

DESIGN OF FLOATING POINT ARITHMETIC UNITS AND ITS

APPLICATION IN OFFLINE SIGNATURE RECOGNITION SYSTEM

EMBEDDED ON FPGA

Nallathambi RAMYARANI 1, Veerana SUBBIAH 2

1Sri Krishna College of Engineering and Technology, Coimbatore, 2PSG College of Technology, Coimbatore, India.
1Kuniamuthur, Coimbatore, 9677559489, ramyarani@skcet.ac.in, 2Peelamedu, Coimbatore, subbiah42@yahoo.com

Prabhakaran DEEPA 3

Government College of Technology, Coimbatore, India.
Thadagam road, Coimbatore, deepap05@gmail.com

Abstract: Floating point arithmetic circuits play an

important role in scientific computing, signal and image

processing applications due to its wide dynamic range

and high precision. In this work, floating point Arithmetic

and Logic Units (ALUs) architectures are designed,

implemented on Field Programmable Gate Arrays

(FPGAs) devices and utilized for signature recognition

system. Synthesis results proved that log based unit

provides faster computations, but increases the area

compared with conventional floating point arithmetic

units. Hence offline signature recognition system is

designed using logarithmic single precision floating point

arithmetic units and implemented on FPGA. The person’s

signature is classified by Support Vector Machine (SVM)

and Neural Network (NN) approach. From the simulation

results of the signature recognition system, the person's

signature can be identified based on the features. The

synthesis results proved that support vector machine

classifier occupied only 34% of the FPGA resources

available compared with a neural network approach that

occupied 68% of the total resources. The various stages

of the signature recognition system are analyzed in Xilinx

FPGA and MATLAB.

Keywords: Field Programmable gate arrays, Floating
point-arithmetic, Handwriting recognition, Support
Vector Machines (SVM), Neural Network.

1. Introduction

Floating point arithmetic and logic units are a part of

the computer system. The requirements of floating

point arithmetic have become very intense due to the

dynamic range representation of real numbers and

better precision compared to fixed point values.

These floating point numbers are represented as per

IEEE-754 standard 2008. This standard represents

the basic single precision (32 bits), double precision

formats (64 bits) and extended precision formats [1].

The complexity of these arithmetic circuits increases

on hardware implementation due to increased bit

width representation [2]. Logarithmic number

systems (LNS) also provide a similar range and

precision of floating point, but multiplication and

division in LNS are modified to fixed-point addition

and subtraction, respectively [3]. Nowadays, devices

like Field Programmable Gate Arrays (FPGAs) are

used for implementation of floating point arithmetic

units because of their increased integration density

and high performance operations. ASIC

implementations produce high speed of

computations and utilize less power. But it is very

expensive to design, build and has very less

flexibility after fabrication. On the other hand,

FPGAs provide good speedup results and retain high

flexibility after fabrication [4]. Hence the work is

focused on the design and implementation of

floating point arithmetic units on FPGA for

embedding biometric system.

Signature recognition is one of the most popular

research areas in personal identification and

authentication. A person's identity can be verified

in computer systems either based on the key, PAN

card, ATM PIN number and password of the

corresponding person. However, keys or cards may

be stolen or lost easily. PIN numbers and passwords

of the persons may be forgotten or disclosed to

others. Hence, to achieve more reliable verification

and identification, biometrics provides many

methods of identity verification. In our society, the

handwritten signature is considered as the primary

means of identifying the signer of a written

document. This method is one of the best ways to

authorize transactions and verify the human identity

compared with other electronic identification

methods such as smart cards, RFID chips. The

signature verification system depends on the

selection of features and decision methodologies.

mailto:ramyarani@skcet.ac.in

There are nearly 40 different types of features used

in signature verification. Features are classified as

local and global. Global features are the features

extracted from all the pixels pertaining to the

signature image. Local features are extracted from a

particular area of the signature image. Signature

recognition and verification methods are classified

into two type’s namely online or dynamic

verification systems and offline or static verification

techniques.

In online Signature Recognition and Verification

Systems (SRVS), features can be obtained by some

special peripheral units like electronic tablet or

personal digital assistant (PDA) for measuring hand

speed and pressure on the human hand when the

signature is created. On the other hand, an Off-line

SRVS system depends on image processing and

feature extraction methods. These static features are

obtained either by camera or photo scanning of the

signature [5]. Many classifiers like Hidden Markov

model (HMM), Dynamic time warping (DTW),

Support vector machines (SVM), Neural network

(NN), Wavelet transform to Structural or syntactic

methods are available for testing the image features.

In this work, offline signature recognition system is

designed using logarithmic floating point arithmetic

units for classifying the person’s signature using

Support vector machines (SVM) and Neural

Network (NN) approaches [6].

The paper is organized as follows: Section II

describes the literature survey of floating point

arithmetic units, signature recognition system,

motivation and objectives of the work. Section III

details the design of the log based floating point

arithmetic units. Section IV presents the offline

signature recognition system trained using SVM and

neural network. Section V shows the experimental

results and discussions. Finally, section VI presents

the conclusion and future work.

2. Literature Survey

Many researchers proposed various methods for the

design of floating point arithmetic units and offline

signature recognition systems. Some of the works

are presented here as a survey.

2.1 Floating Point and Logarithmic Arithmetic

Designs

Ronald Scrofano et.al (2008) evaluated balanced and

unbalanced binary tree arithmetic expressions using

pipelined floating point cores. Implementation

results on FPGA were compared in terms of area,

speed and latency[7].Yee Jern Chong and Sri

Parameswaran (2011) implemented multimode

embedded floating point arithmetic units on FPGA.

The embedded floating point units included the

design of floating point adder and multiplier to

perform double precision operations or two single

precision operations simultaneously. Such designs

provided performance and area benefits for the

implementation of single precision and double

precision floating point arithmetic units on FPGA

[8].

Suganth Paul et.al (2008) proposed the method for

computing log and antilog functions in FPGA device

using Look-Up Table (LUT) along with

interpolation. Logarithm function was computed

using interpolation and thus the requirement of

direct multiplication and division operations were

avoided. Antilogarithm function was also computed

using the LUT. These designs occupied less memory

space compared with other works [9].Mark

G.Arnold and Sylvain Collange (2011) presented an

algorithm for Complex Logarithmic Number

Systems (CLNS) that represented complex values in

the log polar form. The real LNS hardware was used

with CLNS along with the library parameters of

floating point cores. Compared to CORDIC and

Look-Up Table (LUT) approaches, CLNS provided

better accuracy and efficient area[10].

2.2 Offline Signature Recognition Systems

Sharifah Mumtazah Syed Ahmad et al. proposed

an automatic off-line signature verification system

designed using statistical techniques. The Hidden

Markov Model (HMM) technique was used to build

a reference model for each local feature. The

verification phase consisted of three layers of

statistical techniques. FAR were computed as 22%

and 37% for random and skilled forgeries

respectively [11]. H. Baltzakis and N. Papamarkos,

work was based on global, grid and texture features.

Two stage Perceptron one-class one-network

classification structure was implemented for each of

the features. From the three feature sets, the

classifier combined the decisive results of the neural

networks and the Euclidean distance. These results

were fed to a second-stage radial base function

(RBF) neural network structure for the final

decision. False Acceptance Rate (FAR) and False

Rejection Rate (FRR) was found to be 9.81% and

was 3% respectively [12].Abhay Bansal, Divye

Garg, Anand Gupta presented the geometrical

properties of the signature using contour matching

algorithm[13]. Eight original signatures were trained

and verified by the triangle matching algorithm. In

Random Forgery, FAR was found to be 0.08% and

13.02% for Simple and Skilled forgery, 2.64% was

computed for FRR.

Miguel A. Ferrer et al. [14] proposed an offline

automatic signature verification system for

geometric signature features. A 16 bit fixed-point

arithmetic was used for feature set calculation and

tested with different classifiers, such as Hidden

Markov Models (HMM), Support Vector Machines

(SVM) and Euclidean distance classifier. The

experiments showed that using HMM, for random

forgery FRR was found to be 2.2% and using SVM,

FAR was found to be 2.65%. Using HMM, FRR and

FAR was computed as 14.1% and 12.67%

respectively. Hai Rong Lv et al. represented each of

the signature images as landmark point set based on

HMM. Grid features are extracted from grid

partition technique. Pixels density and gravity center

distance are used as some of the features for

representing the grids of signature image [15].

M. Taylan Das and L. Canan Dulger proposed

Particle Swarm Optimization (PSO) algorithm for

neural network based off-line signature verification

system. The three types of forgeries were used to

test the performance of the algorithm. 40% of the

signatures were detected correctly for skilled

forgeries. Alan McCabe, Jarrod Trevathan and

Wayne Read presented the methods for handwriting

verification. Features like height, slant, and pressure

are extracted and trained by the neural network.

Several other approaches are compared with neural

network for accuracy [16]. Ali Karouni, Bassam

Daya and Samia Bahlak proposed the offline

signature verification system. Geometric features

like area, skewness and center of gravity were

classified and verified by artificial neural network

[17].

2.3 Motivation And Objectives Of The Work

Many research works proved that the

implementation of conventional floating point

multiplication and division modules on FPGA

decreases the computing speed. On the other hand,

logarithmic multiplication and division

implementation on FPGA provides faster

computations. However logarithmic addition and

subtraction modules consume more area compared

with conventional methods. The survey, based on

offline signature recognition system proved that the

design has not been implemented in real time

embedded system and hence provides the possibility

for the leakage of biometric information. Also in the

survey works, the error rate was high in detecting

the forged signatures. After defining the problem,

the following objectives are set for the proposed

work. I)To design arithmetic unit comprising of

floating point addition, floating point subtraction,

log based floating point multiplication and division

with the objective of increasing the computing

speed. II) To implement logarithm floating point

unit based offline signature recognition system on

FPGA for only the identification of the person’s

signature. The verification of the person's signature

for detecting forgery signatures with a high accuracy

rate can be implemented in MATLAB by creating

Graphical User Interface. This part of the work is

considered for future study by improving the feature

extraction process in the designed system.

3. Log Based Floating Point Arithmetic Unit

Floating point arithmetic and logic unit consists of

addition, subtraction, multiplication and division

operations. In this work, the single precision format

of IEEE 754 standard 2008 is used. Generally,

floating point architectures are designed with the

objective of optimization of area, speed and power

[18, 19]. In Logarithm Number Systems (LNS),

multiplication and division operations are reduced to

addition and subtraction operations respectively.

This property increases the speed of computations in

logarithmic computations [20]. Hence log based

floating point arithmetic units are designed in this

work.

3.1 Log based Floating Point
 Single precision log based floating arithmetic point

is designed as shown in Fig.1. The design accepts

two single precision inputs inp1 (X), inp2 (Y), clock,

reset and select input decides the type of operation.

The 1 bit f0, f1 indicates the flag for addition,

subtraction module (f0=1) and multiplication

division module (f1=1). Sel bit indicates the type of

operation in addition (sel=0) subtraction (sel=1)

module and multiplication (sel=0) division module

(sel=1).

Fig.3.1. Logarithmic Arithmetic and Logic Unit

3.2. Addition / Subtraction

Floating point addition and subtraction

operations are evaluated as follows:

Let the two operands be X and Y in IEEE 754

format (32 bit).

1. To get the sign bit (1 bit)

If two operands have similar sign bits, resultant

sign bit will be the same i.e. 0 or 1.

If the sign bit differs, exponent and mantissa fields

are compared. If the first operand is larger than the

second, the first operand sign bit will be the

resultant and vice versa. If both the operands have

equal exponent and mantissa fields, the resultant

sign bit is 0.

2. Exponent comparison (8 bits)

The exponent (e) difference of X and Y is

computed. The 24th bit (hidden) is made explicit in

the mantissa.

If Xe >Ye, the mantissa of Y is right shifted as per

the exponent difference value and its exponent

value is incremented. The left most digits are filled

with zeros.

If Ye > Xe, the mantissa of X is right shifted as per

the exponent difference value and its exponent is

incremented. The left most digits are filled with

zeros.

3. The aligned mantissas are either added or

subtracted depending upon the type of operation.

4. Exceptions overflow and underflow are

analyzed with the resultant mantissa values. In case

of overflow, the computed mantissas are shifted to

the right once and 1 is added to the exponent. In

case of underflow, the computed mantissa is

shifted to the left until the first binary 1 is detected.

The number of left shifts is subtracted from the

exponents.

3.3. Multiplication / Division
Multiplication and division in LNS become

addition and subtraction respectively, due to the

logarithmic property given below:

log2(X ×(÷) Y) = log2(X) ± log2(Y) (1)

Logarithm of the two numbers log2(X) and

log2(Y) are computed as per the following

conversions and the resultant logarithm values are

either added or subtracted depending upon

multiplication and division operations respectively.

Antilog of the resultant value is calculated. The final

result is converted back to floating point format

using fixed to floating point converter. By

XORing between X& Y, the sign bit is calculated.

3.4. Floating point to LNS conversion

 The conversion from floating point to LNS involves

two steps that can be done in parallel. The floating

point input contains three parts, namely Sign (S),

Exponent (E), Mantissa (M) and output LNS gives

two parts namely Exponent (E) and Mantissa (M).

The floating point number ‘X’ is defined as

X=S×2E×M (2)

The logarithm of a number is

log2 (X) = log2 (2E × M) (3)

By multiplication rule of log;

log2 (X) = log2 (2E) + log2(M) (4)

E value is considered without bias

By power rule of log;

log2 (X) = E × log2 (2) + log2(M) (5)

log2 (2) = 1; log2 (X) = E + log2(M) (6)

Mantissa is considered with hidden bit `1' i.e. 1.M.

The log of number is represented as

log2 (X) = E + log2(M) (7)

The logarithm of the mantissa values are obtained

from the pre-computed values stored in LUT and

added with the exponent [21]. The Look-Up Tables

(LUTs) values are generated from MATLAB and the

values are stored in block RAM memory of FPGA

board. The size of the lookup table is dependent on

the number of bits of accuracy considered after

fraction point (mantissa bits). For example, for n bit

of accuracy, LUT depth required is 2n. For example,

if 12 bits of accuracy after the fraction point is

required, then the LUT depth needed will be 0 –

4095 and each location will contain 32 bits of data.

The LUT is addressed by n bits of mantissa. So the

first n bits of the mantissa are given as an address to

the LUT that contains the required data and the LUT

output will be the corresponding log value for the

mantissa. Once the logarithm addition or subtraction

of the numbers is calculated depending on the type

of operation, the antilog of the value is computed.

The anti-log is the inverse log calculation.

The antilog of a log number is calculated as

Antilog2(E+ log2(M))=2(E+M) (8)

Antilog2(E+ log2(M))=2(E) ×2(M) (9)

The antilog values of mantissa values are obtained

from the pre computed values stored in the LUT and

multiplied with 2E. This multiplication is performed

by shifting the number obtained from LUT by the

exponent value. The resultant data is converted back

to floating point format by finding the first 1 from

the Most Significant Bit (MSB) side. Accordingly

the data is shifted and the exponent value is obtained

either by adding or subtracting 127 to the shifted

number. The rest of the bits represent the mantissa

part, except the first 1 from MSB. Addition or

subtraction of 127 to the shifted number depends on

the direction of shifting of negative and non negative

values.

The same procedure is followed in the design of

double precision log based floating point arithmetic

unit with the change in bit width. Double precision

standard consists of 64 bits, namely 1 sign bit, 11 bit

exponent and 52 bit mantissa. A Multimode

architecture is developed in this work by integrating

both single precision and double precision log based

floating point arithmetic unit. This architecture can

be executed either in single precision or with double

precision or in both the modes simultaneously

depending on the selection bit. By simultaneous

execution of both the modes, this architecture can

reduce the combinational path delay of executing the

designs separately.

4. Offline Signature Recognition System
This section describes the stages involved in an

offline signature recognition system. The system is

composed of various stages like data acquisition,

preprocessing, feature extraction, training and

identification as shown in Fig.2. [26]. Preprocessing

and feature extraction stage are performed in Xilinx

FPGA. The features are trained using Support

Vector Machine (SVM) and Neural Network (NN)

in MATLAB. Classification stage for the

identification of the person’s signature is performed

in Xilinx FPGA. The mathematical computations

involved in the classification stage are manipulated

using log based single precision floating point

arithmetic units for support vector machine and

neural network approaches.

Fig.4.1. Flow Diagram

4.1. Data acquisition

In this work, signature of two persons Abhit ‘a’

and Gaurav ‘g’ each in 10 different styles are

handwritten on a paper and the scanned image is

obtained in the size of 240×150 as shown in Fig.3.

The 20 images are converted into coefficient (.coe)

files as Xilinx FPGA can’t access the image files

directly. In MATLAB, code is written to read the

input image and resized. A new file is created to

open image files in .coe format. The pixel values are

obtained from ‘for’ loop. The data’s are entered in

binary format. Once the coe file is created in

MATLAB, these .coe files are stored in the block

RAM memory of FPGA using IP core provided in

Xilinx design suite.

Fig.4.2. Input image ‘a’ Input image ‘g’

4.2 Preprocessing and Feature Extraction in

FPGA

The preprocessing and feature extraction stages

are performed in Xilinx FPGA. The accuracy of

features extracted from an image is improved in the

signature pre-processing stage. In this stage the

images are binarized to remove noise and thinned to

remove the thickest of differences of the pen. Images

are made to have one pixel thick after pre-processing

stage as shown in Fig.4.

Fig.4.3 Binary Images Thinned Images.

 In order to extract some of the features the images

are required to be cropped. Hence, the 20 input

images of size 240×150 are cropped so that the

image covers the area that contains only the

signatures as shown in Fig.5.

Fig.4.4. Cropped Image ‘a’ Cropped Image ‘g’

Global features like height, width, centroids of 4

elements, quadrant areas of 4 elements, Gray Level

Co-occurrence Matrix (GLCM) of 4 elements, edge

point number, horizontal histogram, vertical

histogram and Histogram of oriented Gradients

(HOG) are extracted from the image. HOG

containing 81 elements of an image is obtained from

Preprocessing and Feature Extraction

(FPGA)

Input Image

Integer to

Floating Point

SVM/Neural Network Training (MATLAB)

Classification (LOG FPU FPGA)

the cropped and resized (binary and thinned) image,

whereas the remaining mentioned global features

containing 17 elements are obtained from the

cropped image. The feature vector size represents

the addition of 81 elements of HOG and 5 times the

global features of 17 elements. Thus the total of 81

elements of HOG and 85 elements of global features

constitute the total size of the feature set as 1×166.

These features are extracted as a text file using

Xilinx design suite in Verilog. As 20 images are

considered in this work, the size of the feature mix

matrix used for training is 20×166.

4.3 Training Using SVM in MATLAB
In this stage, feature vector obtained in the

previous stage is trained using support vector

machine for classification in the next stage. SVM is

a machine learning algorithm that maps the feature

vector to a higher dimensional plane by non-linear

mapping. It is a binary classifier that determines the

linear hyper plane for the classification of two

classes.

The feature mix matrix of size 20×166 is used for

training the images using support vector machine.

The output 20×2 matrix groups the 20 input images

into two classes [27]. The values assigned are ‘01’

and ‘10’ for the two classes. The kernel function

svm train maps the training data to the kernel space.

SVM struct file is the resultant output obtained after

training the features. This file consists of support

vectors, bias, alpha, kernel function, shift and scale

factors used for feature normalization. These data’s

are converted to IEEE 754 32 bit floating point

standard.

4.4.Classification in Xilinx FPGA

This stage is performed in Xilinx FPGA for the

recognition of a person’s signature. Support vector

machine provides two classes for the identification

of the person ‘a’ and ‘g’. The support vectors of

size 7x166, alpha of size 7x1, bias, shift 1x166,

scale 1x166 and sample test inputs (1x166) are

given as input in IEEE 754 32-bit floating-point

format.

The equation used in SVM classify is

c = ∑ αik(si, x)i + b (10)

Where si is the support vector, αi is the weight, b is

the bias, and k is a kernel function that represents

the dot product. The sample features are

normalized using shifting and scaling operations.

Shifting operation represents the row vector

containing the negative of the mean across all

observations in training. Scale factor represents the

row vector containing the inverse of standard

deviation of the training. After normalization, dot

product of support vectors and normalized feature

is calculated. The final value of SVM is

manipulated by multiplying the alpha value with

SVM dot product of size 1×7. Then the bias value

is added to it. These computations involving

addition and multiplication operations are

manipulated using the designed log based single

precision floating point arithmetic unit. The final

value of SVM obtained if greater than or equal to

zero, the index value is ‘10’ that represents the

second person's signature (‘g’). If the resultant

SVM value is less than zero, the index value is ‘01’

that identifies the first person's signature (‘a’).

4.5. Training Using Neural Network in MATLAB

In this section, the feature mix matrix obtained in

the preprocessing and feature extraction stage is

trained using neural networks [28]. Neural networks

are widely used for pattern recognition, object

classification, medical diagnosis, etc. Multilayer

feed forward network is used in this design. A

multilayer network consists of one input layer, one

or more hidden layers and one output layer. In a feed

forward network, the signal moves in only one

direction between the neurons of each layer to other

layers.

Supervised learning method is used in this work for

distinguishing the person’s signature. i.e. in addition

to the input features, the network has to know the

output vector size required for training. A feature

mix matrix of size 1×166 is given as input. The

output 20×2 matrix is used to group the 20 images

into ‘2’. The values are taken as ‘01’ and ‘10’. The

feed forward neural network with a single hidden

layer used for training is shown in Fig.6. The hidden

layer is trained based on sigmoid activation function.

Fig.6. Neural Network Training

The input bias, output bias, input weight and output

weight are obtained after training in MATLAB.

These parameters are utilized for classification in the

testing part to determine the hidden sigmoid function

and output values.

4.6. Testing Using Neural Network in Xilinx

FPGA

The classification stage for the identification of

the person is performed in Xilinx FPGA. The

computations of normalized value, hidden layer,

sigmoid function and output layer are manipulated

using log based single precision floating point

arithmetic unit. The output value matched with the

correct signature feature of a person will be greater

than the other output value. The minimum and

maximum values of the features trained in the

previous stage are normalized. When the maximum

and minimum values are equal, the normalized value

is

norm_x = y_range × (feat - Xmin) (11)

Where feat= feature, Xmax and Xmin= maximum

and minimum value, output y_range = 2, Ymin = -1.

When the maximum and minimum values are not

equal,

normalized_x = norm_x /(Xmax - Xmin) +

Ymin (12)

The input bias, output bias, input weight, output

weight, minimum, maximum values of size 1×166

and sample test inputs of size 1×166 are converted to

IEEE 754 32 bit width floating point and given as

input in this stage. The normalized value of feature

size 1×166 is used to calculate the single hidden

layer [29].

Hidden layer= (Input weight ×normalized value)

 +Input bias. (13)

The hidden layer of size 1×1 is obtained. The

tangent sigmoid function is determined using the

formula,

Sigmoid function= Hidden layer

 (14)

1+ (Hidden layer) 2

 3+ (Hidden layer))2

 5+...

Finally the output layer is calculated using the

relation,

Output layer= (output weight × sigmoid function) +

output bias. (15)

The output values of the two layers are compared.

The second person ‘g’ signature is determined if the

second output layer is greater than the first output

layer and vice versa case represents the first person's

signature ‘a’.

5. Experimental results

Log based floating point arithmetic units was

designed and the performance analysis in terms of

area and speed was compared with the conventional

floating point designs. These modules were

implemented on Xilinx Virtex 6 FPGA.

Fig.7.represents the simulation results of log based

floating point arithmetic unit. Designs were

simulated in single precision mode. All the four

arithmetic operations were computed.

Fig.5.1 Log based Floating Point Arithmetic Unit

Table 1: Comparison among floating point

Arithmetic Unit Designs on FPGA

Synthesis

Parameters

(VIRTEX 6

FPGA)

Conventio

nal

FPU

Log based

FPU

Slice

Registers

239 out of

93120

683 out of

93120

LUT-FF

pairs (slices)

2123 out

of 46560

1484 out of

46560

Maximum

Frequency

(MHZ)

22.24 219.296

Latency (ns) 21.67 8.32

Table 1 proved that log based computations

performs faster on VIRTEX 6 FPGA as floating

point multiplication and division was reduced to

logarithmic floating point addition and subtraction

respectively. The proposed design increased the

speed of computations to 219.296 MHz, but the area

was increased slightly higher when compared with

conventional floating point arithmetic units. This is

due to the fact that, the optimization of speed and

area parameters is a tradeoff in VLSI designs.

Latency that represents the time interval between the

input and output generated is also decreased in the

proposed design due to this property.

5.1 Simulation Results Using SVM for Signature

Recognition

Fig.5.3. Identification of person ‘a1’ signature.

Fig.5.4. Identification of person ‘a11’ signature

Fig.9. and Fig.10. represents the simulation result

in the identification of the person ‘a’. The value of

SVM final is negative that results in the index

value ‘01’. ‘a11’represents the cropped signature

of person ‘a’. The SVM final value can be

matched with the block memory value to verify the

identity of the person with feature input.

Fig.5.5. Identification of person ‘g’ signature

Fig.5.6.Identification of person ‘gf6’ signature

Fig.11. and Fig.12. represents the simulation result

in the identification of the person ‘g’. The value of

SVM final is positive that results in the index value

‘10.‘gf6’represents the cropped signature of person

‘g’. The SVM final value can be matched with the

block memory value to verify the identity of the

person with feature input.

5.2 Simulation Results Using Neural Network for

Signature Recognition

Fig.13. indicates the simulation result in the

identification of the person using neural network.

The index value indicates ‘01’ that determines the

first person’s signature ‘a’.

Fig.5.7 Identification of Person ‘a’.

The value ‘01’ was assigned to the feed forward

neural network during training stage. Fig.14.

indicates the simulation result in the identification of

the second person signature using neural network.

The index value indicates ‘10’ that determines the

second person signature ‘g’. The value ‘10’ was

assigned to the feed forward neural network during

training stage.

Fig.5.8. Identification of Person ‘g’.

Table 2: Comparison between SVM and Neural

Network Classifier

Synthesis

Parameters

(VIRTEX6

FPGA)

SVM NEURAL

NETWORK

Slice Registers 133 252

Slice LUTs 23433 38802

Bonded IOBs 3 3

Block RAM 8 2

Maximum

Frequency (MHz)

23.808 14.400

Table 2 provided the comparison for the testing

stage of support vector machine and neural network

classifiers for signature recognition system

embedded on FPGA. Results showed that support

vector machine classifier occupied less number of

hardware resources and provided faster

computations compared to neural network

implementation.

6. Conclusion

This work described the design of floating point

arithmetic units for offline signature recognition

application. Log based floating point ALU’s and

multi mode log based arithmetic architectures were

designed and implemented on Virtex FPGA. The

comparison results showed that log based

computations was performed faster, but occupied

more hardware resources than other designs. In the

field of image processing, the log based single

precision floating point modules were utilized to

design offline signature recognition system

embedded on FPGA. The system was analyzed

based on 4 stages. In the preprocessing stage, images

were binarized and thinned. Features were extracted

and a feature mix matrix of size 20×166 was given

as input for SVM and Neural Network training in

MATLAB. From the simulation results of

classification stage in Xilinx FPGA, the person’s

authentication was identified. The FPGA synthesis

results of signature recognition system using both

the approaches proved that Support Vector Machine

classifier occupied less number of hardware

resources compared with neural network

implementation.

In future, the work will be extended to train the

designed signature recognition system using other

classifiers. Signature forgeries can be determined

accurately by improving the performance of the

feature extraction process. Different types of

forgeries involved in the signature recognition

system can be identified. The modeled floating point

arithmetic units can be applied in the field of digital

signal processing.

References

1. IEEE Standard for Binary Floating-Point

Arithmetic, IEEE Standards Board, IEEE, New

York, 2008, Tech. Rep. ANSI/IEEE Std. 754,

2008, pp 1-58.

2. Jonathan Ying Fai T., David N., Rob Rutenbar,

A.: ‘Reducing power by optimizing the necessary

precision/range of floating-point arithmetic’,

IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol.28,no.3, June

2000, pp.273-286.

3. Chen, C., Chen, R. and Yang, C.: ‘Pipelined

computation of very large word length LNS

addition/subtraction with polynomial hardware

cost’, IEEE Transactions on Computers, vol.49,

no.7, July 2000, pp. 716–726.

4. Chi Wai Y., AlastairSmith M., Wayne L.,

PhilipLeong, H.W., and Steven Wilton,J.E.:

‘Optimizing floating point units in hybrid

FPGAs’, IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol.20, no.7,July

2012, pp. 1295-1303.

5. Plamondon, R., and Srihari, S.N.: ‘Online and

offline handwriting recognition: A

comprehensive survey’, IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol.

22, no 1, Jan. 2000, pp. 63-84.

6. Müller K.R., Mika S., Rätsch G., Tsuda K., and

Schölkopf B.: ‘An introduction to kernel-based

learning algorithms’, IEEE Trans. Neural

Networks, vol. 12, no. 2,March 2001, pp. 181-

201.

7. Scrofano R., Zhuo L., Prasanna V.K.: ‘Area

efficient arithmetic expression evaluation

using deeply pipelined floating point cores’,

IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol.16, no.2,

Feb.2008, pp.167-176.

8. Chong Y.J., Parameswaran S.: ‘Configurable

multimode embedded floating-point units for

FPGAs’, IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol.19,

no.11, Nov.2011, pp.2033-2044.

9. Paul S., Jayakumar N and khatri S.P.: ‘A fast

hardware approach for approximate, efficient

logarithm and antilogarithm computations’,

IEEE Transactions on Very Large Scale

Integration (VLSI) Systems,vol.17,

no.2,Feb.2009, pp.269-277.

10. Arnold M., Sylvain C.: ‘A real/complex

logarithmic number system ALU’, IEEE

Transactions on Computers, vol.60, no.2,

Feb.2011, pp.202-213.

11. Ahmad S.M.S., Shakil A., Faudzi M.A.: ‘A

hybrid Statistical Modeling, Normalization and

Inferencing Techniques of an Off-line

Signature Verification System’, World

Congress on Computer Science and

Information Engineering, 31st March-2 April

2009, pp.491-501.

12. Baltzakis H., and Papamarkos N.: ‘A new

signature verification technique based on a

two-staged neural network classifier’,

Engineering Applications of Artificial

Intelligence, June 2001, pp. 95-103.

13. Bansal A., Garg D., and Gupta A.: ‘Pattern

matching classifier for offline signature

verification’, First International Conference on

Emerging Trends in Engineering and

Technology (IEEE Computer Society), 16-18

July 2008, pp.250-256.

14. Miguel Ferrer A., Jesu´s Alonso B., and Carlos

Travieso M.: ‘Offline geometric parameters

for automatic signature verification using

fixed-point arithmetic’, IEEE Transactions on

Pattern Analysis and Machine Intelligence,

vol. 27, no. 6, June 2005, pp. 993-997.

15. Rong Lv H., Jun Yin W., and Dong J: ‘Offline

signature verification based on deformable

grid partition and hidden markov models’,

IEEE International Conference on Multimedia

and Expo ICME 2009, New York, 28th June-3rd

July 2009, pp.105-110.

16. McCabe A., Trevathan J., and Read W:

‘Neural network-based handwritten signature

verification’, Journal of Computers, vol. 3, no.

8, August 2008, pp9-21.

17. Karouni A., Daya B., Bahlak S: ‘Offline

signature recognition using the Neural

Network's approach’, Procedia Computer

Science, Elseiver, vol.3,2011, pp. 155–161.

18. Galal S., and Horowitz M: ‘Energy-efficient

floating-point unit design’, IEEE Transactions

on Computers, vol. 60, no.7, July 2011, pp.

913-922.

19. Lee D.U., Gaffar A.A., Cheung, R.C.C.:

‘Accuracy guaranteed bit-width optimization’,

IEEE Transactions on Computer Aided

Design, Oct 2006, pp. 1990-2000.

20. Alachiotis N., and Stamatakis A: ‘Efficient

floating-point logarithm unit for FPGAs’,

IEEE International Symposium on Parallel &

Distributed Processing, Atlanta, USA, 19-23

April 2010, pp.978-984.

21. Fu H., Mencer O., and Luk W: ‘FPGA designs

with optimized logarithmic arithmetic’, IEEE

Transactions on Computers, vol. 59, no. 7, July

2010, pp. 1000-1006.

22. Yee Jern Chong, and Sri Parameswaran :

‘Custom Floating-Point Unit Generation for

Embedded Systems’, IEEE Transactions On

Computer-Aided Design Of Integrated Circuits

And Systems, vol. 28, no. 5, May 2009, pp.

638-650.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sharifah%20Mumtazah%20Syed%20Ahmad.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Asma%20Shakil.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Masyura%20Ahmad%20Faudzi.QT.&newsearch=true

