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Abstract – The aim of this paper is to present a full digital implementation of a sensorless speed direct 
field oriented controlled induction motor drive. Thanks to its advantages, the neural network is used to 
simultaneously control and reconstruct the induction motor rotor speed. 
Experimental results for a 1kw induction motor are presented and analyzed using a dSpace system with 
DS1104 controller board based on digital signal processors (DSP). Obtained results demonstrated that 
the proposed sensorless control scheme is able to obtain high performances. 
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I. Introduction 
Thanks to the theory of the vector control, high performance speed and torque responses are achieved 
for a squirrel cage induction motors (SCIM) nowadays [8]. Driven by a vector control, a SCIM behaves 
similar to separately excited DC machine in which the torque and flux are controlled separately [9]. 
The most important drawbacks in using this theory is the need to mount the speed sensor in closed loop 
configuration which results to several economical and technical problems [3]. Controlled SCIM drives 
without mechanical sensor for speed control have the attraction of low cost and high reliability [3]. The 
estimation of rotor speed is based excessively on measured terminal voltages and currents [8] and [9]. 
So the performance of the controller is depended to the robustness of the speed estimation. In recent 
years, speed estimation based on the artificial intelligence technique such as fuzzy logic and neural 
network have been widely used [4], [11], [12] and [13]. Since these approaches doesn’t require the 
knowledge of a mathematical machine model, the algorithm remains robust despite of parameter 
deviation and noise measurement [6].  
In this paper, a neural network controller and observer are trained off line using the back propagation 
algorithm. The data for training are obtained when the motor is working in closed loop at various 
values of speeds and loads. The proposed sensorless control scheme is implemented for experimental 
validation.  
This paper provides experimental results to demonstrate the effectiveness of the overall proposed 
control scheme. 
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Fig. 1. The bloc diagram of the proposed induction motor drive system. 



II. Induction motor model 
Assuming linear magnetic circuits, equal mutual inductances and neglecting iron losses, the induction 
motor mathematical model in the stationary frame is formulated as [10]: 
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The stator and rotor winding flux linkages are expressed as: 
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siα , s  iβ , svα  and s  vβ   are respectively the stator currents and voltages components, 

 
sαφ , sβφ , rαφ  and rβφ  are respectively the stator and rotor fluxes  components. 

 
rs and rr are respectively the stator and the rotor resistances, Ls, Lr  and M are respectively the stator 
self, the rotor self and the mutual inductances.  σ is the leakage coefficient  and ω  is the rotor speed.  
The electromagnetic torque developed by the motor is expressed in terms of rotor flux and stator 
currents as: 

 

e r sT p i ,= φ ⊗  (3) 
 

While the load torque acts as a disturbance via the mechanical relation: 
 

e L

dJ T T .
dt
ω
= −  (4) 

 
Where J is the moment of inertia of the rotor and TL is the load torque. 

III. Proposed scheme of the drive system 
The bloc diagram of the proposed induction motor drive system is shown in Fig.  1. The closed loop 
control scheme consists of an inner currents control loops and an outer speed and flux control loops. 
The feedback signals for the outer control loops are estimated using an on line data of motor terminals 
in terms of stator voltages and currents. The stator’s voltages and currents are sensed using Hall Effect 
voltage and current sensors. The signals corresponding to voltage and current of the stator are fed to the 
processor through the dSpace system with DS1104 controller board. Thereafter, the rotor speed and the 
rotor flux are estimated inside the processor using the sensed values of stator terminals (Fig. 2). The 
estimated speed ANN (k)ω  using the artificial neural network is used with the reference ref (k)ω  to 
compute the speed error, which is processed in an artificial neural network controller. The output of the 
speed controller which represents the target electromagnetic torque is used to compute the target 
reverse stator current qsrefi . The later is applied to a current limiter which sets a limit on this reference 
current. This limit on the target reverse current is desirable to operate the devices of the inverter circuit 
in their safe range of current. The current signals qsi  and qsrefi are processed in a PI controller to 

generate the reverse stator voltage qsv . 



The estimated rotor flux is used with the reference flux drrefφ  to compute the flux error, which is 
processed in a PI controller. The output of the flux controller which represents the target direct stator 
current dsrefi  is applied to a current limiter which sets a limit on this reference current. The two current 
signals dsi  and dsrefi are processed in a PI controller to generate the reverse stator voltage dsv . 
The estimated slip speed using the target rotor flux and the target reverse stator current is added to 
estimated rotor speed to get the synchronous one sω .  The obtained dsv , qsv and sω  are fed to the d_q 

to a_b_c bloc to get the reference target stator voltages asrefv , bsrefv  and csrefv . The target stator 
voltages are processed in the PWM bloc to provide an appropriate switching pattern to the devices of 
the fed inverter. 

III. 1.  Direct rotor field oriented control (DRFOC) 
For the DRFOC, the rotor flux vector is aligned with d axis and setting the rotor flux to be constant 
equal to the rated flux which means dr rφ = φ  and qr 0.φ =   With respect to this condition, the estimated 
rotor flux and the slip speed are given as  

 

dre dsref
r

M i
1 s

φ =
+ τ

(5) 

 
qsref

sl
r drref

Mi
ω =

τ φ
 (6) 

 

With r
r

r

L
r

τ =  is the rotor time constant. 

Fig. 2 shows the proposed DRFOC scheme of the SCIM. 
 

 
 

Fig. 2.  DRFOC scheme of induction motor. 

III. 2.  Neural NETWORK: BASIC PRINCIPLE 
A neural network is a powerful data modeling tool that is able to capture and represent complex 
input/output relationships. It's an information processing system that is non-algorithmic, non-digital, 



and intensely parallel. It consists of a number of very simple and highly interconnected processors 
called neurons, or like their biological pattern, neural cells in the brain, neurons. The neurons are 
Connected by a large number of weighted links, over which signal can pass [1]. Real neurons have a 
finite dynamic range from nil response to the full firing rate, which is modeled by a non-linear, leveling 
off at 0 and 1. The additional bias term that determines the spontaneous activity of the neuron in the 
absence of inputs is modeled by a threshold value [2]. The transfer function of a neuron would consist 
of two steps. First, the neuron computes the weighted input receiving along its input connection. The 
second step consists of converting the net input to an activation level.  Artificial neural network 
technique is based on a learning process. It is defined as changing the synaptic weights of each 
interconnection in the network to update it until the target error is reached.  Generally, the back 
propagation method is used for adjusting the neural network weights during the training phase. The 
basic back-propagation algorithm consists of three steps. The input pattern is presented to the input 
layer of the network. These inputs are propagated through the network until they reach the output units. 
This forward pass produces the actual or predicted output pattern. As back-propagation is a supervised 
learning algorithm the desired outputs are given as part of the training vector. The actual network 
outputs are subtracted from the desired outputs and an error signal is produced. This error signal is then 
the basis for the back-propagation step, whereby the errors are passed back through the neural network 
by computing the contribution of each hidden processing unit and deriving the corresponding 
adjustment needed to produce the correct output. The connection weights are then adjusted and the 
neural network has just learned from an experience.  The use of a neural network in control or 
modeling consists of an association of some inputs with some outputs. In this case, for each set of 
inputs, there is a set of outputs. To accomplish this operation, the net will have to be trained in a first 
phase. It is not necessary to carry out this phase in real time and give the net all possible inputs - 
outputs combinations since it has the capacity to generalize results starting from a limited set of inputs 
outputs. The most significant points to keep in mind when defining the structure and operation of 
neural nets is mainly the choice of the inputs and outputs. Some inputs should be chosen that determine 
completely the target output and must be easily measured so that the used hardware will be simplified. 
To train the neural network, the calculation of the synaptic weights should be done.  
The training algorithm of the neural network is as follows: 
1st step: initially randomize the weights from -0.5 to 0.5, 
2nd step: obtain the input data of the neural network, 
3rd step: calculate the error between real and observed outputs, 
4th step: adjust the weights of the neural network, 
5th step: calculate the output of the neural network, 
6th step: repeat 2nd step until the stipulated error is reached. 

III. 2.  a. Neural Network speed observer 
By replacing stator flux with its expression and eliminating the rotor current in (1), we obtain: 
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Based on these equations, we defined twos models: voltage model (VM) and current model (CM). The 
equality between the rotor fluxes deduced from the two models, we obtain: 
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Multiplying the first equation by rβφ  and the second one by rαφ , we establish: 
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With the vector control, rαφ  and rβφ are constants. Therefore, ωvaries with respect to svα , svβ , siα  and 

siβ . Hence, the significant inputs which determine completely the rotor speed are svα , svβ , siα  and siβ . 
It is better to obtain a neural network speeds observer which observes the whole range of speeds (from 
negative to positive values). By looking at extent training data, we find them very huge and the neural 
network observer finds many training problems because of the amount of information to be learnt by 
the neural network. Many solutions are proposed [5] and [7]. For example, we can increase the number 
of layers and neurons. However, this creates a problem of computation time and memory capacity. A 
simple and easy solution is to learn only the range of the positive speed. It is known that the relation 
between positive and negative speeds is a minus mark in the command issue. How to detect the 
negative speeds? If the reference speed becomes negative, the speed becomes also negative and vis 
versa. To make the neural network available in negative speeds, an absolute value is added to the 
bipolar inputs of the neural network and a sign function is implemented. Using this technique, we save 
time, memory capacity and we observe the speed in the whole range (from positive to negative). The 
final structure of the neural network used is a multilayer net with the three layers.  The first one formed 
with four neuron inputs ( svα , svβ , siα  and siβ ), the second one formed by two hidden layers and the 
third one by one neuron to give observed speed. This final structure is chosen by trial and error method. 
The sigmoid function has an output signal varying between 0 and 1. Therefore, we adopt the signals by 
dividing the output by its nominal value. The way of training the neural network consists of taking the 
training data corresponding to the positive speed and presenting these pieces of information to the back 
propagation algorithm. The training algorithm of the neural network speed observer is as follows: 
1st step: initially randomize the weights from -0.5 to 0.5, 
2nd step: obtain the stator currents and voltages,  
3rd step: calculate the error between real and observed speeds, 
4th step: adjust the weights of the neural network, 
5th step: calculate the output of the neural network, 
6th step: repeat 2nd step until the stipulated error is reached. 
The internal structure of the neural network speed observer is shown in Fig. 3. 
 

 
 

Fig. 3. The internal structure of the neural network speed observer. 



III. 2.  b. Neural Network speed controller 
The following section describes the design procedure for the neural network speed controller (NNC). 
The objective of this NNC is to develop a back propagation algorithm such that the output of the neural 
network speed observer can track the target one. Fig. 4 depicts the network structure of the NNC, 
which indicates that the neural network has three layered network structure. The first is formed with 
five neurons inputs ( ( )ANN k 1Δω + , ( )ANN kΔω , ( )ANN kω , ( )qsrefi k 1−  and ( )qsrefi k 2Δ − . The second layer 

consists of five neurons. The lasted one contains one neuron to give the command variation ( )qsrefi kΔ .  
The aim of the proposed NNC is to compute the command variation based on the future output 
variation ( )ANN k 1Δω + . Hence, with this structure, we realize a predictive control with integrator. At 
time k, the neural network computes the command variation based on the output at time (k+1), while 
the later isn’t defined at this time. In this case, we suppose that ( ) ( )ANN ANNk 1 kω + ≅ ω .  The control law 
is deduced using the recurrent equation  (10): 
 

( ) ( ) ( )qsref qsref qsrefi k i k 1 G i k= − + Δ (10) 
 
The proposed NNC was trained with the procedure illustrated in Fig. 5. 
 

 
 

Fig. 4. Neural network speed controller. 
 

 
 

Fig. 5. Training of the neural network speed controller. 



IV. Implementation of the drive system 
We have tested the neural network for controlled speed sensorless direct field oriented control of 
induction motor drive at different speed values under no load and with load applied. Fig. 7 shows the 
experimental set up drive system of the used configuration. It consists of an appropriate hardware and 
its software.  
 
The major parts of the drive system are: 

(a) Neural network speed observer, 
(b) Neural network speed controller, 
(c) Current controller, 
(d) Rotor flux estimator, 
(e) Rotor flux controller, 
(f) Gate drivers, 
(g) Voltage source inverter based on IGBT transistors, 
(h) Direct current voltage supply, 
(i) DSpace controller board DS1104 and its connector panel, 
(j) Voltage, current and speed sensors. 

 
Some of them are implemented through software and they are mainly speed observer, speed controller, 
current controller, rotor flux estimator and rotor flux controller. The experimentation has been achieved 
with the help of Matlab/Simulink package and dSpace system with DS1104 controller board based on 
digital processors (DSP). The voltage source inverter utilizes a diode rectifier with dc bus voltage 
feeding the IGBTs. The power circuit part is composed of intelligent power modules with rated 75A, 
1200A to drive the induction motor. Intelligent power modules are conducted with gate bipolar 
transistor working at a frequency up to 20KHZ with a dead fixed time of 3.25µs as it is shown in Fig. 
6. (b). The pulse width modulation (PWM) signals to control the power modules are generated by 
dSpace system. An optical isolation and an amplification of the switching signals are provided through 
on optocoupler PC900V. After that the obtained signals are updated using three drivers SKHI22A (Fig. 
6. (a)). The sampling period of 1ms is selected since the computation time of the algorithm is about 
0.1ms.  We measure two stator current using Hall type sensors LM LA 100 – P through 16bits 
analogical – digital converter. An incremental encoder position sensor delivering 1024 pulses per 
revolution is mounted on the rotor shaft only for comparison of the observed and real speed of the 
induction motor. A 1kw Direct Current Generator (DCG) supplying a variable resistor bank is used as 
variable load for 1kw induction motor. The control and observation algorithms are implemented in a 
Matlab/Simulink package, compiled to machine language and downloaded on a Real Time Interface 
dSpace DS1104 (Fig. 7). 
 

  

 
 

Fig. 6. (a) Switching signals drivers circuit of the inverter - (b) switching signals of half bridge with 
dead time of 3.25s. 

 
 



 
 

Fig. 7. SCIM speed sensorless implementation using dSpace 1104 RTI. 
 

V. Experimental results 
 
Many experiments were carried out under various operating conditions to verify the performances of 
the proposed neural network for controlled speed sensorless direct field oriented induction motor drives 
both with and without load torque appliance. Figs. 9 to 22 show the experimental results. The obtained 
results at variable target speed under no load are presented in figures 9 to 14.  From Fig. 9, it is shown 
that the neural network controlled speed is following the measured one. The maximum observation 
error is 35rpm (3.5%) as it is shown in Fig. 10. At the same way, with the proposed neural network, the 
measured and observed speeds follow the target one. In Fig. 13 is presented the direct stator currents. 
The real direct stator current follows the target one indicating that the decoupling of the induction 
motor is well established.  
In Fig. 15 to 22, a DC generator supplying a resistive bank has been connected to the motor as a load. 
In Fig. 15, the machine has been initially set to operate at 1000 rpm in steady state.  A sudden resistive 
load has been then applied from 28 to 36 s to the motor shaft. The maximum speed error is 28 rpm 
(2.8%) (Fig. 16). In this case, as it can be seen from the Figs. 18 and 22, the machine needs more 
current. The reverse stator current increases as it is directly proportional to the electromagnetic torque. 
The direct stator current remains constant indicating the decoupling of the induction motor. The neural 
network observed speed and the measured speed follow the target one indicating the high performance 
of the proposed neural network controller.  As it is seen from the experimental results the proposed 
neural network for controlled speed sensorless direct field oriented induction motor drives has good 
performances. 



 
 

Fig. 8. A photo of the experimental set up. 
 

Results without load 

  

 
Fig. 9. Measured, ANN's observed speeds at variable target 

speeds under no load in experimentation. 

 
Fig. 10. Speed observation error at variable target speeds 

under no load in experimentation. 
 

  
Fig. 11. Target electromagnetic torque at variable target 

speeds under no load in experimentation. 
Fig. 12. Reverse stator current at variable target speeds under 

no load in experimentation. 



  

 
Fig. 13. Real and target direct stator currents and tracking 

error at variable target speeds under no load in 
experimentation. 

 

 
Fig. 14. Direct and reverse stator voltage at variable target 

speeds under no load in experimentation. 
 

 

Results with load applied 

 

  

 
Fig. 15. Measured, ANN's observed speeds at variable target 

speeds under load torque appliance in experimentation. 
 

 
Fig. 16. Speed observation error at variable target speeds 

under load torque appliance in experimentation. 
 

  
 

Fig. 17. Target electromagnetic torque at variable target 
speeds under load torque appliance in experimentation. 

 

 
Fig. 18. Reverse stator current at variable target speeds under 

load torque appliance in experimentation. 
 

 



  
 

Fig. 19. Real and target direct stator currents and tracking 
error at variable target speeds under load torque appliance in 

experimentation. 

 
Fig. 20. Direct and reverse stator voltage at variable target 

speeds under load torque appliance in experimentation. 
 

 

  
 

Fig. 21. Rotor flux position at variable target speeds under 
load torque appliance in experimentation. 

 
Fig. 22. One phase stator current at variable target speeds 

under load torque appliance in experimentation. 
 
IV. Conclusion 
 
In this paper, a neural network speed observer and controller algorithms of a SCIM to increase the 
speed-sensorless drive performance were proposed. From the experimental results made on a 1kw 
induction motor using a dSpace system with DS1104 controller board system based on digital signal 
processors, it is shown that the proposed algorithms observe and correct respectively the speed over the 
entire speed range. Also, it has robust speed observation and tracking performances even at load 
variation or variable-speed operation. Finally, it is confirmed that the proposed speed sensorless vector 
control algorithm has good dynamic performances and stability. 
The most interesting conclusion of all the tests carried out is that the motor response and the one 
estimated by the net are quite similar, and there is nearly no error in the steady state. That shows the 
capacity that the model has to generalize and to adapt itself to situations not contemplated in the 
training phase. The main advantages of controlling an induction motor with ANNs are the following: 1) 
more accurate models without having to use approximations; 2) the neural network learns the real 
motor behavior, more accurately than the approximate one; and 3) once the learning is accomplished, 
in the operation phase it is only necessary to make sums and multiplications to estimate the speed, and 
they can be made in real time way. 
In this paper, we are limited to the neural network speed observer and controller.  A neural network 
flux observer and controller may be a significant prospect for this work.  
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