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Abstract–This work relates to the study of backstepping 
control of the salient-pole double star synchronous machine 
drive fed by two three-level inverters. Indeed, it is a question 
of carrying out a decoupling between stator current and 
electromagnetic torque, by introducing a backstepping 
control with an optimal torque working and by imposing 
constant flux regime. Furthermore, to ensure a decoupled 
dynamic behaviour of the machine as in the case of a DC 
machine, a control of the rotor current has been introduced 
through a buck converter, feeding the excitation circuit. The 
obtained results are very satisfactory and reveal the 
effectiveness of the proposed approach. 
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Inverter; Space Vector Modulation; Backstepping Control. 

1. Introduction 
Multiphase drives possess several advantages over 

conventional three-phase drives such as reducing the 
amplitude of torque pulsations, reducing the amplitude, and 
increasing the frequency of torque pulsation, and improving 
noise characteristics [1]. The multiphase machines drives are 
widely used in electrical ships, aircraft, locomotive traction, 
electric and hybrid vehicles. Recently, special attention is 
focused on the double star machine drive systems. In double 
star machine two sets of three-phase windings spatially phase 
shifted by 30 electrical degrees are implemented in the same 
stator. Two common examples of such structures are the 
double star induction machine and double star synchronous 
machine (DSSM).  

It is well known that the variable speed double star drives 
require two traditional PWM inverters. Commonly, it is 
difficult to achieve clean output waveform using two-level 
inverters.  Indeed, current harmonics caused by no sinusoidal 
voltage feeding imply power losses in switching elements, 
necessity of using special filters for high frequency 
components in the output voltages, and pulsating torques in 
multiphase drives. These drawbacks can be lowered using 
multilevel inverters. 

Multilevel inverter topology can offer reduced harmonic 
distortions of the output currents, low voltage stresses of 
power switches and reduced electromagnetic interferences 
[2]. Therefore, it is a preferred solution for medium-high 
voltage or high-power electrical drives applications. Many 
multilevel topologies have been developed, among them, the 

neutral-point clamped (NPC).As reported in the literature, 
numerous PWM strategies have been proposed to control this 
kind of inverter. The space vector modulation (SVM) 
technique is one of the well-known modulation methods. 
SVM offers approximately a round rotary magnetic field by 
switching the stator voltage space vectors. Then, it can 
improve the voltage efficiency, quicken the dynamic 
responses and reduce the torque ripples of an electrical drive 
even at low switching frequency. 

In other hand, the DSSM is basically a nonlinearly 
coupling system which leads to a challenging control task. 
Indeed, traditional control methods such as PI control are not 
suitable for high performance drive applications. To ease 
these difficulties, various control algorithms have been 
advised in the literature. Among them, nonlinear state 
feedback control [3], sliding mode control [4] 
….Backstepping control theory is one of the prospective 
control methodologies for electrical drives. It can offer many 
good properties, such as systematically approach with few 
control parameters and the ability to shape performance. The 
backstepping technique has been widely used in the design of 
speed controllers for induction motors [5][6][7] and 
permanent magnet motors [8][9][10][11]. 

The main purpose of this paper is to apply the 
backstepping control on DSSM fed by two three-level NPC 
inverters controlled by three-level space vector modulations. 

The present paper is organized as follows. In Section II, 
the double star synchronous machine model is reported. 
Section III details the SVM algorithm for three-level NPC 
inverter. The backstepping control scheme is proposed in 
Section IV. Results and discussion are submitted in Section 
V. The conclusion is given in the last section. 

2. Modelling of the double star synchronous machine 
As every rotating electrical machine, the double star 
synchronous machine is composed of a stator and rotor. 
Thus, the machine windings can be substituted by an 
equivalent scheme in the (d,q). The dynamic model of a 
double star synchronous machine can be described in the d-q 
frame as follows: 
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Where vd and vq are the d-q axis stator voltages; vf rotor 
excitation voltage; id and iq are the d-q axis stator currents; i f 
rotor excitation current; Ld and Lq are the d-q axis stator 
inductances; Lf rotor excitation inductance; R is the stator 
resistance; Rf is the rotor resistance; p is the number of pole 
pairs; f is the viscous friction coefficient; TL is the load 
torque; Ω is the rotor speed and J is the rotor moment of 
inertia. 

Figure 1 represents the backstepping control of double star 
synchronous machine. 
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Fig. 1. Backstepping control of DSSM (with j=1, 2 and x=a, b, c) 

Transformation between dq and αβ frames for first and 

second star is given by: 
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With 6γ π= and θ : is rotor position. 

Transformation between the six-phase system and two-phase 
system is carried out using the flowing equation: 
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Where the matrix T is given by:
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3. SVM for three-level inverter 
The three-level NPC voltage inverter consists of twelve pairs 
of transistors-diodes and six clamping diodes as shown in 
figure 2. The simple voltage of each phase is entirely defined 
by the state of the four transistors constituting each arm. The 
median diodes of each arm permits to have the zero level of 
the inverter output voltage. Only three sequences of 
operation are retained and done in work. Each arm of the 
inverter is modeled by a perfect switch with three positions 
(0, 1, and 2) [12]. 
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Fig. 2. Schematic diagram of a three-level inverter with (k=1 for the 

first inverter 1 and k=2 for the second inverter 2) 

Now, considering the m states (m = 2, 1, 0) of each arm, the 
three-level inverter has a total of m3 possible combinations of 
switching states. As a result, 27 vectors can construct the 
space-vector diagram of a three-level converter, shown as 
figure 2. There are 24 active vectors including 12 short 
vectors, 6 medium vectors and 6 long vectors, and the 
remaining three are zero vectors. 
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Fig. 3. Three-level voltage inverter vectors in the α-β frame. 

The small hexagon (figure 3.a), is defined by the six regions 
I, II, III, IV, V, and VI. All vectors limiting these regions 

have the same magnitude 6dcV . 
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Fig. 3.a. Three-level inverter small hexagon. 

The middle hexagon (figure 3.b)is defined by the six regions 
a, b, c, d, e, and f. All vectors limiting these regions have the 

same magnitude 2dcV . 
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Fig. 3.b. Three-level inverter middle hexagon. 

The big hexagon (figure 3.c) is defined by the six regions A, 
B, C, D, E, and F. All vectors limiting these regions have the 

same magnitude 2 3 dcV . 
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Fig. 3.c. Three-level inverter big hexagon. 

Several strategies are proposed in order to generate the 
inverter’s gates pulses. In this work, we used the space vector 
modulation (SVM) is adopted. In this topic, the principle and 
the description of the SVM strategy will be detailed and 
applied to the three-level voltage. 

A. Principle 

As shown on figures3.a,b,c in each of the three hexagons, the 
reference vector Vref is located in one of the six regions 
constituting the hexagon, where each region is limited by 
two adjacent vectors Vδet Vδ+1 (figure 4).  
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Where Ts is the sampling time, Tδ, Tδ+1 are the application 
times of Vδ and Vδ+1 respectively. In one sample time, Vref is 
equal to Vδ during Tδ and Vδ+1 during Tδ+1. In the rest of Ts, 
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Vref is equal to the zero vector Vz (V14, V0, and V7) during T0 
following this optional choice: V14, V0 at the pulse’s ends and 
V7 at the pulse’s centre. At the same time: 

ref ref refV V Vα β= +
r r r

                                                               
(6) 

Or, in complex writing: 

2 2 j
ref ref refV V V e ϕ

α β= +                                                        (7)
 

Whereϕ is an angle varying from 0 to 2π. 

The SVM pulse is symmetrical and where all switches of the 
inverter’s half-bridge have the same state in the center and in 
the two ends. So, following these properties and after 
calculation of Tδ, Tδ+1and T0 of each region belonging to the 
appropriate hexagon, the pulses of the higher half-bridge (

1 2, ,x xS S , ,x a b c= ) of the three-level inverter are build. 

B. Switching times calculation 

As said previously, there are three hexagons as shown in 
figure3, where each one is constituted of six regions. As a 
result, 18 regions require switching times computation. To 
simplify this task, and for reason of similarities in the six 
regions of one hexagon on the one hand, and resemblance 
between hexagons ‘a’ and ‘c’ on the other hand (the largest 

magnitude in hexagon ‘a’ 6dcV constitutes the half of the 

largest magnitude in hexagon ‘c’ 2/3dcV , for these all 

reasons, in the switching times calculation’s procedure, only 
two regions of hexagon ‘a’ and hexagon ‘b’, are considered. 
The other switching times will be then deduced from these 
four regions.  

- Region I switching time’s calculation: 

Figure (5) presents the different voltage vectors forming the 
region I. 
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Fig. 5. Switching times calculation. 

 

The reference voltage vector could be expressed using three 
vectors when it lies in any region. After projection, it is 
possible to find: 
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The switching times applied for each vector are shown 
below:

 

1

2

0 1 2

6 2

2 2

ref ref
s

ref
s

s

V V
T T

E

V
T T

E
T T T T

α β

β

 −
=



 =


= − −



                                                 (9) 

C. Examples of chronograms 

Figure 6 illustrates the pulses of region 'I'. It is about 
symmetrical signals that have the same states at the center 
and at the ends. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6. Examples of chronograms pulses of region I 

4. Backstepping control 
The idea of backstepping design is conducted to select 
recursively some appropriate functions of the state variables 
of the machine to be controlled. In this work, the speed and 
direct stator current are assumed as pseudo-control inputs for 
lower dimension subsystems of the overall system. The 
backstepping procedure is ended when the control feedback 
design highlights the real physical input. Hence, it results 
that the final Lyapunov function is found from all associated 
Lyapunov functions defined for each individual design step 
[6]. 

A. Step 1 

This first step consists in identifying the error eΩ which 

representing the error between real speedΩ and its reference
*Ω . The speed error is identified by: 

*eΩ = Ω − Ω                                                                       (10) 
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The error dynamic is given by 
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The first Lyapunov candidate 1V is chosen as 

2
1

1

2
V eΩ=

                                                                           
(12) 

To have a convergence of the error eΩ to ward zero, it is 

necessary that the Lyapunov function derivative 1V& is 

negative, which will allow the following choice. 

e k eΩ Ω Ω= −&
                                                                       (13) 

Taking the time derivative of V1, this leads to 

2
1 0V k eΩ Ω= − <



                                                                 (14) 

Thus, the tracking objectives will be satisfied using the 
following control law 
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So, the control *qi is asymptotically stable. 

B. Step 2 

The second step consists in identifying the errors ide  and iqe  

which represent the errors signals between the currents and 
theirs references currents. Let us define the current errors as 
follows: 
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On the other hand, Eq. (15, 16) can be expressed as 
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Since, in the errors dynamics expressions (18) of the stator 
current components, the actual control inputs ( ),d qv v have 

appeared and will be calculated. Stability analysis is done by: 
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Taking the time derivative of 2V  and using (17), this yields to 
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At last, in order to make the derivative of the complete 
Lyapunov function (20) be negative definite, the d-axis and 
q-axis voltages control inputs are chosen as follows: 
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5. Simulation results 
The proposed backstepping control of the double star 
synchronous machine supplied by two NPC three-level 
voltage source inverters controlled via space vector 
modulation strategy is tested by digital simulation. 

Figure 7 presents the dynamic response of electrical drive. 
To test the speed evolution of the system, the DSSM is 
accelerate from standstill to reference speed 100rad/s with a 
load variation of 11Nm to 0Nm between 0.8s and 
1.2sfollowed by a speed inversion from 100rad/s to-100rd/s 
at 1.5s. 

The proposed control performances are very satisfactory. The 
rejection of disturbance is very efficient. Note that the id 
current is maintained null and independent of the torque; the 
iq current reflects the picture of the electromagnetic torque. 
The decoupling is ensured for the nominal load. This control 
decreases considerably the torque ripples. It can be seen that 
the speed response is merged with the reference case after 
wards the response time tr=0.16s. 

From these simulation results, one can say that the proposed 
backstepping control presents an excellent performance for 
starting, rejection of disturbance and decrease considerably 
the torque ripples. 
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Fig. 7. Dynamic responses of DSSM controlled by backstepping 

method in the case of a torque variation followed by a speed 
reversion 

6. Conclusion 
In this paper, a nonlinear feedback controller based on a 
backstepping method for a double star synchronous machine 
has been developed. To achieve global asymptotic stability 
of the proposed controller, Lyapunov theory is applied.  
Some simulation results were carried out to illustrate the 
effectiveness of the proposed control system. It is pointed out 
that the robustness of the controlled double star synchronous 
machine drive against speed and load torque variations is 
guaranteed. Furthermore, the proposed control scheme 
decreases considerably the torque ripples and assures good 
speed tracking without overshoot. The decoupling between 
the direct current and the torque is maintained, confirming 
the good dynamic performances of the developed drive 
systems. 
 
 

7. Appendix 
Double star synchronous machine parameters are gathered in 
Table. 1. 

Table 1: DSSM Parameters. 
DSSM, 5kW, 2 poles, 232V, 50 Hz 

Stator resistance             ( Rs )     2.35 Ω 
Rotor resistance             ( Rf )     30.3 Ω 
Stator inductance d axis ( Ld )   0.3811H 
Rotor inductance q axis ( Lq )    0.211H 
Stator inductance          ( Lf )    15 H 
Mutual inductance        ( Mfd )    2.146 H 
Total inertia                  ( J ) 0.05Nms2/rad 
Friction coefficient        ( f ) 0.001Nms/rad 
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