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Abstract: Floating point arithmetic circuits play an 

important role in scientific computing, signal and image 

processing applications due to its wide dynamic range 

and high precision. In this work, floating point Arithmetic 

and Logic Units (ALUs) architectures are designed, 

implemented on Field Programmable Gate Arrays 

(FPGAs) devices and utilized for signature recognition 

system. Synthesis results proved that log based unit 

provides faster computations, but increases the area 

compared with conventional floating point arithmetic 

units. Hence offline signature recognition system is 

designed using logarithmic single precision floating point 

arithmetic units and implemented on FPGA. The person’s 

signature is classified by Support Vector Machine (SVM) 

and Neural Network (NN) approach. From the simulation 

results of the signature recognition system, the person's 

signature can be identified based on the features. The 

synthesis results proved that support vector machine 

classifier occupied only 34% of the FPGA resources 

available compared with a neural network approach that 

occupied 68% of the total resources. The various stages 

of the signature recognition system are analyzed in Xilinx 

FPGA and MATLAB.  
 
Keywords: Field Programmable gate arrays, Floating 
point-arithmetic, Handwriting recognition, Support 
Vector Machines (SVM), Neural Network. 
 
1. Introduction 

Floating point arithmetic and logic units are a part of 

the computer system. The requirements of floating 

point arithmetic have become very intense due to the 

dynamic range representation of real numbers and 

better precision compared to fixed point values. 

These floating point numbers are represented as per 

IEEE-754 standard 2008. This standard represents 

the basic single precision (32 bits), double precision 

formats (64 bits) and extended precision formats [1]. 

The complexity of these arithmetic circuits increases 

on hardware implementation due to increased bit 

width representation [2]. Logarithmic number 

systems (LNS) also provide a similar range and 

precision of floating point, but multiplication and 

division in LNS are modified to fixed-point addition 

and subtraction, respectively [3]. Nowadays, devices 

like Field Programmable Gate Arrays (FPGAs) are 

used for implementation of floating point arithmetic 

units because of their increased integration density 

and high performance operations. ASIC 

implementations produce high speed of 

computations and utilize less power. But it is very 

expensive to design, build and has very less 

flexibility after fabrication. On the other hand, 

FPGAs provide good speedup results and retain high 

flexibility after fabrication [4]. Hence the work is 

focused on the design and implementation of 

floating point arithmetic units on FPGA for 

embedding biometric system.  

 
Signature recognition is one of the most popular 

research areas in personal identification and 

authentication.      A person's identity can be verified 

in computer systems either based on the key, PAN 

card, ATM PIN number and password of the 

corresponding person. However, keys or cards may 

be stolen or lost easily. PIN numbers and passwords 

of the persons may be forgotten or disclosed to 

others. Hence, to achieve more reliable verification 

and identification, biometrics provides many 

methods of identity verification. In our society, the 

handwritten signature is considered as the primary 

means of identifying the signer of a written 

document. This method is one of the best ways to 

authorize transactions and verify the human identity 

compared with other electronic identification 

methods such as smart cards, RFID chips. The 

signature verification system depends on the 

selection of features and decision methodologies. 
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There are nearly 40 different types of features used 

in signature verification. Features are classified as 

local and global. Global features are the features 

extracted from all the pixels pertaining to the 

signature image. Local features are extracted from a 

particular area of the signature image. Signature 

recognition and verification methods are classified 

into two type’s namely online or dynamic 

verification systems and offline or static verification 

techniques.  

In online Signature Recognition and Verification 

Systems (SRVS), features can be obtained by some 

special peripheral units like electronic tablet or 

personal digital assistant (PDA) for measuring hand 

speed and pressure on the human hand when the 

signature is created. On the other hand, an Off-line 

SRVS system depends on image processing and 

feature extraction methods. These static features are 

obtained either by camera or photo scanning of the 

signature [5]. Many classifiers like Hidden Markov 

model (HMM), Dynamic time warping (DTW), 

Support vector machines (SVM), Neural network 

(NN), Wavelet transform to Structural or syntactic 

methods are available for testing the image features. 

In this work, offline signature recognition system is 

designed using logarithmic floating point arithmetic 

units for classifying the person’s signature using 

Support vector machines (SVM) and Neural 

Network (NN) approaches [6].        

The paper is organized as follows: Section II 

describes the literature survey of floating point 

arithmetic units, signature recognition system, 

motivation and objectives of the work. Section III 

details the design of the log based floating point 

arithmetic units. Section IV presents the offline 

signature recognition system trained using SVM and 

neural network. Section V shows the experimental 

results and discussions. Finally, section VI presents 

the conclusion and future work. 

 
2. Literature Survey 

 
Many researchers proposed various methods for the 

design of floating point arithmetic units and offline 

signature recognition systems. Some of the works 

are presented here as a survey. 

 

2.1 Floating Point and Logarithmic Arithmetic 

Designs 

Ronald Scrofano et.al (2008) evaluated balanced and 

unbalanced binary tree arithmetic expressions using 

pipelined floating point cores. Implementation 

results on FPGA were compared in terms of area, 

speed and latency[7].Yee Jern Chong and Sri 

Parameswaran (2011) implemented multimode 

embedded floating point arithmetic units on FPGA. 

The embedded floating point units included the 

design of floating point adder and multiplier to 

perform double precision operations or two single 

precision operations simultaneously. Such designs 

provided performance and area benefits for the 

implementation of single precision and double 

precision floating point arithmetic units on FPGA 

[8].  

Suganth Paul et.al (2008) proposed the method for 

computing log and antilog functions in FPGA device 

using Look-Up Table (LUT) along with 

interpolation. Logarithm function was computed 

using interpolation and thus the requirement of 

direct multiplication and division operations were 

avoided. Antilogarithm function was also computed 

using the LUT. These designs occupied less memory 

space compared with other works [9].Mark 

G.Arnold and Sylvain Collange (2011) presented an 

algorithm for Complex Logarithmic Number 

Systems (CLNS) that represented complex values in 

the log polar form. The real LNS hardware was used 

with CLNS along with the library parameters of 

floating point cores. Compared to CORDIC and 

Look-Up Table (LUT) approaches, CLNS provided 

better accuracy and efficient area[10].  

 

2.2 Offline Signature Recognition Systems 

 

Sharifah Mumtazah Syed Ahmad et al. proposed 

an automatic off-line signature verification system 

designed using statistical techniques. The Hidden 

Markov Model (HMM) technique was used to build 

a reference model for each local feature. The 

verification phase consisted of three layers of 

statistical techniques. FAR were computed as 22% 

and 37% for random and skilled forgeries 

respectively [11]. H. Baltzakis and N. Papamarkos, 

work was based on global, grid and texture features. 

Two stage Perceptron one-class one-network 

classification structure was implemented for each of 

the features. From the three feature sets, the 

classifier combined the decisive results of the neural 

networks and the Euclidean distance. These results 

were fed to a second-stage radial base function 

(RBF) neural network structure for the final 

decision. False Acceptance Rate (FAR) and False 

Rejection Rate (FRR) was found to be 9.81% and 

was 3% respectively [12].Abhay Bansal, Divye 

Garg, Anand Gupta presented the geometrical 

properties of the signature using contour matching 



 

algorithm[13]. Eight original signatures were trained 

and verified by the triangle matching algorithm. In 

Random Forgery, FAR was found to be 0.08% and 

13.02% for Simple and Skilled forgery, 2.64% was 

computed for FRR.  

Miguel A. Ferrer et al. [14] proposed an offline 

automatic signature verification system for 

geometric signature features. A 16 bit fixed-point 

arithmetic was used for feature set calculation and 

tested with different classifiers, such as Hidden 

Markov Models (HMM), Support Vector Machines 

(SVM) and Euclidean distance classifier. The 

experiments showed that using HMM, for random 

forgery FRR was found to be 2.2% and using SVM, 

FAR was found to be 2.65%. Using HMM, FRR and 

FAR was computed as 14.1% and 12.67% 

respectively. Hai Rong Lv et al. represented each of 

the signature images as landmark point set based on 

HMM. Grid features are extracted from grid 

partition technique. Pixels density and gravity center 

distance are used as some of the features for 

representing the grids of signature image [15]. 

M. Taylan Das and L. Canan Dulger proposed 

Particle Swarm Optimization (PSO) algorithm for 

neural network based off-line signature verification 

system. The three types of forgeries were used to 

test the performance of the algorithm. 40% of the 

signatures were detected correctly for skilled 

forgeries. Alan McCabe, Jarrod Trevathan and 

Wayne Read presented the methods for handwriting 

verification. Features like height, slant, and pressure 

are extracted and trained by the neural network. 

Several other approaches are compared with neural 

network for accuracy [16]. Ali Karouni, Bassam 

Daya and Samia Bahlak proposed the offline 

signature verification system. Geometric features 

like area, skewness and center of gravity were 

classified and verified by artificial neural network 

[17]. 

2.3 Motivation And Objectives Of The Work 

Many research works proved that the 

implementation of conventional floating point 

multiplication and division modules on FPGA 

decreases the computing speed. On the other hand, 

logarithmic multiplication and division 

implementation on FPGA provides faster 

computations. However logarithmic addition and 

subtraction modules consume more area compared 

with conventional methods. The survey, based on 

offline signature recognition system proved that the 

design has not been implemented in real time 

embedded system and hence provides the possibility 

for the leakage of biometric information. Also in the 

survey works, the error rate was high in detecting 

the forged signatures. After defining the problem, 

the following objectives are set for the proposed 

work. I)To design arithmetic unit comprising of 

floating point addition, floating point subtraction, 

log based floating point multiplication and division 

with the objective of increasing the computing 

speed. II) To implement logarithm floating point 

unit based offline signature recognition system on 

FPGA for only the identification of the person’s 

signature. The verification of the person's signature 

for detecting forgery signatures with a high accuracy 

rate can be implemented in MATLAB by creating 

Graphical User Interface. This part of the work is 

considered for future study by improving the feature 

extraction process in the designed system. 

3. Log Based Floating Point Arithmetic Unit 

Floating point arithmetic and logic unit consists of 

addition, subtraction, multiplication and division 

operations. In this work, the single precision format 

of IEEE 754 standard 2008 is used. Generally, 

floating point architectures are designed with the 

objective of optimization of area, speed and power    

[18, 19]. In Logarithm Number Systems (LNS), 

multiplication and division operations are reduced to 

addition and subtraction operations respectively. 

This property increases the speed of computations in 

logarithmic computations [20]. Hence log based 

floating point arithmetic units are designed in this 

work. 

3.1 Log based Floating Point 
 Single precision log based floating arithmetic point 

is designed as shown in Fig.1. The design accepts 

two single precision inputs inp1 (X), inp2 (Y), clock, 

reset and select input decides the type of operation. 

The 1 bit f0, f1 indicates the flag for addition, 

subtraction module (f0=1) and multiplication 

division module (f1=1). Sel bit indicates the type of 

operation in addition (sel=0) subtraction (sel=1) 

module and multiplication (sel=0) division module 

(sel=1). 

 
Fig.3.1. Logarithmic Arithmetic and Logic Unit 



 

 

3.2. Addition / Subtraction 

Floating point addition and subtraction 

operations are evaluated as follows:  

Let the two operands be X and Y in IEEE 754 

format (32 bit). 

1. To get the sign bit (1 bit) 

If two operands have similar sign bits, resultant 

sign bit will be the same i.e. 0 or 1. 

If the sign bit differs, exponent and mantissa fields 

are compared. If the first operand is larger than the 

second, the first operand sign bit will be the 

resultant and vice versa. If both the operands have 

equal exponent and mantissa fields, the resultant 

sign bit is 0. 

2. Exponent comparison (8 bits) 

The exponent (e) difference of X and Y is 

computed. The 24th bit (hidden) is made explicit in 

the mantissa. 

If Xe >Ye, the mantissa of Y is right shifted as per 

the exponent difference value and its exponent 

value is incremented. The left most digits are filled 

with zeros. 

If Ye > Xe, the mantissa of X is right shifted as per 

the exponent difference value and its exponent is 

incremented. The left most digits are filled with 

zeros. 

3. The aligned mantissas are either added or 

subtracted depending upon the type of operation. 

4. Exceptions overflow and underflow are 

analyzed with the resultant mantissa values. In case 

of overflow, the computed mantissas are shifted to 

the right once and 1 is added to the exponent. In 

case of underflow, the computed mantissa is 

shifted to the left until the first binary 1 is detected. 

The number of left shifts is subtracted from the 

exponents. 

3.3. Multiplication / Division 
Multiplication and division in LNS become 

addition and subtraction respectively, due to the 

logarithmic property given below: 

log2(X ×(÷) Y) = log2(X) ± log2(Y)                  (1) 

Logarithm of the two numbers log2(X) and 

log2(Y) are computed as per the following 

conversions and the resultant logarithm values are 

either added or subtracted depending upon 

multiplication and division operations respectively. 

Antilog of the resultant value is calculated. The final 

result is converted back to floating point format 

using fixed to floating point converter. By 

XORing between X& Y, the sign bit is calculated. 

3.4. Floating point to LNS conversion 

 The conversion from floating point to LNS involves 

two steps that can be done in parallel. The floating 

point input contains three parts, namely Sign (S), 

Exponent (E), Mantissa (M) and output LNS gives 

two parts namely Exponent (E) and Mantissa (M). 

The floating point number ‘X’ is defined as 

X=S×2E×M                                (2) 

The logarithm of a number is  

log2 (X) = log2 (2E × M)               (3) 

By multiplication rule of log;  

log2 (X) = log2 (2E) + log2(M)        (4) 

 

E value is considered without bias 

By power rule of log;              

log2 (X) = E × log2 (2) + log2(M)        (5) 

log2 (2) = 1;  log2 (X) = E + log2(M)    (6) 

Mantissa is considered with hidden bit `1' i.e. 1.M. 

The log of number is represented as  

log2 (X) = E + log2(M)                    (7) 

The logarithm of the mantissa values are obtained 

from the pre-computed values stored in LUT and 

added with the exponent [21]. The Look-Up Tables 

(LUTs) values are generated from MATLAB and the 

values are stored in block RAM memory of FPGA 

board. The size of the lookup table is dependent on 

the number of bits of accuracy considered after 

fraction point (mantissa bits).  For example, for n bit 

of accuracy, LUT depth required is 2n.  For example, 

if 12 bits of accuracy after the fraction point is 

required, then the LUT depth needed will be 0 – 

4095 and each location will contain 32 bits of data. 

The LUT is addressed by n bits of mantissa. So the 

first n bits of the mantissa are given as an address to 

the LUT that contains the required data and the LUT 

output will be the corresponding log value for the 

mantissa. Once the logarithm addition or subtraction 

of the numbers is calculated depending on the type 

of operation, the antilog of the value is computed. 

The anti-log is the inverse log calculation.  

The antilog of a log number is calculated as  

Antilog2(E+ log2(M))=2(E+M)                        (8) 

Antilog2(E+ log2(M))=2(E) ×2(M)                  (9)  

The antilog values of mantissa values are obtained 

from the pre computed values stored in the LUT and 

multiplied with 2E.  This multiplication is performed 

by shifting the number obtained from LUT by the 

exponent value. The resultant data is converted back 

to floating point format by finding the first 1 from 

the Most Significant Bit (MSB) side. Accordingly 



 

the data is shifted and the exponent value is obtained 

either by adding or subtracting 127 to the shifted 

number. The rest of the bits represent the mantissa 

part, except the first 1 from MSB. Addition or 

subtraction of 127 to the shifted number depends on 

the direction of shifting of negative and non negative 

values. 

The same procedure is followed in the design of 

double precision log based floating point arithmetic 

unit with the change in bit width. Double precision 

standard consists of 64 bits, namely 1 sign bit, 11 bit 

exponent and 52 bit mantissa. A Multimode 

architecture is developed in this work by integrating 

both single precision and double precision log based 

floating point arithmetic unit. This architecture can 

be executed either in single precision or with double 

precision or in both the modes simultaneously 

depending on the selection bit. By simultaneous 

execution of both the modes, this architecture can 

reduce the combinational path delay of executing the 

designs separately. 

4. Offline Signature Recognition System 
This section describes the stages involved in an 

offline signature recognition system. The system is 

composed of various stages like data acquisition, 

preprocessing, feature extraction, training and 

identification as shown in Fig.2. [26]. Preprocessing 

and feature extraction stage are performed in Xilinx 

FPGA. The features are trained using Support 

Vector Machine (SVM) and Neural Network (NN) 

in MATLAB. Classification stage for the 

identification of the person’s signature is performed 

in Xilinx FPGA. The mathematical computations 

involved in the classification stage are manipulated 

using log based single precision floating point 

arithmetic units for support vector machine and 

neural network approaches. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Fig.4.1. Flow Diagram 

4.1. Data acquisition 

In this work, signature of two persons Abhit ‘a’ 

and Gaurav ‘g’ each in 10 different styles are 

handwritten on a paper and the scanned image is 

obtained in the size of 240×150 as shown in Fig.3. 

The 20 images are converted into coefficient (.coe) 

files as Xilinx FPGA can’t access the image files 

directly. In MATLAB, code is written to read the 

input image and resized. A new file is created to 

open image files in .coe format. The pixel values are 

obtained from ‘for’ loop. The data’s are entered in 

binary format. Once the coe file is created in 

MATLAB, these .coe files are stored in the block 

RAM memory of FPGA using IP core provided in 

Xilinx design suite. 

 
Fig.4.2. Input image ‘a’   Input image ‘g’ 

 

4.2 Preprocessing and Feature Extraction in 

FPGA 

The preprocessing and feature extraction stages 

are performed in Xilinx FPGA. The accuracy of 

features extracted from an image is improved in the 

signature pre-processing stage. In this stage the 

images are binarized to remove noise and thinned to 

remove the thickest of differences of the pen. Images 

are made to have one pixel thick after pre-processing 

stage as shown in Fig.4. 

 
Fig.4.3 Binary Images     Thinned Images. 

 

 In order to extract some of the features the images 

are required to be cropped. Hence, the 20 input 

images of size 240×150 are cropped so that the 

image covers the area that contains only the 

signatures as shown in Fig.5. 

 
Fig.4.4. Cropped Image ‘a’ Cropped Image ‘g’ 

Global features like height, width, centroids of 4 

elements, quadrant areas of 4 elements, Gray Level 

Co-occurrence Matrix (GLCM) of 4 elements, edge 

point number, horizontal histogram, vertical 

histogram and Histogram of oriented Gradients 

(HOG) are extracted from the image. HOG 

containing 81 elements of an image is obtained from 

Preprocessing and Feature Extraction 

(FPGA) 

Input Image 

Integer to 

Floating Point 

SVM/Neural Network Training (MATLAB) 

Classification (LOG FPU FPGA) 



 

 

the cropped and resized (binary and thinned) image, 

whereas the remaining mentioned global features 

containing 17 elements are obtained from the 

cropped image. The feature vector size represents 

the addition of 81 elements of HOG and 5 times the 

global features of 17 elements. Thus the total of 81 

elements of HOG and 85 elements of global features 

constitute the total size of the feature set as 1×166. 

These features are extracted as a text file using 

Xilinx design suite in Verilog. As 20 images are 

considered in this work, the size of the feature mix 

matrix used for training is 20×166. 

4.3 Training Using SVM in MATLAB 
In this stage, feature vector obtained in the 

previous stage is trained using support vector 

machine for classification in the next stage. SVM is 

a machine learning algorithm that maps the feature 

vector to a higher dimensional plane by non-linear 

mapping. It is a binary classifier that determines the 

linear hyper plane for the classification of two 

classes.  

The feature mix matrix of size 20×166 is used for 

training the images using support vector machine. 

The output 20×2 matrix groups the 20 input images 

into two classes [27]. The values assigned are ‘01’ 

and ‘10’ for the two classes. The kernel function 

svm train maps the training data to the kernel space. 

SVM struct file is the resultant output obtained after 

training the features. This file consists of support 

vectors, bias, alpha, kernel function, shift and scale 

factors used for feature normalization. These data’s 

are converted to IEEE 754 32 bit floating point 

standard. 

4.4.Classification in Xilinx FPGA 

This stage is performed in Xilinx FPGA for the 

recognition of a person’s signature. Support vector 

machine provides two classes for the identification 

of the person ‘a’ and ‘g’. The support vectors of 

size 7x166, alpha of size 7x1, bias, shift 1x166, 

scale 1x166 and sample test inputs (1x166) are 

given as input in IEEE 754 32-bit floating-point 

format.  

The equation used in SVM classify is  

c = ∑ αik(si, x)i + b                        (10) 

 

Where si is the support vector, αi is the weight, b is 

the bias, and k is a kernel function that represents 

the dot product. The sample features are 

normalized using shifting and scaling operations. 

Shifting operation represents the row vector 

containing the negative of the mean across all 

observations in training. Scale factor represents the 

row vector containing the inverse of standard 

deviation of the training. After normalization, dot 

product of support vectors and normalized feature 

is calculated. The final value of SVM is 

manipulated by multiplying the alpha value with 

SVM dot product of size 1×7. Then the bias value 

is added to it. These computations involving 

addition and multiplication operations are 

manipulated using the designed log based single 

precision floating point arithmetic unit. The final 

value of SVM obtained if greater than or equal to 

zero, the index value is ‘10’ that represents the 

second person's signature (‘g’). If the resultant 

SVM value is less than zero, the index value is ‘01’ 

that identifies the first person's signature (‘a’). 

4.5. Training Using Neural Network in MATLAB  

In this section, the feature mix matrix obtained in 

the preprocessing and feature extraction stage is 

trained using neural networks [28].  Neural networks 

are widely used for pattern recognition, object 

classification, medical diagnosis, etc. Multilayer 

feed forward network is used in this design. A 

multilayer network consists of one input layer, one 

or more hidden layers and one output layer. In a feed 

forward network, the signal moves in only one 

direction between the neurons of each layer to other 

layers.  

Supervised learning method is used in this work for 

distinguishing the person’s signature. i.e. in addition 

to the input features, the network has to know the 

output vector size required for training. A feature 

mix matrix of size 1×166 is given as input. The 

output 20×2 matrix is used to group the 20 images 

into ‘2’. The values are taken as ‘01’ and ‘10’. The 

feed forward neural network with a single hidden 

layer used for training is shown in Fig.6. The hidden 

layer is trained based on sigmoid activation function. 

 
Fig.6. Neural Network Training 

The input bias, output bias, input weight and output 

weight are obtained after training in MATLAB. 

These parameters are utilized for classification in the 

testing part to determine the hidden sigmoid function 

and output values.  



 

4.6. Testing Using Neural Network in Xilinx 

FPGA 

The classification stage for the identification of 

the person is performed in Xilinx FPGA. The 

computations of normalized value, hidden layer, 

sigmoid function and output layer are manipulated 

using log based single precision floating point 

arithmetic unit. The output value matched with the 

correct signature feature of a person will be greater 

than the other output value. The minimum and 

maximum values of the features trained in the 

previous stage are normalized.  When the maximum 

and minimum values are equal, the normalized value 

is  

norm_x = y_range × (feat - Xmin) (11) 

 

Where feat= feature, Xmax and Xmin= maximum 

and minimum value, output y_range = 2, Ymin = -1. 

When the maximum and minimum values are not 

equal, 

normalized_x = norm_x /(Xmax - Xmin) +  

Ymin      (12) 

 

The input bias, output bias, input weight, output 

weight, minimum, maximum values of size 1×166 

and sample test inputs of size 1×166 are converted to 

IEEE 754 32 bit width floating point and given as 

input in this stage. The normalized value of feature 

size 1×166 is used to calculate the single hidden 

layer [29]. 

Hidden layer= (Input weight ×normalized value)               

                      +Input bias.                      (13) 

 

The hidden layer of size 1×1 is obtained. The 

tangent sigmoid function is determined using the 

formula, 

Sigmoid function= Hidden layer 

                                                          (14)    

1+ (Hidden layer) 2                                            

 

 3+ (Hidden layer))2 

 

                        5+... 

Finally the output layer is calculated using the 

relation, 

Output layer= (output weight × sigmoid function) + 

output bias.              (15) 

 

The output values of the two layers are compared. 

The second person ‘g’  signature is determined if the 

second output layer is greater than the first output 

layer and vice versa case represents the first person's 

signature ‘a’. 

5. Experimental results 

Log based floating point arithmetic units was 

designed and the performance analysis in terms of 

area and speed was compared with the conventional 

floating point designs. These modules were 

implemented on Xilinx Virtex 6 FPGA. 

Fig.7.represents the simulation results of log based 

floating point arithmetic unit. Designs were 

simulated in single precision mode. All the four 

arithmetic operations were computed. 

 
Fig.5.1 Log based Floating Point Arithmetic Unit 

 

Table 1: Comparison among floating point 

Arithmetic Unit Designs on FPGA 

 

Synthesis 

Parameters 

(VIRTEX 6  

FPGA) 

Conventio

nal 

FPU 

Log based 

FPU 

Slice 

Registers 

239  out of  

93120 

683  out of  

93120 

LUT-FF 

pairs (slices) 

2123 out 

of   46560 

1484  out of   

46560 

Maximum 

Frequency 

(MHZ) 

22.24 219.296 

Latency (ns) 21.67 8.32 

 

Table 1 proved that log based computations 

performs faster on VIRTEX 6 FPGA as floating 

point multiplication and division was reduced to 

logarithmic floating point addition and subtraction 

respectively. The proposed design increased the 

speed of computations to 219.296 MHz, but the area 

was increased slightly higher when compared with 

conventional floating point arithmetic units. This is 

due to the fact that, the optimization of speed and 

area parameters is a tradeoff in VLSI designs. 

Latency that represents the time interval between the 



 

 

input and output generated is also decreased in the 

proposed design due to this property. 

5.1 Simulation Results Using SVM for Signature 

Recognition 

 
Fig.5.3. Identification of person ‘a1’ signature. 

 
Fig.5.4. Identification of person ‘a11’ signature 

Fig.9. and Fig.10. represents the simulation result  

in the identification of the person ‘a’. The value of 

SVM final is negative that results in the index 

value ‘01’. ‘a11’represents the cropped signature 

of  person ‘a’. The SVM final value can be 

matched with the block memory value to verify the 

identity of the person with feature input. 

 

 
Fig.5.5. Identification of person ‘g’ signature 

 

 
Fig.5.6.Identification of person ‘gf6’ signature 

 

Fig.11. and Fig.12. represents the simulation result   

in the identification of the person ‘g’. The value of    

SVM  final is positive that results in the index value 

‘10.‘gf6’represents the cropped signature of person 

‘g’. The SVM final value can be matched with the 

block memory value to verify the identity of the 

person with feature input. 

 

5.2 Simulation Results Using Neural Network for  

Signature Recognition 

Fig.13. indicates the simulation result in the 

identification of the person using neural network. 

The index value indicates ‘01’ that determines the 

first person’s signature ‘a’. 

 

 
Fig.5.7 Identification of Person ‘a’. 

The value ‘01’ was assigned to the feed forward 

neural network during training stage. Fig.14. 

indicates the simulation result in the identification of 

the second person signature using neural network. 

The index value indicates ‘10’ that determines the 

second person signature ‘g’. The value ‘10’ was 

assigned to the feed forward neural network during 

training stage. 

 

 

 
Fig.5.8. Identification of Person ‘g’. 

 



 

Table 2: Comparison between SVM and Neural 

Network Classifier 

Synthesis 

Parameters 

(VIRTEX6  

FPGA) 

SVM NEURAL 

NETWORK 

Slice Registers 133 252 

Slice LUTs 23433 38802 

Bonded IOBs 3 3 

Block RAM 8 2 

Maximum 

Frequency (MHz) 

23.808 14.400 

Table 2 provided the comparison for the testing 

stage of support vector machine and neural network 

classifiers for signature recognition system 

embedded on FPGA. Results showed that support 

vector machine classifier occupied less number of 

hardware resources and provided faster 

computations compared to neural network 

implementation. 

6. Conclusion 

This work described the design of floating point 

arithmetic units for offline signature recognition 

application. Log based floating point ALU’s and 

multi mode log based arithmetic architectures were 

designed and implemented on Virtex FPGA. The 

comparison results showed that log based 

computations was performed faster, but occupied 

more hardware resources than other designs. In the 

field of image processing, the log based single 

precision floating point modules were utilized to 

design offline signature recognition system 

embedded on FPGA. The system was analyzed 

based on 4 stages. In the preprocessing stage, images 

were binarized and thinned. Features were extracted 

and a feature mix matrix of size 20×166 was given 

as input for SVM and Neural Network training in 

MATLAB. From the simulation results of 

classification stage in Xilinx FPGA, the person’s 

authentication was identified. The FPGA synthesis 

results of signature recognition system using both 

the approaches proved that Support Vector Machine 

classifier occupied less number of hardware 

resources compared with neural network 

implementation.  

In future, the work will be extended to train the 

designed signature recognition system using other 

classifiers. Signature forgeries can be determined 

accurately by improving the performance of the 

feature extraction process. Different types of 

forgeries involved in the signature recognition 

system can be identified. The modeled floating point 

arithmetic units can be applied in the field of digital 

signal processing. 

 

References 

 

1. IEEE Standard for Binary Floating-Point 

Arithmetic, IEEE Standards Board, IEEE, New 

York, 2008, Tech. Rep. ANSI/IEEE Std. 754, 

2008, pp 1-58. 

 

2. Jonathan Ying Fai T., David N., Rob Rutenbar, 

A.: ‘Reducing power by optimizing the necessary 

precision/range of floating-point arithmetic’, 

IEEE Transactions on Very Large Scale 

Integration (VLSI) Systems, vol.28,no.3, June 

2000, pp.273-286. 

 

3. Chen, C., Chen, R. and Yang, C.: ‘Pipelined 

computation of very large word length LNS 

addition/subtraction with polynomial hardware 

cost’, IEEE Transactions on Computers, vol.49, 

no.7, July 2000, pp. 716–726. 

 

4. Chi Wai Y., AlastairSmith M., Wayne L., 

PhilipLeong, H.W., and Steven Wilton,J.E.: 

‘Optimizing floating point units in hybrid 

FPGAs’, IEEE Transactions on Very Large Scale 

Integration (VLSI) Systems, vol.20, no.7,July 

2012, pp. 1295-1303. 

 

5. Plamondon, R., and Srihari, S.N.: ‘Online and 

offline handwriting recognition: A 

comprehensive survey’, IEEE Transactions on 

Pattern Analysis and Machine Intelligence, vol. 

22, no 1, Jan. 2000, pp. 63-84. 

 

6. Müller K.R., Mika S., Rätsch G., Tsuda K., and 

Schölkopf B.: ‘An introduction to kernel-based 

learning algorithms’, IEEE Trans. Neural 

Networks, vol. 12, no. 2,March 2001, pp. 181-

201. 

 

7. Scrofano R., Zhuo L., Prasanna V.K.: ‘Area 

efficient arithmetic expression evaluation 

using deeply pipelined floating point cores’, 

IEEE Transactions on Very Large Scale 

Integration (VLSI) Systems, vol.16, no.2, 

Feb.2008, pp.167-176. 



 

 

 

8. Chong Y.J., Parameswaran S.: ‘Configurable 

multimode embedded floating-point units for 

FPGAs’, IEEE Transactions on Very Large 

Scale Integration (VLSI) Systems, vol.19, 

no.11, Nov.2011, pp.2033-2044.  

 

9. Paul S., Jayakumar N and khatri S.P.: ‘A fast 

hardware approach for approximate, efficient 

logarithm and antilogarithm computations’, 

IEEE Transactions on Very Large Scale 

Integration (VLSI) Systems,vol.17, 

no.2,Feb.2009, pp.269-277. 

 

10. Arnold M., Sylvain C.: ‘A real/complex 

logarithmic number system ALU’, IEEE 

Transactions on Computers, vol.60, no.2, 

Feb.2011, pp.202-213. 

 

11. Ahmad S.M.S., Shakil A., Faudzi M.A.: ‘A 

hybrid Statistical Modeling, Normalization and 

Inferencing Techniques of an Off-line 

Signature Verification System’, World 

Congress on Computer Science and 

Information Engineering, 31st  March-2 April 

2009, pp.491-501. 

 

12. Baltzakis H., and Papamarkos N.: ‘A new 

signature verification technique based on a 

two-staged neural network classifier’, 

Engineering Applications of Artificial 

Intelligence, June 2001, pp. 95-103. 

 

13. Bansal A., Garg D., and Gupta A.: ‘Pattern 

matching classifier for offline signature 

verification’, First International Conference on 

Emerging Trends in Engineering and 

Technology (IEEE Computer Society), 16-18 

July 2008, pp.250-256. 

 

14. Miguel Ferrer A., Jesu´s Alonso B., and Carlos 

Travieso M.: ‘Offline geometric parameters 

for automatic signature verification using 

fixed-point arithmetic’, IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 

vol. 27, no. 6, June 2005, pp. 993-997. 

 

15. Rong Lv H., Jun Yin W., and Dong J: ‘Offline 

signature verification based on deformable 

grid partition and hidden markov models’, 

IEEE International Conference on Multimedia 

and Expo ICME 2009, New York, 28th June-3rd  

July 2009, pp.105-110. 

 

16. McCabe A., Trevathan J., and  Read W: 

‘Neural network-based handwritten signature 

verification’, Journal of Computers, vol. 3, no. 

8, August 2008, pp9-21. 

 

17. Karouni A.,  Daya B., Bahlak S: ‘Offline 

signature recognition using the Neural 

Network's approach’,  Procedia Computer 

Science, Elseiver, vol.3,2011, pp. 155–161. 

 

18. Galal S., and Horowitz M: ‘Energy-efficient 

floating-point unit design’, IEEE Transactions 

on Computers, vol. 60, no.7,  July 2011, pp. 

913-922. 

 

19. Lee D.U., Gaffar A.A., Cheung, R.C.C.: 

‘Accuracy guaranteed bit-width optimization’, 

IEEE Transactions on Computer Aided 

Design, Oct 2006, pp. 1990-2000. 

 

20. Alachiotis N., and Stamatakis A: ‘Efficient 

floating-point logarithm unit for FPGAs’, 

IEEE International Symposium on Parallel & 

Distributed Processing, Atlanta, USA, 19-23 

April 2010, pp.978-984. 

 

21. Fu H., Mencer O., and  Luk W: ‘FPGA designs 

with optimized logarithmic arithmetic’, IEEE 

Transactions on Computers, vol. 59, no. 7, July 

2010, pp. 1000-1006. 

 

22. Yee Jern Chong, and Sri Parameswaran : 

‘Custom Floating-Point Unit Generation for 

Embedded Systems’, IEEE Transactions On 

Computer-Aided Design Of Integrated Circuits 

And Systems, vol. 28, no. 5, May 2009, pp. 

638-650. 

 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sharifah%20Mumtazah%20Syed%20Ahmad.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Asma%20Shakil.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Masyura%20Ahmad%20Faudzi.QT.&newsearch=true

