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Abstract: In this paper, a new adaptive simulated annealing 
algorithm for geometrical shape optimization of 
electromagnetic devices is proposed.  The adaptive 
simulated annealing is very good at finding the correct area 
of the solution under some hypotheses such as non-
convexity and non-differentiability and its generation 
function is excellent at refining a solution repeatedly to the 
nearest maximum or minimum solution. The ASA algorithm 
has been applied on the geometrical shape optimization of a 
linear electromagnetic actuator. The non linear finite 
element method and the adaptive simulated annealing 
algorithm have been used to maximize the magnetic force 
versus displacement. To have the quality of this new 
algorithm, the performances of ASA are compared with 
other algorithm such as genetic algorithm (GA) in term of 
accuracy of the solution and computation time. The reached 
results suggest that the proposed algorithm ASA has 
excellent effectiveness in finding best solution.  
 
Key words: Optimization, Genetic Algorithm, Adaptive 
Simulated Annealing, Linear Actuator, Finite Element 
Method. 
 
 
1. Introduction  
 Shape optimization is part of the field of optimal 
control theory [1]. The typical problem is to find the 
shape which is optimal in that it minimizes a certain 
cost functional while satisfying given constraints. The 
functional to be optimized is called the goal function, 
or objective function, and is usually provided by the 
user as a black-box procedure that evaluates the 
function on a given state. Furthermore, this function is 
dependent on the design variables, which are the 
unknown system parameters. 

Stochastic algorithms may find the global minimum 
of the objective function with a few hypotheses such as 
non-convexity, non-differentiability, etc. These 
methods are very simple to implement on design 
problems to converge to the solution with a high 
probability.  Among the principal advantages of these 
procedures are their aptitudes to locate global solution 
without the make necessary derivatives. The stochastic 
methods are based on a set of points and to modify 
them with the probabilistic process to assure the best 
solution.  

The simulated annealing is one of the most common 
stochastic methods for solving inverse problems 

through the search of solution space. There is a class of 
general stochastic strategies, which often use 
randomized search for example. They can be applied to 
a wide range of problems, but good performance is 
never guaranteed [2]. In addition, if the objective 
functions are under some hypotheses such as non-
convexity and non-differentiability, it cannot afford the 
adequate fidelity of the inverse problem because the 
convergence to an optimal solution cannot theoretically 
be guaranteed after a great number of function 
evaluations. Also, it gives us bad results and run very 
slowly or demand more computation time for finding 
the solution in some problems.  

For achieve good solutions in a reasonable amount of 
time, a new simulated annealing method has been 
developed by us to apply it in our geometrical shape 
optimization problem. This very fast simulated 
annealing method gives us an optimal solution of any 
optimization problems with a significantly lower 
number of function evaluations than those required by 
stochastic methods such as the Tabu search, genetic 
algorithms and simulated annealing [3]. The adaptive 
simulated annealing is very good at finding the 
adaptive solution area of the optimal point, tolerant of 
local maxima and minima, and the new generation 
function is excellent at refining a solution 
systematically to the nearest maximum or minimum 
(best solution). The algorithm is planned so that 
facilitates a global search and escapes the local minima. 
This improved algorithm can be worked adequately 
when the cost function is multimodal and under some 
hypotheses. The differences with standard SA are that 
the ASA uses a much faster annealing schedule and 
employs a reannealing scheme to adapt itself. 
 The objective of this paper is to propose the new 
fast optimization method for solving inverse 
electromagnetic problem in electrical engineering such 
as the geometrical shape optimization problem. In this 
case, the ASA method has been implemented on a 
linear electromagnetic actuator for its optimum design 
to maximize force magnetic. 
 The test configuration chosen for the evaluation of 
our algorithm is shown in Fig. 1. It was originally 
introduced in [4], and it consists of a core and a 
plunger, made of iron, and a copper coil.  The 
application studied is a linear actuator with a 
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cylindrical core mobile. The actuator takes the form of 
a solenoid valve (or electromagnet). When energized, a 
magnetic force appears and has the tendency to 
displace the plunger about a position that minimizes 
the energy of the system. In the contrary case (de-
energized), the plunger is returned to its original 
position by the spring action and the valve returns to its 
resting state. This device has been the subject of an 
internal study in electrical engineering laboratory in 
Grenoble, conducted by Saldanha in the context of 
industrial collaboration. Considering the symmetry, the 
model is only designed for the half (see Fig. 1).  
 

 
Fig. 1. Coup axisymmetric linear actuator 

 
2. Adaptive Simulated annealing 
2. 1. Simulated annealing 
 Before giving a detailed description of ASA, first 
we shall explain the fundamental terminology of SA. 
Simulation optimization by simulated annealing was 
first described by Kirkpatrick et al [3], and is based on 
work by Metropolis et al [2] in the area of statistical 
mechanics.  SA is inspired from the heating process of 
a crystalline structure. The metal is slowly lowered 
until it achieves its regular crystal pattern. At each 
temperature level, the simulation process must proceed 
long enough for the system to reach a steady state or 
equilibrium. This process makes a sequence of state for 
reach the final temperature with regular crystal pattern. 

A simulated annealing optimization starts with a 
metropolis Monte Carlo simulation for state-space 
variables at a high temperature. This means that a 
relatively large percentage of the random steps that 
result an increase in energy will be accepted. After a 
sufficient number of Monte Carlo steps, or attempts, 
the temperature is decreased. The acceptance of the 
novel result is according to the Metropolis’s condition 
based on the Boltzman’s probability [3]. SA algorithm 
contains two steps:  the first, perform search while the 
temperature is decreasing. The second determine the 
acceptance. The acceptance probability of solution 
point i  is defined by:  

( )KTEjEjexpP ' −=                                            (1) 
WhereK  is the Boltzman’s constant and T  is the 
temperature of the heat bath, 'Ej is the current energy 
state for the system and Ej is a subsequent energy state, 

If 0EjEj ' ≤− , 'j is accepted as a starting point for the 

next iteration; otherwise, solution 'j is accepted with 
Boltzman’s probability (1). The above procedure is 

repeated nt time until temperature T is reduced. The 
aim of the Metropolis’s succession is to authorize the 
system to attain thermal equilibrium. It should be noted 
that classical optimization algorithm only accept 
improved design and never accept a worse design. In 
simulated annealing, the condition 0EjEj ' ≥− gives the 
algorithm a chance of get out of a local minimum.  
  
2. 2. Adaptive Simulated Annealing 
 In practice, a geometric cooling schedule is 
generally utilized to have SA settle down at some 
solution in a finite amount of time. It has been proved 
by some authors that by carefully controlling the rate of 
cooling of the temperature, SA can find the global 
optimum. However, this requires infinite time. Fast 
annealing and very fast simulated reannealing (VFSR) 
or adaptive simulated annealing (ASA) are each in turn 
exponentially faster and overcome this problem. The 
first simulated annealing employed Gaussian 
distribution as a generator and was proposed by 
Kirkpatrick. In 1987, Szu and Dartly [3] proposed a 
fast simulated annealing by using Cauchy/Lorentzian 
distribution. Another modification of the SA, the so-
called adaptive simulated annealing was proposed by 
Ingber [5] and was designed for optimization problem 
in a constrained search space. For kx a parameter in 
dimension i    at annealing time k with rang 

kx ∈ [ min
ix , max

ix ]  the new value is generated by:   
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    The i  values andiT  are identifies the parameter 
index and temperature. To findiλ one most find the 
normalized cumulative probability distribution of( )ig λ . 
The cumulative probability distribution can be defined 
as: 
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To simplify this generating function iλ  for a uniform 
distribution is preferred. A normal uniform distribution 
is defined as follow:  

( ) 1uU i =  
Where iu  (∈ [ 0 ,1 ] ) is the uniform distribution 
function and is the cumulative of a uniform 
distribution. Each parameter is generated using a 
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cumulative function. In this case, by the idea of Ingber 
it can be seen to choose ( ) ii ug =λ  . Then, to 
calculate iλ according to the preceding distribution, we 
can apply this formulation:  





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−+−= − 1)

T

1
(1 T )5.0u(sign 1u2

i
iii

iλ                    (5) 

The new generation distribution function in ASA has 
much fatter trails than Gaussian and Cauchy generation 
function. Temperature T is a key element in the cooling 
system in the ASA algorithm. After every generated 
points, annealing takes place with a new annealing 
schedule. A global optimum can be obtained 
statistically if the annealing schedule is:  

)kc(xpe )0(T)k(T n/1
iii −=                                       (6) 

 Where ic  is a user-defined parameter whose value 
should be selected according to the guidelines in 
reference [6], butn is the dimension of the space under 
exploration. The same type of annealing schedule 
should be used for both the generating function and the 
acceptance function( )P11 + . 
 Reannealing in ASA algorithm periodically rescales 
the generating temperature in terms of the sensitivities 

is  calculated at the most current minimum values of 
the cost function. After every acceptance points, 
reannealing takes place by the first calculating the 
sensitivities: 

ii xEs ∂∂=                                             (7) 
The annealing time is adjusted according to is , based 
on the heuristic concept that the generating distribution 
used in the relatively insensitive dimension should be 
wider than that of the distribution produced in a 
dimension more sensitive to change.  
   
3. Formulation of finite element method and force 
calculation 
3. 1. Field Equation 
 All electromagnetic phenomena are governed by 
Maxwell’s equations. The differential form of 
Maxwell’s equations can be expressed as: 

JH =×∇                           (8) 
0B =⋅∇         (9) 

t

B
E

∂
∂−=×∇                        (10) 

 Where∇ is the Laplace operator, H is the magnetic 
field intensity,B the magnetic induction intensity,J the 
electrical current density andE is the electrical field 
intensity. 

For isotropic medial material, the constitutive 
equations to Maxwell’s equations are: 

H )H(B µ=        (11) 
EJ ⋅= σ       (12) 

 Whereµ andσ are the magnetic permeability and 
electric conductivity of the medium electromagnetic 
field respectively.  
 For two dimensional problems, the magnetic vector 
potential A  is the obvious choice in most instances. 

The divergence condition on B  implies the existence 
of a vector potential defined by:  

AB ×∇=      (14) 
 The magnetic field of electromagnetic actuator can 
be considered as a magnetostatic problem. Substituting 
(14) to (8) we obtain: 

JA) 
1

( =×∇×∇
µ

    (15) 

     Where A  has only a component in the  direction ϕ . 
This also the direction ofJ . With these conditions, Eq. 
(15) becomes:  
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r

ν creates an asymmetry in the 

elemental matrix, when Galerkin’s method is applied, 
because this term depends only on coordinate r . To 
eliminate this inconvenience we introduce a new 
variable V related to A  which rAV = . Eq. (16) 
becomes:  
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Where V is the modified magnetic vector potential.  
3. 2. Finite Element Method 
The finite element method is one of the most numerical 
methods used to solve differential equations. The FEM 
is widely used by scientists and engineers. The general 
principle of the finite element method consists in the 
division of the solution domain into small sub-domains 
or segments, known as “finite elements”. In this 
method, the equation is discretized in space by the 
Galerkin’s method. after  discretization  of  the  
domain,  the vector  potential  has  been  approximated 
 using first-order  triangular  elements.  In each 
element, the vector potential varies according to 
eq.(18): 

∑
=

=
n,m,li

ii NVV                      (18) 

Where iV are the node values of V  and iN  are first 
order polynomials.  

Applying the Galerkin’s method to Eq.(17) , we 
have: 
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     After  assembling  all  the  elementary equations,  a  
differential  system of  equations is  obtained  which  
may  be  written as: 

]F[[V] ]M[ =  
     Where [ ]M  is the global coefficient matrix, [ ]V is 
the matrix of nodal magnetic vector potentials and[ ]F is 
nodal currents (forcing functions) which are given by: 
          ∫ ∇∇=

is

jiij
r

dz dr
N N M ν                              (20) 

         ∫=
i

 i

s

t
i dz drN JF                                           (21) 
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 The  Gaussian  elimination  algorithm  is  then  used 
 to  solve  the  above banded  matrix  equation. The 
field solution is used to calculate the magnetic 
inductionB . More details about the finite element 
theory can be found in [7].  
3. 3. Magnetic Force calculation 
 The most important parameter of electromagnetic 
actuator, magnetic force, can be calculated by means 
the nonlinear virtual work method. For the vector 
potential formulation, the local magnetic force is 
calculated on the nodes. Only the elements surrounding 
a node have changed their energy by moving virtual 
node. The energy of the system compared to a virtual 
displacement is given by: 

( )∫ ∫=
Ω

Ω
B

0
d dB HW                                               (22) 

 The force in a direction is given by the derivation of 
the magnetostatic energy system compared to a virtual 
displacement: 

q
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     The magnetic force on a node i is [8]:   
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 Where Ω is the surface area of a triangle, 
2

e B∂∂ν is computed from the equation that represents 
the characteristic magnetization of ferromagnetic 
materials, eν the reluctivity of element andq is the 
virtual displacement.  
 
 

 
Fig. 2 Flowchart of shape optimization 

 
4. Shape Optimization Problem 
 Fig.2 shows the flow chart of the optimization 
procedure. The initial dimensions of the linear 
electromagnetic actuator are used as starting point in 
the optimization. In the first step, the Finite element 
and nonlinear virtual work is utilized to obtain the 
force magnetic global of the device. To calculate the 
objective function of design parameters, the non linear 
finite element method package must be able to accept 
parameters generated by ASA, to perform the finite 
element method computation automatically, and to 

return the value of the objective function to the ASA 
algorithm. During each iteration, the dimensions of 
actuator are determined by ASA method as shown in 
Fig.2 indication. In the second step, if the results do not 
meet the termination criteria, the dimensions of the 
actuator are modified for the next iteration. 
 
5. Results of Simulation and Discussion 
 The geometry of the actuator is illustrated by six 
design parametersix  ( i =1…6) selected to change the 
shape of the actuator (see Fig. 3). The 
dimensions ix have to be optimized in order to 
guarantee a maximum magnetic force versus 
displacement. 
 

 
Fig. 3 Design variable of the actuator 

 
 The finite element Simulation of the global 
magnetic force of the electromagnetic actuator 
currently used has been carried out with saturation 
taken into account. The core and the plunger iron core 
are constructed from steel M19, whose magnetization 
characteristic is plotted in Fig. 4. This material is 
characterized by a curve ( )HB  nonlinear, giving the 
magnetic field as a function of magnetic induction (see 
Fig. 4). The reluctivity is approximated by the 
following expression: 

( )
ξ

τδτν
η

η

+
−+=

2

2
2

B

B
)(B    (24) 

Where τ (1.25e-4) is the reluctivity at low values ofB , 
δ  (0.425) is the reluctivity of highly saturated 
materials and η  (5.22) and ξ  (21300) are the 
parameters determining the transitions between these 
two values. The finite element method (FEM) 
considering the saturation effect of the magnetic 
material is used, and is computed by using the 
Newton–Raphson method. The errors in the solution 
obtained are analyzed, the mesh is refined, and the 
problem is solved again. The procedure is repeated 
until the solution error is smaller than a predefined 
value.  
 Our axsiymmetrical model is based on the 2D-
element finite method (2D-FEM) which permits to 
calculate the global magnetic force of electromagnetic 
actuator. The mesh is automatically generated by 
dividing the geometry into discrete elements. Standard 
triangular elements are applied here. The open 
boundary was set at a radius ofRc*4   (exterior radius) 
using the Dirichlet condition. The generated mesh had 
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approximately 3196 nodes or 6268 first order 
triangular elements. It is important to select an 
adequate mesh to represent correctly the 
electromagnetic phenomena and then, to reduce the 
numerical errors that can influence the convergence of 
the optimization process.  
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Fig. 4 Magnetization curve 

 
By using our finite element method program, Fig.6 

shows the equipotential lines of magnetic vector 
potential A . The problem was solved on a PC with P4 
2.4G® CPU under Matlab 7 workspace using the Partial 
Differential Equation Toolbox for the finite element 
meshes generation. 

 
Fig. 5 Equipotential lines of magnetic vector potential 

 
Fig. 5 shows the experimental results of the magnetic 

global force acting on the moving parts using the finite 
element method and nonlinear virtual work method [8]. 
the results shows that when the air-gap between the 
magnetic circuit and the moving parts is near zero, the 
force acting on the plunger (moving parts) reaches the 
maximum value of 45.8 N. As the air-gap distance is 
increased, the force action on the plunger decreases. 
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Fig. 6 Evolution of magnetic thrust force versus the 

 displacement in the z-axis 
 
 The objective of optimization is to maximize the 
maximum magnetic force (45, 8 N), with a global 
constant volume. This optimization consist of 
minimizing an objective function, which is the error 
between the target magnetic force (100 N) and a 
magnetic force zF calculated using ASA and FEM-
code  and compare its optimal solution with genetic 
algorithm. 

For this optimization problem, we define the cost 
function as the difference between the target magnetic 
force and the magnetic force calculated by the finite 
element method and adaptive simulated annealing 
method. Generally, the optimization is considered as a 
nonlinear problem to locate a solution x  that 
minimizes the following cost function:  

( )
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 Where 0F  is the desired magnetic force (here 
= zF 100 N) , is the magnetic force exerted on the 
plunger core by considering the gap ( )iLe  (0.1 mm to 
0.35 mm with a step of  movement 0.05 mm) andnp is 
equal to the number of design variable.  
The values of ( )654321 x,x,x,x,x,xp = are optimized 
through minimization of this objective function. 
Eq.(25) is minimized by using the new hybrid FEM-
ASA. The actuator design also needs to satisfy the 
following constraints: 
� The excitation coil current density is 5.71 A.mm-2. 
� Maximum flux density in the magnetic circuit and 

plunger core( T 93.1Bs ≤ ). 
� The equality constraints:            

0Lc(x) 433.0xx : )x(g 541 =−+                             (26) 

06-7.363e-Lc(x) Rc(x)  : )x(g 2
2 =π                     (27) 

−++ 42113 x )rx(r  2 : )x(g π    

                                  0r)rxr(( 2
1

2
221 =−++π    (28) 
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−−− ))x)x(R((R(x) : )x(g 2
3

22
4 π  

                                0r)rxr(( 2
1

2
221 =−++π      (29)               

� The inequality constraints: 
03-18e-Lc(x) : )x(h1 ≤                                     (30) 

03-12eLc(x)- : )x(h2 ≤+                             (31) 
 Where the quantities cL and cR characterize the 
height and exterior radius of the electromagnetic 
actuator. 
    The design optimization problem is to respect these 
constraints and to minimize the objective functionf . 
In engineering practice, a narrower range is always 
preferred for accuracy in inverse solution and for 
computational efficiency. The lower and upper bounds 
of the parameter x  of the problem are: 

mm37.1xmin
1 = and mm13.3xmax

1 =                      

mm00.3xmin
2 = and  mm0.15xmax

2 =                     

 mm03.0xmin
3 = and   mm20.1xmax

3 =                    

mm00.1xmin
4 = and   mm50.3xmax

4 =                  

mm00.1xmin
5 = and   mm00.8xmax

5 =                     

mm00.1xmin
6 =  and  mm00.8xmax

6 =                     
 Using the exterior penalty function method, the 
constrained is converted in to an unconstrained 
problem to minimize the objective function shown in 
Eq. (27). By this idea, the objective function of the 
design problem is replaced by the following function 
[9]:  

∑+=
m

j j
2k ))x(h,0(maxm)x(f)k,m,x(φ               (32)  

 Wheref is the objective function andh is the 
inequality constraints. But,m is the penalty coefficient.  

TAB. 1 RESULTS OBTAINED FROM ASA 
 

Test 
N° 

P  
(mm) 

initial 
dimensions  

Optimized 
dimensions 

Magnetic  
force 

x1 2.130 3.004 
x2 7.730 7.892 
x3 0.630 0.943 
x4 1.840 2.510 
x5 4.630 2.831 

 
 
 

I 
 
 x6 4.160 1.863 

Iteration 101 

CPU 
 time 

30e3 s 

 
89.94 N 

x1 1.800 3.102 
x2 10.10 7.891 
x3 1.100 0.949 
x4 3.000 2.431 
x5 1.900 2.783 

 
II 

x6 1.500 1.962 

Iteration 57 

CPU 
 time 

15e3 s 

 
91.45 N 

 

The initial and optimized design results of the 
electromagnetic actuator are shown in Tab. 1. We note 
from the results that the optimization process converges 
toward the best values of the search space. The suitable 
choices of starting values of parameters are necessary to 
assure the stability convergence of the optimization 
parameters. 
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Fig. 7. Evolution of optimized magnetic force versus 

displacement, results obtained by ASA. 
 
As shown in Tab. 1, the global force magnetic of the 

optimized electromagnetic actuator has improved, and 
the volumes of the magnetic circuit and the plunger 
(moving parts) of the device have increased. The Fig. 7 
shows the change of the static force magnetic by the 
adaptive simulated annealing approach. The force 
magnetic has augmented by 96.37 % for test I and 
99.67 % for test II (see Tab.1 and Fig.8), while the 
volume of coil has decreased about 30 %. 
Consequently, the flux density on the plunger has 
increased and the reluctance of the actuator has 
reduced. All of these are useful in reducing the 
manufacture cost of the actuator. Moreover, after the 
shape optimization, the volume of the coil has 
diminished. These make the new actuator become more 
robust. For example, the configuration of the optimized 
actuator is shown in Fig. 8. 

The force magnetic during the iterations process is 
shown in Fig. 9 obtained by the FEM-ASA algorithm 
for the test I.  As shown in this figure, the error of the 
desired force magnetic and the magnetic force exerted 
on the plunger core is small. Thus, the new hybrid 
method (ASA with FEM) is confirmed our goal. 

Now we compare this new method with a global search 
method as the genetic algorithm that determines the 
design parameters in any problem.  The genetic 
algorithm (GA) is an optimization and search technique 
based on the principles of genetics and natural 
selection. The method was developed by John Holland 
over the course of the 1960s and 1970s and finally 
popularized by one of his students, David Goldberg, 
who was able to solve a difficult problem involving the 
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control of gas-pipeline transmission for his dissertation 
[10]-[11].  
  

2 4 6 8 10 12 14

x 10
-3

0

5

10

15

20
x 10

-3

 

 

Initial
Optimal

 
Fig. 8 Initial and optimal structures of the linear actuator 
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Fig.9 Convergence curve of the magnetic force of the 

 actuator by ASA (Test I). 
  
 For this optimization method, the code has been 
programmed in Matlab with the Genetic algorithm 
toolbox [12] the parameters used are selected as follow: 
The tests start with number of population equals to 60 
with 20 generations. Each generation stores the best 
fitness string, and at the end gives us the best 
candidate. A binary encoding is used. The crossover 
probabilities are equal 0.61 and 0.72 for the test I and 
II respectively. In both tests the mutation probabilities 
were 0.001 and 0.01. Also, the method of tournament 
selection is used. The convergence criteria used in the 
present work is when the percentage difference 
between the average values of all the designs and the 
best value in the population reaches a very small 
specified value. 
 The Tab.2 shows the results for maximizing the 
magnetic force using the genetic algorithm and CPU 
time. The computation time varies with the precision of 
calculation, and especially with the initial population. 
For these solutions, is not sure that we have the finest 
solution if the procedure is finished by the limit 

number of generations. 
 

TAB. 2 RESULTS OBTAINED FROM SGA 
 

Test 
N° 

P  
(mm) 

Optimized 
dimensions 

Magnetic 
force 

x1 2.131 
x2 7.911 
x3 0.891 
x4 2.323 
x5 2.594 

 
 
 
I 
 
 

x6 1.720 
Iteration

s 
98 

CPU 
time 

72e3 s 

 
71,32 N 

 

x1 2.798 
x2 7.162 
x3 0.710 
x4 1.988 
x5 2.796 

 
II 

x6 2.002 

Iteration 120 

CPU 
time 

88e3 s 

 
72.10  N 

 
 It is expected to combine adaptive simulated 
annealing and a numerical method (FEM) so as to 
provide an ideal performance for the optimization 
procedure, which is often vital in nonlinear problems. 
As such, not only can the global optima be ensured but 
results can also be obtained at a reasonably fast speed 
(see Tab.1 and Tab.2). The other advantages of ASA 
are the capability to escape from the local optima. 
 With ASA optimization, the convergence to an 
optimal solution can theoretically be guaranteed after a 
number of iterations. Interestingly, when a combination 
of adaptive simulated annealing and the finite element 
method was applied, an even better result was 
achieved. This can be explained with the fact that the 
ASA method has different strength. The adaptive 
simulated annealing is very good at finding the correct 
area of the solution, tolerant of local maxima and 
minima, and the new generation function (see Eq. (4)) 
is excellent at refining a solution systematically to the 
nearest maximum or minimum (best solution). The 
new algorithm is better equipped for global 
optimization because it is more aggressive in the 
exploration of the search space. This algorithm can be 
worked adequately when the cost function is 
multimodal and not derived for the design parameters. 
 In our results, the value of the force magnetic versus 
the moving parts was improved by about 98% (see 
Tab.1), which means that the cost function decreased. 
The results presented here show that the performance 
of the electromagnetic devices can be substantially 
improved if combined ASA with FEM. When 
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compared the FEM-ASA with the FEM-GA, the 
numerical results show that the adaptive simulated 
annealing gives us an excellent convergence in a 
minimal CPU time (see Tab.1 and Tab. 2). It is evident 
from the above results that adaptive simulated 
annealing is superior to on this problem, both in terms 
of optima found and speed convergence. Whilst genetic 
algorithm is thorough, it does not appear to be able to 
adequately search the full space, and slowly converges 
to final solution. In contrast, the new generation 
function and annealing schedule of adaptive simulated 
annealing consistently gives us better results, especially 
when using new random-search technique. 
 
6. Conclusion 
 In this paper we have presented a new optimization 
algorithm for solving inverse electromagnetic problem 
(IEP). The new algorithm is an extension of the 
traditional simulated annealing algorithm. It is based on 
a simulated annealing algorithm extended by a search 
technique to improve the parameters of the function 
that may keep high diversity and reduce the likelihood 
premature convergence.  
 Stochastic algorithms are extensively used for 
geometrical shape optimization problems, but they 
need several function evaluations and its convergence 
rate is short. To  attain  fast  convergence,  adaptive  
simulated annealing  is  a  good  approach  because  it  
can,  under  the non- convexity and non-
differentiability, repeatedly adjust  the  adaptive 
solution space and rapidly converges to global solution. 
 When  used  to  solve  the  optimization problem  in 
 the  geometrical design of  a linear actuator,  which its 
objective  function is under some hypotheses such as 
non-convexity and non-differentiability,  adaptive 
simulated  annealing  can  not  only  obtain  the  global 
optimal solution but also the convergence history 
showed that the ASA converged to the optima faster 
than the genetic algorithm.  
 Finally, the new ASA algorithm can be extensively 
used in any other situation to solve different 
optimization problems of electromagnetic devices. 
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