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Abstract: In this paper, a new adaptive simulated annealinthrough the search of solution space. There iass df
algorithm for geometrical shape optimization ofgeneral stochastic strategies, which often use
electromagnetic devices is proposed. The adaptitgndomized search for example. They can be apiplied
simulated annealing is very good at finding theecrarea 5 \ide range of problems, but good performance is
of the solution under some hypotheses such as nfsyer guaranteed [2]. In addition, if the objective
convexity and non-differentiability and its genéoat functions are under some hypotheses such as non-

function is excellent at refining a solution repedly to the . . A
nearest maximum or minimum solution. The ASA alyari convexity and non-differentiability, it cannot affthe

has been applied on the geometrical shape optitizata 2dequate fidelity of the inverse problem because th
linear electromagnetic actuator. The non linearitén Convergence to an optimal solution cannot theatic
element method and the adaptive simulated annealifi¢ guaranteed after a great number of function
algorithm have been used to maximize the magrmtie f evaluations. Also, it gives us bad results andveny
versus displacement. To have the quality of thie neslowly or demand more computation time for finding
algorithm, phe performances pf ASA are comparedh witthe solution in some problems.

other algorithm such as genetic algorithm (GA)émt of  For achieve good solutions in a reasonable amdunt o
accuracy of the solution and computation time./Baehed {ime a new simulated annealing method has been
results suggest that the proposed algorithm ASA hggeloped by us to apply it in our geometrical ghap
excellent effectiveness in finding best solution. optimization problem. This very fast simulated

Key words. Optimization, Genetic Algorithm, Adaptiveémm:"aIing method gives us an optimal solution gf an

Simulated Annealing, Linear Actuator, Finite ElemenOPtimization problems with a significantly lower
Method. number of function evaluations than those requied

stochastic methods such as the Tabu search, genetic
algorithms and simulated annealing [3]. The adaptiv

1. Introduction simulated annealing is very good at finding the

Shape optimization is part of the field of optimafdaptive solution area of the optimal point, takiat
control theory [1]. The typical problem is to fitlde local maxima and minima, and the new generation
shape which is optimal in that it minimizes a derta function is excellent at refining a solution
cost functional while satisfying given constraintee systematically to the nearest maximum or minimum
functional to be optimized is called the goal fumat (best solution). The algorithm is planned so that
or objective function, and is usually provided hgt facilitates a global search and escapes the lanaha
user as a black-box procedure that evaluates thbis improved algorithm can be worked adequately
function on a given state. Furthermore, this fuorcts  when the cost function is multimodal and under some
dependent on the design variables, which are thgpotheses. The differences with standard SA ate th
unknown system parameters. the ASA uses a much faster annealing schedule and

Stochastic algorithms may find the global minimun@mploys a reannealing scheme to adapt itself.
of the objective function with a few hypothesedsas The objective of this paper is to propose the new
non-convexity, non-differentiability, etc. Thesefast optimization method for solving inverse
methods are very simple to implement on desigglectromagnetic problem in electrical engineeringhs
problems to converge to the solution with a highs the geometrical shape optimization problemhis t
probability. Among the principal advantages ofsthe case, the ASA method has been implemented on a
procedures are their aptitudes to locate globatisni linear electromagnetic actuator for its optimumigies
without the make necessary derivatives. The sttichago maximize force magnetic.
methods are based on a set of points and to modify The test configuration chosen for the evaluatibn o
them with the probabilistic process to assure e b our algorithm is shown in Fig. 1. It was originally
solution. introduced in [4], and it consists of a core and a

The simulated annealing is one of the most commgunger, made of iron, and a copper coil. The
stochastic methods for solving inverse problengpplication studied is a linear actuator with a



cylindrical core mobile. The actuator takes therfaf repeatednttime until temperaturd is reduced. The

a solenoid valve (or electromagnet). When energaedaim of the Metropolis’s succession is to authotime
magnetic force appears and has the tendency sigstem to attain thermal equilibrium. It shoulchloged
displace the plunger about a position that minisiizehat classical optimization algorithm only accept
the energy of the system. In the contrary case (deaproved design and never accept a worse design. In

energized), the plunger is returned to its originaimulated annealing, the conditij - Ej = 0 gives the

position by the spring action and the valve rettorits ; -
resting state. This device has been the subjeah of algorithm a chance of get out of a local minimum.

internal study in electrical engineering laboratary 2
Grenoble, conducted by Saldanha in the context of
industrial collaboration. Considering the symmettmg,
model is only designed for the half (see Fig. 1).

2. Adaptive Simulated Annealing

In practice, a geometric cooling schedule is
generally utilized to have SA settle down at some
solution in a finite amount of time. It has beeoyad

by some authors that by carefully controlling thie of

cooling of the temperature, SA can find the global
1 1 I Plunger optimum. However, this requires infinite time. Fast
2 T annealing and very fast simulated reannealing (WFSR

2- Coil winding : . : :

| % maenetic cieuit or adaptive simulated annealing (ASA) are eactrim t

ragn exponentially faster and overcome this problem. The
4 argap first simulated annealing employed Gaussian
distribution as a generator and was proposed by

Kirkpatrick. In 1987, Szu and Darthy3] proposed a

Fig. 1. Coup axisymmetric linear actuator fast simulated annealing by using Cauchy/Lorentzian
distribution. Another modification of the SA, the-s
2. Adaptive Simulated annealing called adaptive simulated annealing was proposed by
2. 1. Smulated annealing Ingber b] and was designed for optimization problem
Before giving a detailed description of ASA, firstin a constrained search space. kb parameter in
we shall explain the fundamental terminology of SAdimension i at annealing timekwith rang

Simulation optimization by simulated annealing wagk [ ymin ymax ] the new value is aenerated byv:
first described by Kirkpatrick et al [3], and issea on . 0L XX ] the J e
work by Metropolis et al [2] in the area of stagat X = =X *A(x™ —x7) @
mechanics. SA s inspired from the heating prooéss ~ Where x™and x""are the maximum and
a crystalline structure. The metal is slowly Iovdareminimum of theit domain. This is repeated until a

until it achieves its regular crystal pattern. Aick leqalx. b maxgng XM i q
temperature level, the simulation process musgac '€9alx  between x™"and x™ Is generated. 4,

long enough for the system to reach a steady state(C'[ -1,1 |) the random variable generated by the
equilibrium. This process makes a sequence offstate following generating function:

reach the final temperature with regular crystétigpa. n

A simulated annealing optimization starts with ag(4)= I‘l ! ©)
metropolis Monte Carlo simulation for state-space =L 2(x +T)) I 141
variables at a high temperature. This means that a b Ti

relatively large percentage of the random steps tha The i values and; are identifies the parameter
result an increase in energy will be accepted.rAdte index and temperature. To findone most find the

sufficient number of Monte Carlo steps, or attempt ; ; i dictribg i _
the temperature is decreased. The acceptance of?l%mahzed cumulative probabiity distributiongfp ).

novel result is according to the Metropolis’s cdiudi h'e cumulative probability distribution can be defi
based on the Boltzman’s probabili}.[SA algorithm as:
contains two steps: the first, perform search evttie Ir{ 1+ IiIJ
temperature is decreasing. The second determine the )1, sign(A; ) T,

acceptance. The acceptance probability of solutios(/; =3 > (4)

pointi is defined by: In 1+Ti
P= ex;( B & /KT ) (l)To simplify this generatinlg function; for a uniform

Wherex is the Bolzman's f:gnstant ard s the distribution is preferred. A normal uniform distuifion
temperature of the heat bathj is the current energy s gefined as follow:

state for the system arg] is a subsequent energy statey (u,) = 1
If Ef ~Ej<0, j'is accepted as a starting point for théVhere u; (O 0,1 ]) is the uniform distribution
next iteration: otherwise, solutiofi is accepted with function and is the cumulative of a uniform

Boltzman'’s probability (1). The above procedure igllstrlbutlon. Each parameter is generated using a

2



cumulative function. In this case, by the ideangfider The divergence condition oR implies the existence
it can be seen to choosg(4)=u; . Then, to of a vector potential defined by:

calculatel; according to the preceding distribution, weB = 0 x A (14)
can apply this formulation: The magnetic field of electromagnetic actuator can

1 be considered as a magnetostatic problem. Subsgitut
A = sign(u; - 05)T, {(1 + ?)‘ZUi R 1} (®) (14) to (8) we obtain:

i 1
The new generation distribution function in ASA hag) *(—UOxA)=J (15)

much fatter trails than Gaussian and Cauchy géoerat  \yhereA has only a component in the directign

function. Temperatur@ is a key element in the cooling ., . o . "
system in the ASA algorithm. After every generate his also the direction af . With these conditions, Eq.

points, annealing takes place with a new annealifig®) Pecomes:

schedule. A global optimum can be obtaine V‘LAJ,EV‘LAJ,E(%): -3 (16)

statistically if the annealing schedule is: 0z 0z or Or oOr\r

Ti(k) =T;(0 )ep(-cik*' ") (6) The term i[%}creates an asymmetry in the
Wherec; is a user-defined parameter whose value or\r

should be selected according to the guidelines E{emental matrix, when Galerkin's method is applied
reference [6], butis the dimension of the space undePecause this term depends only on coordimat&o
exploration. The same type of annealing scheddfdminate this inconvenience we introduce a new
should be used for both the generating functiortaed variable Vrelated to A which V =rA. Eq. (16)
acceptance functiami(1+ P). becomes:

Reannealing in ASA algorithm periodically r_gsfqale%%%/ + :—r%%—\: =J 17)
the generating temperature in terms of the Seft@8v \yherey is the modified magnetic vector potential.

s, calculated a_t the most current minimum valugs "5 Finite Element Method

the cost function. After every acceptance pointghe finite element method is one of the most nucaéri
reannealing takes place by the first calculating thmethods used to solve differential equations. TEe F
sensitivities: is widely used by scientists and engineers. Thergén

§ = 0E/0x; (7)principle of the finite element method consistshia

The annealing time is adjusted according;tobased division of the solution domain into small sub-damsa
on the heuristic concept that the generating tigion O Seégments, known as “finite elements”. In this
used in the relatively insensitive dimension shdagd Method, the equation is discretized in space by the

wider than that of the distribution produced in &@alerkin’s method. after ~discretization of the
dimension more sensitive to change. domain, the vector potential has been appratech

using first-order triangular elements. In each
3. Formulation of finite lement method and force  €lement, the vector potential varies according to

calculation eq.(18):
3. 1. Field Equation _ N (19
All electromagnetic phenomena are governed by = z Vil

i=Ilm,n

Maxwell's equations can be expressed as: order polynomials.

OxH =J (8) " Applying the Galerkin's method to Eq.(17) , we
HiB=0 . ©) have:
HE=o (19) INt[iKa—V+iKa—V}drdz+INt Jdrdz=o0  (19)
Whered is the Laplace operatoH is the magnetic orr or o0zr 0z g
field intensity,B the magnetic induction intensitythe After assembling all the elementary equredj a
electrical current densitgndE is the electrical field differential system of equations is obtainediclh
intensity. may be written as:
For isotropic medial material, the constitutivelM ][Vl =[F]
equations to Maxwell’s equations are: Where[M] is the global coefficient matfiﬁqis
B = u(|H|)H (11) the matrix of nodal magnetic vector potentials &}t
1=olE (12) nodal currents (forcing functions) which are givsn
Whereu ando are the magnetic permeability and My = J‘V ON; ON dr dz (20)
electric conductivity of the medium electromagnetic s '
field respectively. _ ¢ (21)
For two dimensional problems, the magnetic vector Fi = I JN, drdz
SI

potential A is the obvious choice in most instances.



The Gaussian elimination algorithm is theseds return the value of the objective function to th8A\
to solve the above banded matrix equatior Tlalgorithm. During each iteration, the dimensions of
field solution is used to calculate the magnetiactuator are determined by ASA method as shown in
inductionB . More details about the finite element~ig.2 indication. In the second step, if the ressditi not
theory can be found in [7]. meet the termination criteria, the dimensions @ th
3. 3. Magnetic Force calculation actuator are modified for the next iteration.

The most important parameter of electromagnetic
actuator, magnetic force, can be calculated by seah Resultsof Simulation and Discussion
the nonlinear virtual work method. For the vector The geometry of the actuator is illustrated by six
potential formulation, the local magnetic force isiesign parametess (i=1...6) selected to change the
calculated on the nodes. Only the elements surgndshape  of the actuator (see Fig. 3). The
a node have changed their energy by moving virtugimensions; have to be optimized in order to
Sic;%?éc;rehn? e?]rtuiasrggivtgr;[fbey.system compared to a thﬁ:;arantee a maximum magnetic force versus

' 2)dlsplacement.

W = L;( IOBH dB )d@

I Iz
The force in a direction is given by the derivatid o =l
the magnetostatic energy system compared to avirtu RETEN
displacement: «
ow [ 1|- _‘___X:i Lo
= “oq i [T
The magnetic force on a nods [8]: = .
2 2 ¥ & J
F:_z Q0B [VG+BZ 0VSJ+67-QV687 (23) Rc -
el 2 0q 0B oq 2 . . .
Fig. 3 Design variable of the actuator

Where Qis the surface area of a triangle,

av./oB? is computed from the equation thatrepresents The finite element Simulation of the global
the characteristic magnetization of ferromagnetimagnetic force of the electromagnetic actuator
materials, vethe reluctivity of element argis the currently used has been carried out with saturation
virtual displacement. taken into account. The core and the plunger icoa c
are constructed from steel M19, whose magnetization
characteristic is plotted in Fig. 4 his material is
characterized by a curve(H) nonlinear, giving the

ritial protolype magnetic field as a function of magnetic induc{see
Il Fig. 4). The reluctivity is approximated by the
parrasters FEM-code with following expression:
i i non-linear wirual 2
modification | &= wiork raethod V(BZ): T+(0-T1) B~ (24)
T4 BT +&
adapiir 7 {1 Wherer (1.25e-4) is the reluctivity at low valuesif
Shadated | ¢ 5 (0.425) is the reluctivity of highly saturated
anngaling no materials andn (5.22) and ¢ (21300) are the
I1 es parameters determining the transitions betweerethes
e two values. The finite element method (FEM)
e — considering the saturation effect of the magnetic
material is used, and is computed by using the
Fig. 2 Flowchart of shape optimization Newton—Raphson method. The errors in the solution
obtained are analyzed, the mesh is refined, and the
4. Shape Optimization Problem problem is solved again. The procedure is repeated

Fig.2 shows the flow chart of the optimizatioruntil the solution error is smaller than a prededin
procedure. The initial dimensions of the lineavalue.
electromagnetic actuator are used as starting point Our axsiymmetrical model is based on the 2D-
the optimization. In the first step, the Finiterent element finite method (2D-FEM) which permits to
and nonlinear virtual work is utilized to obtaineth calculate the global magnetic force of electromégne
force magnetic global of the device. To calculsie t actuator. The mesh is automatically generated by
objective function of design parameters, the noedr  dividing the geometry into discrete elements. Séatd
finite element method package must be able to accépangular elements are applied here. The open
parameters generated by ASA, to perform the finitgoundary was set at a radiugtofRc (exterior radius)
element method computation automatically, and tasing the Dirichlet condition. The generated mesth h

4



approximately 3196 nodes or 6268 first order
triangular elements. It is important to select an
adequate mesh to represent correctly the 59
electromagnetic phenomena and then, to reduce the so;
numerical errors that can influence the convergefice e
the optimization process.
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Fig. 6 Evolution of magnetic thrust force versus th

displacement in the z-axis

Magnetic Induction [T]

The objective of optimization is to maximize the
0 2000 4000 6000 8000 10000 12000 14000 Maximum magnetic force (45, 8 N), with a global
- Magnetic Field [A/m] constant volume. This optimization consist of
Fig. 4 Magnetization curve minimizing an objective function, which is the erro
between the target magnetic force (100 N) and a
By using our finite element method program, Fig.6nagnetic forceF, calculated using ASA and FEM-

shows the equipotential lines of magnetic vectarode and compare its optimal solution with genetic
potential A. The problem was solved on a PC with Palgorithm.

2.4G” CPU under Matlab 7 workspace using the Partial For this optimization problem, we define the cost
Differential Equation Toolbox for the finite elenten function as the difference between the target magne
meshes generation. force and the magnetic force calculated by theeini
x10" =10~ element method and adaptive simulated annealing
3 method. Generally, the optimization is considergd a
nonlinear problem to locate a solutior that
minimizes the following cost function:

e[, R®e T 25
f(x)—\/npzi {1-%} (29)

WhereF, is the desired magnetic force (here
1 =F,100 N) , is the magnetic force exerted on the
plunger core by considering the gag(i) (0.1 mm to
0.35 mm with a step of movement 0.05 mm) isyid
- o equal to the number of design variable.
e pooS oL o oels 002 The values 0p = (x; X, ,X3,X, X5 ,% )are optimized
Fig. 5 Equipotential lines of magnetic vector poign  through . min_imiz_ation of f[his objective fL!”C“O”-
9 auip a gneticv P Eq.(25) is minimized by using the new hybrid FEM-
Fig. 5 shows the experimental results of the méxgnef‘SA' The actuator design also needs to satisfy the

) ) . ) ollowing constraints:
global force acting on the moving parts using thitef The excitation coil current density is 5.71 A.fim

element method and nonlinear virtugl work methdd [85.  \Maximum flux density in the magnetic circuit and
the results shows that when the air-gap between the pjunger coreg, < 193T ).

magnetic circuit and the moving parts is near i@, 5 Tne equality constraints:
force_ acting on the plunger (moving parts) re_acthes 91(X):%g + Xg - 0433 Le(x) = 0 (26)
maximum value of 45.8 N. As the air-gap distance iS™, ) ~ 27)
increased, the force action on the plunger decsease 92(*) 77 ReX)” Le(x) - 7.363 -6 =0

O3(X)127(ry + Xg + 1 )%g =

IT((I’1+X2+I’2)2—I’12=O (28)

20

15 2.5
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94(x): MRX)Z = (R(X)? = x3)) - The initial and optimized design results of the
A1+ % +1,)2 -r2=0  (29) electromagnetic actuator are shown in Tab. 1. We no
> The inequality constraints: from the results that the optimization process eoges:

. ' (30) toward the best values of the search space. Ttabkui
hy(x):Le() - 18e-3<0 choices of starting values of parameters are nageiss
hy(x):- Le(x) +12e-3<0 (31) assure the stability convergence of the optimimatio

Where the quantitiedcand R;characterize the parameters.
height and exterior radius of the electromagnetic
actuator.
The design optimization problem is to respleese
constraints and to minimize the objective function
In engineering practice, a narrower range is alwaysZ
preferred for accuracy in inverse solution and for &
computational efficiency. The lower and upper baund %
g
g

—&— Test n°01 (initial)
—=— Test n°01 (optimal
Test n°02 (initial)
—%— Test n°02 (optimal) |

of the parametex of the problem are:
x" = 137 mmand x™® = 313mm

xfn = 300mm and x'¥ =15.0mm
N = 003mmand xI'* = 120mm

XE“” = 100mmand xJ™ = 350mm T 15 5 25 3 35

i Displacement [m] -4

mn = 100mmand xM* = 8,00 : . - . x1C
X5_ mm X5 mm Fig. 7. Evolution of optimized magnetic force vessu
X" = 100mm and x"* = 800mm displacement, results obtained by ASA.

Using the exterior penalty function method, the
constrained is converted in to an unconstrainedAs shown in Tab. 1, the global force magnetic ef th
problem to minimize the objective function shown iroptimized electromagnetic actuator has improved, an
Eq. (27). By this idea, the objective function bét the volumes of the magnetic circuit and the plunger
deS|gn problem is replaced by the following funtio (moving parts) of the device have increased. ThewFi
shows the change of the static force magnetic by th
_ KOm adaptive simulated annealing approach. The force
Axmk)=T0g+m zimax (Oh;(x)) (32) magnetic has augmented by 96.37 % for test | and
Wheref is the objective function ards the 99.67 % for test Il (see Tab.1 and Fig.8), while th

inequality constraints. Buis the penalty coefficient. Volume of coil has decreased about 30 %.
TAB. 1 RESULTSOBTAINED EROM ASA Consequently, the flux density on the plunger has

increased and the reluctance of the actuator has

Test P~ | initial | Optimized | Magnetic reduced. All of these are useful in reducing the
N° (mm) | dimensions| dimensions| force manufacture cost of the actuator. Moreover, after t
1 2130 3.004 shape optimization, the volume of the coil has
2 7730 7892 diminished. These make the new actuator become more
X3 0.630 0.943 robust. For example, the configuration of the ojatid
x4 1.840 2510 actuator is shown in Fig. 8.
<5 4.630 2831 The force magnetic during the iterations process is
<6 4.160 1863 | 89.94N shown in Fig. 9 obtained by the FEM-ASA algorithm
toration 1ol for the test I. As shown in this figure, the erobthe
desired force magnetic and the magnetic force edert
CPU 30€3 s on the plunger core is small. Thus, the new hybrid
time method (ASA with FEM) is confirmed our goal.
x1 1.800 3.102 Now we compare this new method with a global search
X2 10.10 7.891 method as the genetic algorithm that determines the
X3 1.100 0.949 : ) .
' @ 3.000 > 431 design parameters in any problem. The genetic
<5 1.900 2783 algorithm (GA) is an optimization and search teghgi
6 1.500 1.962 | 91.45N based on the principles of genetics and natural
. selection. The method was developed by John Holland
Iteration o7 over the course of the 1960s and 1970s and finally
CPU 15e3 s popularized by one of his students, David Goldberg,
time who was able to solve a difficult problem involvithg



control of gas-pipeline transmission for his ditstgsn  number of generations.

[10]-[11].
TAB. 2 RESULTSOBTAINED FROM SGA
20X 10° - P Optimized Magnetic
————— Initial N° (mm) dimensions force
— Optimal
15l x1 2.131
X2 7.911
7 » | x3 0.891
1o x4 2.323
o x5 2.594 71,32 N
S 1 X6 1.720
Iteration 98
ol i S
CPU 72e3's
. . . . . . ) time
2 4 6 8 10 12 14 . x1 2.798
x 1C
Fig. 8 Initial and optimal structures of the lingatuator X2 7.162
1l x4 1.988
90l x5 2.796
X6 2.002 7210 N
80+
z . Iteration 120
g CPU
% sol time 88e3s
§ 501 It is expected to combine adaptive simulated
20l annealing and a numerical method (FEM) so as to
provide an ideal performance for the optimization
30! procedure, which is often vital in nonlinear prahte
‘ ‘ ‘ ‘ ‘ As such, not only can the global optima be enshbted
0 20 40 60 80 100 results can also be obtained at a reasonablygasts
, lterations , (see Tab.1 and Tab.2). The other advantages of ASA
F|gg Convergence curve Of the magnetIC force ef th are the Capablllty to escape from the |Oca| Optlma
actuator by ASA (Test I). With ASA optimization, the convergence to an

) o optimal solution can theoretically be guaranteset af

For this optimization method, the code has begjiymper of iterations. Interestingly, when a comtiama
programmed in Matlab with the Genetic algorithmyf adaptive simulated annealing and the finite elem
toolbox [12] the parameters used are selected as folloyiethod was applied, an even better result was
The tests start with number of population equaBto achieved. This can be explained with the fact thet
with 20 generations. Each generation stores the b@SA method has different strength. The adaptive
fitness string, and at the end gives us the begulated annealing is very good at finding theectr
candidate. A binary encoding is used. The crossovgfea of the solution, tolerant of local maxima and
probabilities are equal 0.61 and 0.72 for theltestd  minima, and the new generation function (see E). (4
Il respectively. In both tests the mutation proiies s excellent at refining a solution systematicédiyhe
were 0.001 and 0.01. Also, the method of tournamepéarest maximum or minimum (best solution). The
selection is used. The convergence criteria USEtein new algorithm is better equipped for global
present work is when the percentage differenggtimization because it is more aggressive in the
between the average values of all the designstend gxploration of the search space. This algorithmhzan
best value in the population reaches a very smalbrked adequately when the cost function is
specified value. o multimodal and not derived for the design paranseter

The Tab.2 shows the results for maximizing the |n our results, the value of the force magnetisve
magnetic force using the genetic algorithm and CP{le moving parts was improved by about 98% (see
time. The computation time varies with the preci®b Tap.1), which means that the cost function decrkase
calculation, and especially with the initial pogida.  The results presented here show that the perforenanc
For these solutions, is not sure that we haveittestf of the electromagnetic devices can be substantially
solution if the procedure is finished by the limiimproved if combined ASA with FEM. When

7



compared the FEM-ASA with the FEM-GA, the Grenoble, French, 1992.
numerical results show that the adaptive simulatex] L.  Ingber, ASA-User
annealing gives us an excellent convergence in awww.ingber.com, 2003.
minimal CPU time (see Tab.1 and Tab. 2). Itisemntd 6. L. Ingber, Simulated annealing: Practice versus theory
from the above results that adaptive simulated math. Comput. Modelling, vol. 18, No. 11, 1993, pp-

Manual, Available:

annealing is superior to on this problem, botheimis

of optima found and speed convergence. Whilst gene
algorithm is thorough, it does not appear to be &bl
adequately search the full space, and slowly cgeger
to final solution. In contrast, the new generatio
function and annealing schedule of adaptive siredlat
annealing consistently gives us better resultgasiy
when using new random-search technique.

. 9.
6. Conclusion
In this paper we have presented a new optimization
algorithm for solving inverse electromagnetic pewbl

(IEP). The new algorithm is an extension of th?0

traditional simulated annealing algorithm. It iséd on

a simulated annealing algorithm extended by a bearc
technique to improve the parameters of the function
that may keep high diversity and reduce the lilasith
premature convergence.

57.

P. P. Silvester, R. L. Ferrari, Finite Elements for
Electrical Engineers, Cambridge University Press,
Cambridge, UK, 1996.

8 A Benhama, A. C. Williamson, A. B. J. Reebfrtual

work approach to the computation of magnetic force
distribution from finite element field solutipifieE Proc.
elect. pow, vol. 147, pp. 437-442, Mar. 2000.

Z. Michalewicz. A survey of constraint handling
techniques in evolutionary computation methods. In
Proc. of 4 Annual Conf. on Evolutionary Programming,
p.135-155, 1995.

R.L. Haupt, An introduction to genetic algorithnes f

electromagnetic, IEEE Antenna Propagation Magnjtude
vol.37, pp. 8-15, Apr. 1995.

1Y. Rahmat-Samii, E. Michielssen, Electromagnetic

Optimization by Genetic Algorithms, Wiley, 1999.

geometrical shape optimization problems, but they
need several function evaluations and its convegen
rate is short. To attain fast convergence, tadap
simulated annealing is a good approach becéuse
can, under the non- convexity and non-
differentiability, repeatedly adjust the adaptive
solution space and rapidly converges to globalisoiu

When used to solve the optimization probiem
the geometrical design of a linear actuatorictvits
objective function is under some hypotheses ssch a
non-convexity and non-differentiability, adaptive
simulated annealing can not only obtain gtabal
optimal solution but also the convergence history
showed that the ASA converged to the optima faster
than the genetic algorithm.

Finally, the new ASA algorithm can be extensively
used in any other situation to solve different
optimization problems of electromagnetic devices.
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