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Abstract— This paper summarizes a comparison of speed
computation methods for servo control, regarding their in-
fluence on controller performance. In addition, state control
is taken into account as a means for actively damping
mechanical resonance. The effects of sensor quality and
control timing are discussed. The theoretical background is
investigated and compared to the measurements.

Index Terms— servo control, state control, direct drive,
resonant system, three inertia system, observer, stiffness,
smoothness

I. I NTRODUCTION

This paper investigates schemes to control a 2.2 kW
servo motor plant. The experimental setup and control
structure are described in section II, a simulation model
in section III.

A theoretical investigation about the relationship be-
tween controller gain and dynamic stiffness has been
published in [1]. Stiff direct drives are considered that use
the usual cascade of position, speed and current controllers
(fig. 1). Two approximate equations are developed that
yield the dynamic stiffness for given control parameters.
In section IV, the considerations are extended, taking into
account the delay of speed acquisition. Section V shows
the relationship between controller gain and speed quality,
using experimental results.

Section VII shows the achievable control performance
with P/PI cascade controllers, using different methods
to compute the actual speed signal. A discussion of the
methods and part of the results has been published in [2].
The best performance in relation to design effort have
been achieved using differentiating low-pass filters, low-
pass & notch combinations, and observers modeling the
resonant behavior of the setup as a two or three inertia
resonant system. Section VIII adds results achieved with
a more precise encoder, Section IX discusses the aspect
of controller timing.

Section X discusses active damping of the mechani-
cal resonance using state controllers. To design a state
controller, two methods are well known: pole placing or
linear-quadratic controller design. Goslar [3] suggests pole
placing using the path of minimum pole sensitivity, i. e.
where the resonant poles can be moved leftward with the
norm of the feedback vector increasing as few as possible.
The resulting path is directly leftward, i. e. keeping the
pole’s imaginary part constant. This result was confirmed
for the setup regarded here. Fassnacht [4] suggests a
linear-quadratic controller. Only the main diagonal of the
weighting matrix is filled with values different from zero,
which are developed by try-and-error.

Control performance is measured in this paper on the
one hand as the r.m.s. deviation of the speed signal during
speed control at constant reference speed and no load. For
an ideal controller, the speed would be exactly constant,
so its r.m.s. deviation is a measure for the non-ideality of
the control loop. It is calculated by off-line time discrete
derivation record of the encoder position signal, so the
data regarded are not smoothed by the respective filter or
observer.

To make comparison easier, all control loops were tuned
to an equal steady-state behavior, i. e. such that the r.m.s.
deviation was equal. This was done by varying the delay
time constant of the speed acquisition filter or observer
and the controller gain. The speed deviation goal was
0.1 rad/s for the 2048-line encoder and 0.7 rad/s for the
5000-line encoder; subtracting the different imprecisions,
this means an equal deviation in fact (see section II).

On the other hand, performance is measured regarding
the load step rejection with P-position- / PI-speed-control.
Several defined stepwise load torque changes of amount
∆T were executed by the load machine, and the maximum
deviation ∆θ from the reference position was used to
compute the dynamic stiffness of the control loopCdyn

as

Cdyn =
∆T

∆θ
(1)

II. EXPERIMENTAL SETUP AND CONTROL DESIGN

The controls were tested on an experimental setup
which consists mainly of two coupled 2.2 kW permanent
magnet servo motors, two inverters with a coupled DC
link, signal processing electronics, and a PC where the
control algorithms are implemented. The drive’s nominal
torque is 4.3 Nm, the torque constantkT = 0.533 Nm/A
in the sense of fig. 7, the overall inertia of the setup
is J = 20.05 kgcm2. An incremental encoder and an
acceleration sensor are mounted on a short extension
sleeve at the controlled servo’s second shaft end. Only
the encoder signal is used here.

Two position encoders were tested on this setup: A
Huebner HOGS80 with 2048 lines (bought in the year
2000), and a 5000-line Heidenhain ERN180 from 2002.
Both provide an hollow shaft with 25mm diameter. The
2048-line encoder is fixed to the servo housing with
a thin steel plate, causing additional oscillation in the
frequency range around 1000 Hz. The speed error at zero
speed (discrete derivative, no filter), which results only
from encoder noise, is about 0.06 rad/s. The 5000-line
encoder is fixed to the servo with a steel frame, causing
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Fig. 1. Schematic of the control system

no significant resonance. Its noise is very low, but the
signals have large systematic errors [5] that would cause
a speed error of 0.033 rad/s in the worst case. Thus,
precision of both encoders is comparable, keeping in mind
the different number of lines. The encoder signals are
digitalized by 12-bit AD-converters; the overall precision
of the electronics is±1 least significant bit. The position is
then computed using a line counter for the coarse position
and the arctangent equation for interpolation [6].

The load servo is used to simulate a mechanical load.
Its inverter is switched off for smooth turning experiments,
and run in current control mode to get quick load changes
for the disturbance rejection experiments. However, its
controller is rather slow; the response to a reference
change is approximately a ramp function, reaching the
new setpoint after 500µs.

The structure of the used control system is shown in
fig. 1: It is the usual cascade control. For the block “speed
computation method”, several filters and observers were
tested; see sections VII ff. Either PI-speed control or P-
position / PI-speed-control are implemented in the PC
software for the controlled servo motor; the parameters
depend on the speed computation method used. Current
control is done by an analogue bang-bang controller
working in the stationary reference frame [7].

The speed controller was designed according to the
well-known symmetrical optimum, based on the load ac-
quisition filter’s or observer’s delay time constant together
with an additional time constant ofTS = 234 µs for digital
control and current control loop. When using the speed
signal from an observer, the symmetrical optimum would
have yielded too low controller gains if the observer’s
time constant is taken into account, and too high gains if
not. Thus, an extension of the symmetrical optimum was
used where the proportional gain is chosen arbitrarily, and
the integral gain is computed such that in the bode plot,
the maximum phase occurs at crossover frequency. For
design of the position controller, the amplitude optimum
was used every time. No further optimization of the
control parameters was done in order to keep the results
comparable with respect to the different speed acquisition
methods.

III. S IMULATION MODEL

This paper relies on two different kinds of measure-
ments: speed quality at steady state and dynamic stiffness
against load changes. The speed quality is very hard to
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simulate, because the exact kind of noise in all system
parts, model uncertainties, damping coefficients etc. need
to be known very exactly. It was not possible to find a
model that simulates the measured data correctly. The
reaction to a load change, however, mainly depends on the
system and control parameters and is therefore possible to
simulate.

The most important feature of the setup is a nearly
undamped mechanical resonance. The first two resonance
frequencies were modeled using the three-inertia model
shown in fig. 2(b). The encoder is mounted on a short
extension sleeve at the controlled servo’s opposite shaft
end. The resonant system consisting of servo and sensor
mass has a resonant frequency of about 900Hz. As op-
posed to many literature cases, this was found to be the
most important resonance to handle. The drive and load
form two with elastic coupling, which ist the source of
the 2nd resonant frequency.

The mathematical model of the resonant system forms
the main part of the simulation model shown in fig. 3.
It consists of the three inertiasJ0, J1, J2, two elastic
couplingsc01 and c12 with damping coefficientsd01 and
d12.

The current control used in the experimental setup is
an analog bang-bang controller, that keeps the current
space vector in a specified area around the reference using



hysteresis comparators [7]. Any reference value change
will be followed as fast as the DC link voltage and stator
inductance allow it. This is approximated by a slope limit.
Alternatively, the current control could be modeled more
precisely using ideal comparators and a lookup table;
the motor can be represented using the linear model in
field-oriented reference frame. The effect of this augmen-
tation was a small reduction of the simulated stiffness
using high-gain controls, strongly depending on how the
minimum turn-on time is implemented. As the simplified
model works considerably faster and the difference in
results is neglectable, it has been used.

The current-torque relationship is not exactly linear
because of saturation in the stator back. It has been
implemented in the simulation model as a static charac-
teristic according to the motor’s datasheet. This caused a
reduction of the simulated stiffness with high controller
gains.

The plant is simulated as a three-inertia system with
light damping. However, since the three-inertia model that
is used for observers does not mirror the static stiffness
properly, an adapted model was used (see sections VI and
VII).

Simulating the load servo’s response function, the
measured stiffness values could be reproduced within
a tolerance of±7%. The stiffness of observer controls
was simulated too low, while it was simulated too high
for controls using a filter. The model will be used in
the following to simulate the result of an ideal stepwise
load change, since this is the exact definition of dynamic
stiffness.

IV. DYNAMIC STIFFNESS VS. CONTROLLER GAIN

A theoretical discussion of the relationship between
controller parameters and dynamic stiffness was published
by Weck and others [1]. It discusses the cascade control
structure shown in fig. 1, neglecting the delays of current
control loop and speed acquisition. Two approaches of
the dynamic stiffness are derived analytically from the
system’s transfer function. The first one, neglecting the
speed controller’s integral part, yields the equation

Cdyn = KV KRkT (2)

This equation is far away from the experimental and
simulation results (compare fig. 4(a) and (c)). The second
approach fits the experimental results better; it takes into
account the integral controller, but needs other neglections.
The result becomes much more complex:

Cdyn = K

(
1 +

e
−D π√

1−D2

√
1−D2

)−1

(3)

whereK =
KRkT (1 + KV TI)

TI

D =
1
2

√
KRkT TI

J (1 + KV TI)

Using high order observers, it seems necessary to
regard the observer’s considerable delay in detecting
load changes. Unfortunately, it is no longer possible
to solve the problem analytically. Instead, simulations

0 200 400 600 800 1000 1200 1400
0

500

1000

1500

2000

2500

3000

3500

4000

K
V
 * K

R
 * k

T
 [Nm/rad]

C
dy

n [N
m

/r
ad

]

(c) Simulation of real system 

(e) Simulation with ideal observer 
and rigid−body plant               

(b) equation (3)

(a) equation (2)

(d) Simulation with
ideal observer     
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were carried out using different models. Fig. 4(c) shows
results from a simulation of the three-inertia system,
three-inertia observer, and different controller designs
using extended symmetrical optimum and optimum of
magnitude. Fig. 4(b) shows the results of equation (3).
Except an imprecision in the lower lange, which is due
to the neglections made in [1], the main difference is that
for higher gains, (3) increases nearly linearly while the
simulated controller gain seems to somehow “saturate”.

There are two reasons for this: the resonant system and
the observer. Fig. 4(d) shows the simulation results when
the observer is omitted andΩ1 from the three-inertia plant
model is connected directly to the controller’s actual speed
input. There is a considerable approximation to the ideal
case, which is marked by (e), simulated with the observer
neglected and the plant model reduced to a single inertia.

This “saturation” is the reason why the strongly in-
creased controller gain using observers does not result in
an appropriate rise of dynamic stiffness (fig. 9).

V. SPEEDQUALITY VS . CONTROLLER GAIN

Speed errors at steady state are caused by errors in the
sensor signals, which are amplified by the control and
applied to the drive as current, causing energy consump-
tion and real deviations. In addition, the weakly damped
resonant poles of the system move towards the instable
region when the controller gain is raised.

Fig. 5 shows the relationship between controller gain,
speed quality and motor current. The data were measured
on the setup using different PI speed control with 1st order
filters to acquire the actual speed signal from the 5000-
line encoder’s position signal. There is a optimum around
controller gain 1000 where the speed deviation is minimal.
For higher gains, both deviation and current are raised
dramatically, because the plant’s resonance is excited; this
is also clearly audible. With lower gains, the deviation
rises also, this time because of disturbance forces caused
by slot latching; the controller cannot properly compensate
them because of its large phase lag. The chosen deviation
of 0.7 rad/s is at the upper limit of a sensible control;
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above this point, the resonance is audible, and the position
control loses stability.

VI. STATIC STIFFNESS

As the three-inertia model already suggests, the plant
has elastic couplings between the components and thus a
limited static stiffness. It can be measured if one servo
is position-controlled while the other applies a defined
load torque; then, the position measurements at drive and
load can be compared. Measurements at different loads
in the motor’s torque range suggest an static stiffness of
12107 Nm/rad, and no measurable backlash. Though this
should be equal to the spring constantc12 in the three-
inertia model (table I), it differs quite a lot. The reason
is that the models were optimized to mirror the plant’s
resonant behavior, and not the static one; the exact plant
model is of much higher order. The stiffness computed
from the coupling’s datasheet was even less precise.

The effect of the limited stiffness is visible in fig. 6.
Graph (a) shows the load-side position during position
control with reference position 0. The load torque changes
at t = 0 from +50% to -50% nom. torque. Though the
drive is controlled to zero deviation, the load-side position
has a considerable error due to the plant’s limited stiffness.
It is an interesting fact that though the plant regarded is a
direct drive, the stationary position error is a relevant part
of the dynamic deviation during load changes. In [2], this
effect was neglected, thus the reported dynamic stiffness
values were considerably higher.

The plant has an encoder fixed on the load servo,
however, its precision is lower and the signals are consid-
erably noisy. Thus, the best way to compute the load-side
dynamic stiffness was to measure the drive-side deviation
and add the stationary error. In simulation, an adapted
model was used wherec12 equals 12107 Nm/rad. This
model is less precise than the original model concerning
the frequency response. However, it simulates the static
deviation correctly.

This problem leads to the idea of compensating the
load position error, which can be achieved by load-side
control. This means that the position controller and the
integral part of the speed controller work on the load-side
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Fig. 6. Simulation of drive-side and load-side position control, 3-inertia
observer and P/PI-cascade

actual values. The proportional part of the speed controller
must stay working on drive-side speed, because it would
excite the resonance between drive and load otherwise.
A simulation using this structure is shown in fig. 6(b). A
three-inertia observer is used to compute the actual speed
for the proportional speed controller, while integral speed
controller and position controller use the directly acquired
load-side speed and position. In comparison to the drive-
side case, the new structure does not only compensate
the steady-state position deviation, but also improves the
dynamic stiffness. The reason is that a load change affects
the load speed earlier than the drive speed; thus the load-
side control will counteract earlier.

However, if a load-side encoder is not available, an
observer must be used to determine the load-side position
and speed. In fig. 6(c), the simulation result is shown when
the speed controller’s integral part uses the observed load
speed, and the position controller uses

θ̂2 = θ0 −
T12

c12
(4)

as an actual position estimate. Forc12, the exact value has
been used; the three-inertia observer estimates the spring
torque T12. It works with the model parameters shown
in table I, therefore the steady-state deviation cannot be
exactly compensated. The dynamic performance has even
been worsened by this structure. The reason is that there
is a positive static deviation before the load change in
case of the drive-side control, which increases the level
of the whole graph, thus reducing the negative deviation.
The observer is not fast enough to compensate for this
disadvantage before the maximum deviation point.

The static compensation might be useful in applications
where the steady-state deviation is of interest. However,
as in this paper the focus is on dynamic stiffness and the
load-side encoder shall not be used, it is not capable of
improving performance.

VII. E XPERIMENTAL RESULTS USINGFILTERS AND

OBSERVERS

The following sections compare different speed com-
putation methods concerning their influence on control



performance.
The standard method for industrial drives is using the

low-pass filtered derivative of the position signal as speed
feedback. For the investigated setup, main task for the
filter was to passively damp the resonant frequencies in
order to allow high controller gains. IIR filters derived
from 1st order differentiating low-pass filters yielded the
best performance [2].

To passively damp the resonant frequencies, one or two
notch filters can be used. They are designed independently
and then cascaded to the low-pass by multiplication of
the transfer functions. Standard notch filters are achieved
from the lowpass-to-bandstop transformation of first order
lowpass filters. As time constant of the filter, which is
needed for controller design, the first order approximation
of the transfer function’s denominator (in time-continuous
domain) was used. It was modified by varying the cutoff
frequency of the low pass filter; the notch filters turned
out to contribute only a small phase lag.

An alternative to deal with the mechanical resonance is
the use of an observer that models the mechanical system.

The models used are shown in fig. 2. Modeling only
the encoder resonance (fig. 2(a)) is already quite a good
model. For a three-mass approach, sensor, controlled servo
and load servo are modeled as three inertias, joined by
elastic couplings (fig. 2(b) and fig. 7).

The procedure of model identification is described by
Mueller [8]: A multi-sine signal is used to excite the
system; then the poles and zeros are visible in the FFT of
the derived position signal. The models are designed to
mirror the lowest critical frequencies identified. The res-
onant frequency with 5000-line encoder is lower because,
with changing the encoders, the acceleration sensor’s
aluminium disc was exchanged for a brass disk; this
increased the inertia.

The three-inertia model used for observation differs in
some ways from the simulation model. The system was
modeled undamped to reduce its complexity. An integrator
is estimating the load torque, which was modeled as
affecting all inertias equally. This is not physically correct,
but decouples the load torque observer from system oscil-
lations, improving observer performance. The proportional
part of the PI speed controller was implied in the system
model as if it was part of the system; this path is depicted
as a dashed line in fig. 7. The two inertia model is
constructed by leaving out the paths containingc12 and
J2.

The observers were designed similarly to [9], [4]: The
position angle is derived and compared to the modeled
encoder speed̂Ω0, the difference is used for feedback.
Other structures are possible, but yielded inferior results
[2].

For feedback design, the method of eigenvalue placing
was used. The original systems have two poles at s = 0
and one or two pole pairs (two or three inertia model,
respectively) that represent the resonance. The resonant
poles were moved to the left, leaving their imaginary
part nearly constant. The eigenvalue at zero was moved
far to the left to -3000 rad/s. Table I shows the system
parameters and pole configurations used. In order to tune
the control loop for the given speed quality of 0.1 rad/s,
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only the PI controller gain was changed.
Fig. 8 presents the results measured with the 2048-

line encoder. All controls were tuned to achieve a r.m.s
speed error of 0.1 rad/s at steady state in the experiment.
Fig. 8 shows the final speed control loop gain and the
dynamic stiffness. The stiffness was measured changing
the load servo’s current reference value while the drive
was position-controlled. In addition, the simulated dy-
namic stiffness is shown. Simulation is in two ways more
precise than measurement:

• The simulation was done for a stepwise load torque
change instead of the load servo controller’s re-
sponse function, because this is the usual definition
of dynamic stiffness. This might shrink the stiffness
because it is a faster change, and moreover might
cause overshoots of position deviation due to the
resonant frequencies, because an ideal step function
has a larger high-frequency content and is more likely
to excite oscillation.

• The measured encoder angle is the drive-side encoder
readout, because this encoder is much more precise.
The static deviation was added. The simulated dy-
namic stiffness is computed using the load-side posi-
tion deviation; this includes the oscillation behavior
which might either increase or shrink the deviation.

Fig. 8 illustrates a clear ranking: Compared to the low-
pass filter, the low pass plus notch filters (fig. 8 no.2,



TABLE I

IDENTIFIED SYSTEM PARAMETERS AND POLES USED

J0 J1 J2 c01 c12 pole(s) zero observer poles
kgcm2 kgcm2 kgcm2 Nm/rad Nm/rad Hz Hz rad/s

2-inertia system, 2048-
line encoder

2.7 17.35 8679 970 −1881± j5168
-3000, -3000

3-inertia system, 2048-
line encoder

2.09 8.7 9.26 10376 22249 970,
1370

780 −1881 ± j5168, −1562 ±
j8863, -3000, -3000

2-inertia system, 5000-
line encoder

2.8 17.25 7214 870 −1710± j4700
-3000, -3000

3-inertia system, 5000-
line encoder

3.1 8.4 8.55 11100 19600 872,
1286

762 −1710 ± j4700, −1562 ±
j8863, -3000, -5000

Simulation model 2.07 12.71 5.27 11156 12107 870, 762
(3-inertia system, 1285
5000-line encoder) d01 = 0.045 d12 = 0.14

fig. 9 no.2,3) perform significantly better. The reason is
that the notch filter achieves a much better suppression of
the resonant frequencies, while contributing only few to
the delay time constant.

The observers for two and three inertia systems
(fig. 8 no.3,4, fig. 9 no.4,5) implement knowledge about
the mechanical resonance in a physically quite correct
way. As a result, their performance is significantly better
than that of a filter. Best performance is achieved using
the three mass system observer, because this is the most
precise model. However, it must be added that the three-
inertia model is much more complicated to identify and
depends on the load servo inertia, which the two-inertia
model does hardly; sinceJ0 is much smaller thatJ1, the
resonant frequency is mainly determined byJ0.

Hardly any difference can be seen between the simu-
lated and measured dynamic stiffness. This means that the
slope of the load servo’s current control is steep enough
to simulate a stepwise load change. Regarding the graph
of position during a load torque change shown in fig. 6,
it can be seen that mechanical resonance does not play
a mayor part in position deviation, and that the whole
process is rather slow compared to the load servo’s rise
time of 500µs.

VIII. E XPERIMENTAL RESULTS USING DIFFERENT

ENCODERS

Fig. 9 shows measurements using some of the filters
with the 5000-line encoder. Again, the diagram shows that
the performance using a 1st order filter -which is already
quite good- can be improved using notch filters. Because
of the higher control loop bandwidth, a double notch filter
could again improve performance, which was not the case
with the 2048-line encoder.

A comparison with fig. 8 shows that the filter controls
profit from the better position signal - though the speed
error limit has been reduced. This is due to the fact
that the resonant frequencies are excited by speed signal
noise times filter gain at the respective frequency times
controller gain. If the speed noise is reduced, the filter gain
a the resonant frequency may be higher without exciting
the plant above its passive damping capability.

The observers for two and three inertia systems achieve
nearly the same results as with the 2048-line encoder;
they do not profit from the better position signal. This
indicates that an observer-based control does not depend
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Fig. 9. Experimental and simulation results using 5000-line encoder

as much on sensor quality as a filter-based control does.
The explanation is that an observer is a system of much
higher order than a filter. Though feed-forward signals
can pass it directly, feedback signals are delayed and
smoothed in the feedback path. As the observers use
a quite precise model and low feedback constants, the
transfer function from encoder signal disturbances toΩ̂1

has a low magnitude, especially at high frequencies where
differentiation noise becomes critical.

Though there there is a considerable difference in
controller gain between the double notch filter (no. 3)
and the observers, the improvement in terms of dynamic
stiffness is only small. The reason is the “saturation” effect
discussed in section IV.

IX. T HE INFLUENCE OFCONTROLLER TIMING

The measurements shown in section VII were done
using a digital control with a timing of 100µs sampling
time and 40µs calculation time between A/D and D/A
conversion. This timing was used for the position and
speed control; the current controller works continuously.
The following table shows measurements at a timing of
26.25µs, which is the fastest possible at the setup. The
5000-line sensor has been used.

The observer’s feedback was again designed by pole
placing. The pole locations used are shown in table II.
They resemble the pole locations used at slower timing,



TABLE II

POLE LOCATIONS FOR OBSERVERS AT FASTER TIMING

observer poles [rad/s]
2 inertia system observer −3210± j3830, -3000, -3000
3 inertia system observer −1165 ± j4350, −1390 ± j7880, -

3000, -3000
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Fig. 10. Experimental and simulation results using fast sampling rate

except that the poles of the two inertia observer had to
be damped stronger. This is because the 2-inertia model
is less precise, thus it needs a stronger feedback from the
sensor to keep the estimated values close to the real ones.

Fig. 10 shows the achieved stiffness at faster timing,
showing again the same ranking as in figs. 8 and 9. The
achieved stiffness is much higher than at slower timing,
though the used cutoff frequencies and controller gains
have not changed much. This is simply due to the fact
that the control can react faster to a deviation, limiting
the acceleration caused by the load step change.

X. ACTIVE DAMPING

Fassnacht [9], [4] reported that active damping of a
three-inertia plant is possible using only a PI controller.
This is also true for the setup regarded here, however the
achievable damping is much lower; and it is necessary
to use the motor speed rather that the sensor speed. As
opposed to the standard case, sensor and actuator of
the plant regarded here represent different inertias. At
the oscillation frequency, these two masses will oscillate
against each other. If speed is measured on one of them
and fed back to the other, the oscillation will be excited
instead of damped. Fig. 11 shows the root locus plot
when Ω1 is fed back to motor current by a p-controller
with a deadtime of 90µs (3rd order Pade approximation).
The achievable damping for the lower resonant frequency,
which is dominant in practice, is very poor: the optimum
pole location is−630±j5250 rad/s, meaning a 5% settling
time of 4.7 ms, at a gain which cannot be achieved in
practice.

A better active damping is only possible using a state
controller. The state controller was designed by pole
placing, shifting the resonant poles directly to the left as
it was proposed by Goslar [3]. The pole pair representing
the lower resonance frequency was moved towards the
left by 1710 rad/s, the pole pair for the upper resonance
was nearly left in place as this frequency does not appear
in the measurements. The pole at zero is moved to the
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Fig. 11. Root locus graph for proportional feedback ofΩ1

TABLE III

POLE LOCATIONS OF STATE CONTROLLER AND OBSERVER

poles [rad/s]
state controller −1710±j4700, −300±j8000, -2000
observer −255±j4560,−1970±j8064, -3900,

-3000

left; its position determines how fast the controller will
be. Table III shows the pole locations that were used for
state controller and observer, the state controller’s poles
are also shown in fig. 11.

The observer design is much more complicated than it
was for the PI control. The final solution was an observer
whose resonant poles are not much faster than the state
controller’s; the pole pair representing the lower resonance
frequency is slower, i. e. further to the right. Pole patterns
with faster observer poles would cause oscillations even
at steady state, or require a controller design with less
damping. The used pattern means that concerning the
oscillations, the observer relies on its model rather than
sensor feedback. Only the overall speed and load torque
are observed with much faster time constants than the state
controller’s.

The reference value is fed into the state control system
by a proportional prefilter [10]. The prefilter constant was
regarded as the proportional gainKR, then integration
time constant and position controller gain were chosen
appropriately. This way, a PI-state controller [10] was
designed that replaces the PI speed controller and can
be cascaded with a proportional position controller - this
ensures comparability with the previous designs.

Fig. 9 no. 6 shows that the dynamic stiffness of the state
controller is only in the range of a filter control. It cannot
be raised further because of the steady-state performance
required. This is the price for active damping: it does not
contribute to dynamic stiffness, but creates inquietude in
the control system, thus reducing the allowable controller
gain.

The effect of active damping is seen best regarding a
stepwise setpoint change of the speed control [9]. Fig. 12
shows measured graphs of reference currenti∗q and en-
coder speedΩ0 using different controls. The reference step
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Fig. 12. Setpoint change during speed control; experimental results

excites the plant’s resonant frequencies, and the current
limit prevents damping by the controller. As soon as the
current limit is left, damping starts. Fig. 12(c) shows that
the state controller is able to damp out the oscillation
within two periods. The PI controller using an observer
(fig. 12(b) provides a weak active damping, while the PI
control using a filter does not damp the oscillations at all
(fig. 12(a)).

XI. CONCLUSION

Starting from theoretical considerations, it was shown
that the delay of speed acquisition and the plant resonance

play an important part for the reachable dynamic stiffness,
not only indirectly because they limit the controller gain,
but also directly. With highly dynamic controls, there is
only a small improvement of dynamic stiffness because
performance is limited by the resonant system and ob-
server delay. The graph of steady-state speed error in terms
of controller gain shows that there is an optimal gain.
Even for direct drives, the limited static stiffness of the
plant reduces the achievable dynamic stiffness. However,
a sensible compensation of that effect is only possible if
a load-side encoder is available for control.

Different speed computation schemes to provide the
actual speed signal for a cascade control were investigated.
Keeping the steady-state behavior equal, it was shown
that the stiffness against load changes can be improved
using notch filters, and further using observers modeling
the plant’s resonant behavior. The approximation of the
plant as either a two or a three inertia system works nearly
equally well, while the two inertia model is of lower order
and easier to identify. Active damping cannot be done by
the PI controller, but using a state controller. However, the
price for active damping is a reduction of control gain,
resulting in a reduction of dynamic stiffness.

The comparison of results with different sensors re-
vealed that a control using filters is strongly dependent
on the encoder signal quality. Using an observer, the
performance is quite independent from the signal qual-
ity; therefore, cheaper sensors can be used. At a faster
control timing, the allowable gain with respect to the
steady-state performance requirements is approximately
the same. Anyway, a significantly better dynamic stiffness
is possible.
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