9 30.29 13.3783 9.9068 0.0428 

4 9 -18.45 14.0324 11.6059 0.0117 

5 9 -14.46 13.9787 11.2270 0.0137 

6 11 -17.78 14.1286 10.6504 0.0116 

7 9 -10.21 13.8402 11.1142 0.0156 

8 9 -18.05 14.0380 11.5304 0.0118 

9 9 14.86 13.4218 10.1249 0.0366 

10 9 30.29 13.3783 9.9068 0.0428 

11 10 06.48 13.4780 10.4613 0.0339 

 

     Table 3 presents the pareto optimal set for SVC 

allocation, individuals (3, 1, and 2) are the optimal 

solutions corresponding to the losses, overload, and V. 

deviation respectively. The remaining individuals are the 

remaining non dominant solutions for SVC allocation 

problem. 

 

Table 4 Pareto optimal set for UPFC allocation 
Ind Bus 

No. 

Line 

No. 

QCONV1 γ Losses Overload V. dev 

1 2 1 23.51 1.2441 8.7846 9.0118 0.0328 

2 7 15 28.72 1.5506 14.2129   12.9351 0.0093 

3 5 22 19.92 1.7465 19.1726 10.5198 0.0114 

4 2 4 -25.92 1.3916 10.9264 8.1169 0.0346 

5 7 15 21.72 1.7782 14.1442 13.6838 0.0115 

6 5 25 19.29 1.7452 16.9638 10.0675 0.0161 

7 1 2 23.54 1.7187 9.9045 11.4022 0.0291 

8 7 14 25.26 1.6000 14.0560 15.9643 0.0103 

9 5 25 17.87 1.7835 16.9638 9.7759 0.0120 

10 5 22 10.78 1.5494 18.8828 10.3785 0.0120 

11 3 3 21.48 1.7615 10.3543 8.7638 0.0229 

12 4 26 14.11 1.7263 13.6898 11.5240 0.0142 

13 2 4 -25.87 1.3916 10.9264 8.1169 0.0346 

14 7 14 28.24 1.7137 14.0966 15.7097 0.0111 

15 6 12 21.35 1.7228 14.6272 10.8755 0.0165 

16 2 4 23.82 1.8055 11.2105 8.3058 0.0232 

 

     Table 4 presents the pareto optimal set for UPFC 

allocation, individuals (1, 4, and 2) are the optimal 

solutions corresponding to the losses, overload, and V. 

deviation respectively. The remaining individuals are the 

remaining non dominant solutions for UPFC allocation 

problem. 

     Fig. 10 shows the effect of FACTS devices in the 

optimal locations on the voltage profile of the power 

system, it is shown that the all FACTS improve the power 

system voltage profile but TCSC has less effectiveness on 

the voltage profile W.R.T SVC and UPFC. 

     Fig. 11 shows the effect of FACTS devices in the 

optimal locations on the power system losses of all 

transmission lines; it is shown that UPFC greatly reduces 

losses at lines (1, and 2) and slightly increases losses at 

lines (3, 4, and 5), so the overall system loss is greatly 

decreased using UPFC. SVC and TCSC have slightly 

affecting on the power system losses W.R.T UPFC. 

     Fig. 12 shows the effect of FACTS devices in the 

optimal locations on the system overloads, SVC has less 

effectiveness on the T.L overload W.R.T TCSC and 

UPFC. 

 
Fig. 10 Voltage profile of load buses 

 
Fig. 11 Power losses of Transmission lines 

 
Fig. 12 Overloads of transmission lines 

 

From fig. (10, 11, 12), Unified power flow controller 

(UPFC) is a versatile FACTS’s device which can 

independently or simultaneously control the active power, 

the reactive power, and the bus voltages of power system 

networks. 

 

6. Conclusions 
     The present paper makes use of recent advances in 

multi-objective evolutionary algorithms to develop a 

method for the combinatorial optimal allocation of FACTS 

into power systems. Optimizations were performed on two 

parameters: the locations of FACTS devices and their 

rates. It was considered as optimization criteria the 

maximization of the power system security and the 

minimization of power system losses. Implementation of 



 

 

the proposed NSGA II has performed well when it was 

used to characterize POF of the FACTS optimal location 

problem. The results show that the proposed NSGA II can 

produce good solutions.  
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