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Abstract: Operational reliability of power systems is one 
of the most important concerns that engineers have when 
planning a secure and economical electrical power 
system. This paper presents a probabilistic power flow 
analysis, based on the Monte Carlo simulation method, to 
support an overload safe power system designed to 
tolerate demand uncertainty and fluctuations of 
transmission parameters. Generation and transmission 
capacities in the power system can be estimated on the 
basis of operational risks and system installation costs. 
The proposed approach will be very useful for the 
rational planning of secure power distribution systems. 
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1. Introduction 

Operational reliability of power systems is of 
great importance in avoiding system failures, which 
may result in severe outages. The traditional 
deterministic security analysis methods have 
limitations in their use of system reliability 
assessments, because they do not consider stochastic 
factors affecting normal operation modes [1-3]. As a 
result, the unpredictable conditions of a complex 
power system – such as fluctuation of loads, the 
random failure of generator units, the random failure 
of transmission and distribution components, ageing 
of power components, indefinite external factors, 
and so on – can easily make the results of 
deterministic system security analysis inconsistent. 
That is why probabilistic power flow analyses that 
consider stochastic models and uncertainty in system 
parameters are more relevant for assessing the 
operational reliability of a system [1]. 

Power systems contain uncertainties in 
parameters of system components, as well as 
operating conditions. This causes power systems 
analysis tools to be, at least to some extent, 
imprecise when they rely on deterministic data. 
Power flow studies have a substantial role in the 
analysis and design of power systems [4]. To take 
into account uncertainties inherent to power systems, 
probabilistic techniques have been used since the 
early 1970s [5], where uncertainty in demand was 
first considered in a standard power flow problem.  

Reliability of power distribution systems is an 
increasingly pressing concern due to the strong 

dependence that modern societies and their 
economies have on power reliability. Many methods 
have been proposed to assess of power system 
reliability, including the fault tree analysis approach 
[6], the graph-theoretical (topological) network 
analysis method [7], and sequence operation theory-
based approaches [8]. These methods aim to identify 
most critical system elements with respect to failures 
and attacks. In addition, a risk analysis of undesired 
states of power systems has been presented; a level-
1 probabilistic risk assessment method was proposed 
to estimate blackout risks in power systems [9]. 
Optimization algorithms are also used, to improve 
the reliability of power systems. A genetic algorithm 
was used to search for the optimal transmission line 
assignment to the power transmission network so 
that network reliability is maximized [10]. For 
planning applications, an analytical probabilistic 
model for reliability evaluations of competitive 
electricity markets was proposed [11]. 

Probabilistic or stochastic load flow methods are 
commonly used to adjust and model the random 
nature of the operational load and generation data 
[4]. In [12], Pereira et al. proposed a methodology to 
process uncertainty in electrical power systems by 
using the interval non-linear system. Because of 
electric system data are uncertain; the proposed 
method can be considered an effective means in 
power flow analysis under uncertainty. In [13], 
author’s purpose is to extend the probabilistic power 
flow to the three-phase field to take into account all 
the uncertainties in any unbalanced power system. 

The Monte Carlo simulation method is a well-
known technique, which yields consistent solutions 
for stochastic load flow problems. This method 
mainly utilizes repeated trials of a deterministic load 
flow technique to determine probability distributions 
of nodal powers, line flows, and losses. In the 
literature, the Monte Carlo simulation method was 
used in many engineering applications, owing to its 
straightforward applicability to complex phenomena, 
and its controllable accuracy in results. [14-16]. 
With recent developments in computing 
technologies and intelligent methods, Monte Carlo 
simulation can be performed with satisfying 
accuracy in a reasonable computation time [17-20]. 
In [21], Stefopoulos et al. proposed a method, which 
is based on single phase power flow and non-



  

conforming load model, for probabilistic power 
flow. The method was certified via Monte Carlo 
simulations for each random sample in that study.   

Several other methods have been proposed for 
deterministic load flow analysis: Gauss-Sidel, 
Newton-Raphson, Fast Decoupled Load Flow, 
Particle Swarm Optimization, Modified Particle 
Swarm Optimization [22]. We applied Gauss-Sidel 
method in the load flow analyses of Monte-Carlo 
simulation because of its simplicity and minimal 
computer storage requirements. However, it is slow 
in computation time [22]. Newton-Raphson method 
should be preferred for large systems [22].     

Probabilistic steady-state security assessment of 
an electric power system is very useful, not only in 
the planning, but also in operation and control of 
electric power systems. In the literature, 
performance indices were defined to assess the 
impact of contingencies on power system security 
[23]. These indices, obtained via Monte Carlo 
simulations, were used to evaluate the influence of 
overloads, voltage limit violations, and voltage 
stability problems in a power distribution network.  

This paper presents a probabilistic load flow 
analysis method for use in capacity planning of 
power systems, for a cost-effective, overload safe 
power system design. Authors employ an overload 
probability analysis method based on the Monte 
Carlo simulation. In this method, a deterministic 
power flow analysis scheme, based on a Gauss-
Seidel numerical solution method, is used in the 
Monte Carlo simulation framework. After estimating 
capacity-exceeding probabilities of power system 
components, these probabilities are then used for an 
overall overload safety assessment of the power 
system. Afterward, on the bases of these safety 
assessments, a risk-cost analysis can be conducted 
for cost-efficient capacity planning of the power 
system components. 

 
2. Method 
2.1 Deterministic modeling and power flow 
analysis of power systems  

Power flow analyses are important for power 
system planning and operation. Deterministic power 
flow analysis methods were effectively employed in 
the steady-state analysis of a complex power 
network modeled by the bus admittance matrix 
( busY ) [24]. In our study, the power flow equations 

written according to busY  were numerically solved 
by applying a Gauss-Seidel method [24]. The Gauss-
Seidel solution of node voltages in an iterative 
scheme was given as, 
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Where ijij yY −=  and ∑= ijii yY . The parameter 

ijy  represents elements of busY  matrix. The 

parameters sch
iP  and sch

iQ  denote, respectively, 
scheduled active and reactive powers at the nodei . 
The parameter k  represents iteration steps. The 
iterative calculation process of voltages continues 
until the real and imaginary part of the node voltages 
in subsequent iteration are less than a specified error 
limit.  

The active and reactive power of nodes are 
calculated by the following formulas, 
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After obtaining all node voltages (busV ) of the 

power system, bus currents are calculated 
by busbusbus VYI = . 

 
2.2. Probabilistic overload safety analysis based 
on Monte Carlo simulation 

The Monte Carlo simulation method provides a 
comprehensive tool for analysis of very complex 
stochastic factors. The Monte Carlo simulation 
method was adopted for probabilistic power flow 
analysis due to its advantage of straightforward 
principles, uncomplicated realization of complex 
problems in computer-aided analyses, insensitivity 
to the dimension of problems, and strong 
adaptability to any kind of scientific problem [1]. 

In the Monte Carlo simulation of power systems, 
the states of stochastic components are sampled 
randomly according to their stochastic models. A 
state of the power system is represented by a vector 

),,,,,( 321 mxxxxX =  where ix  is the state of the 
i th component. The set of all possible states, 
containing all combinations of component states, are 
denoted by xS . Let )(XFi denote the overload test 
function of i th component, which indicates whether 
or not the state of component i  exceeds its upper 
bound of capacity. It can be analytically expressed 
as, 
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Where ic  denotes a safe operation capacity and iy  
represents the output of a deterministic system 
model )(Xf . The outputs iy  are obtained from the 



  

Gauss-Seidel power flow solution of the power 
system modeled by a busY  matrix in this study. For a 

given N  number of random samplings ofX , the 
probability of component i being in an unsafe 
operation is expressed depending on an expected 
value of iF  as follows: 
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According to the Kolmogorov Strong Law of Large 
Numbers, if iF  is a sequence of independent and 
identically distributed random variables and its 
numeral expectation exists [1]: 
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Equation (6) tells us that the calculated probability 
value ( ip~ ) converges to a real probability value 

( ip ) when ∞→N  by the Monte Carlo simulation 
method. Here, convergence error (e) is written as 
[1], 
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Where σ  is the standard deviation ofiF . The 
simulation is completed when the convergence error 
falls below a predefined error threshold (ε ). The 
basic steps of the Monte Carlo simulation of power 
system are demonstrated in Figure 1 (a).  

A severity function ( )(iSv ) is used to specify the 
degree of abnormality in system functionality. In 
other words, )(iSv  assigns a severity degree 
between zero and one for the overloading of system 
output iy . The condition of 0)( =iSv  implies that 

there is no negative effect of capacity exceeding iy  
in the normal operation of the power system. The 
condition of 1)( =iSv  indicates a maximum 
severity degree that implies a completely undesired 
system status. Overall capacity-exceeding risk 
factors of the system can be written as the sum of 
overload risks of each component as follows, 
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In practice, financial factors are very important 

during the planning phase of power systems. The 
capacity allocations of system components should be 
determined by considering both capacity risk and 
capacity cost, since a risk reduction causes an 
additional system installation cost. One can express 
capacity allocation of the system component i  as 
follows, 

 
)()( iii yyEc βσ+= ,   (9) 

 
Where operator (.)E  and (.)σ  represent the 

expected value and the standard deviation of iy  in 
the Monte Carlo simulation. The parameter β   is a 
capacity enlargement factor and it is used for 
adjusting the capacity-exceeding risks of a 
component by increasing the capacity allocation, ic . 

Let us denote a cost function of capacity ic  for 

the component i  by )( ii cφ . The iφ  function may be 

a linear or nonlinear function of ic  depending on 
economical and geographical factors.  In this 
manner, total installation cost of a system can be 
expressed as, 
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For a rational secure system plan, impacts of 

capacity increments on the system cost (Tφ ) and the 
overall capacity-exceeding risk factor R  should be 
evaluated together and the cheapest risk should be 
found for a cost efficient power system risk plan. In 
this manner, a minimum of the risk-cost product 
( TRφ ) in a given range of ),( maxmin ββ should be 
found:  
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An algorithm for the overload-safe power system 
design, using the Monte Carlo simulation, is 
presented in Figure 1(b). In the following section, an 
example analysis is illustrated on a test system. 

 
 
 
 
 
 
 
 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. (a) Basic steps of the Monte Carlo simulation [1]. (b) An algorithm for Monte Carlo simulations for the 
overload safety analysis of power distribution systems 
 
 
 
3. A power system planning example 

Figure 2 shows the electrical schema of the test 
system used for the illustration of a safety plan 
against overloading of transmission and generation 
components. In this power system, active and 
reactive powers of Bus 2 ( 2,schP , 2,schQ ) and Bus 3 

( 3,schP , 3,schQ ), and line admittances (12y , 13y  

and 23y ), are stochastic parameters of the system. 
Active and reactive power requirement in Bus 1 and 
Bus 2 were assumed to have a deviation of 60% of 
its average value for active power and a deviation 
40% of its average value for reactive power in order 
to model fluctuations in consumers demand. Line 
admittances were assumed to have a 10% deviation 
from the nominal value of line resistance, and a 15% 
deviation from the nominal value of line reactance, 
due to changes in possible external factors 
(temperature, humidity, dust, mechanical vibrations, 

etc.), and structural factors (nonlinearity in power 
components, ageing). Table 1 lists stochastic 
components and their parameters. For the random 
samplings of power system parameters, we used 
uniformly distributed pseudo-random numbers 
generated by the Matlab program. Table 2 lists 
severity degrees (vS ), assigned for defining 
negative effects of capacity exceeding the power 
system’s normal regime. Our objective in this 
example is to investigate overload risks for various 
planned generation capacities (maxP , maxQ ) and 
transmission current capacities 
( max,12I , max,13I , max,23I ) . 
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Figure 2. Example of power system in probabilistic overload safety analysis. 
 

Table 1. List of stochastic parameters of the power system shown in Figure 1 
 

 Nominal Values (pu) Deviation 

2,schP , 2,schQ  -1,-1 60%, 40% 

3,schP , 3,schQ  -2,-2 60%, 40% 

12y , 13y , 23y  10+30j, 10+20j, 50+50j 10%+(15%)j 

 

Table 2. List of severity degrees ( )(iSv ) assigned for negative effects of exceeding capacity 

 

Overloading Impacts on Power Distribution vS  

max1 PP >  Effects on whole power system due to halt of 
generator 

1.0 

max1 QQ >  Effects on whole power system due to halt of 
generator 

1.0 

max,1212 II >  Directly affects power at Bus 2, however line 23 
supports Bus 2. 

0.5 

max,1313 II >  Directly affects power at Bus 3, however line 23 
supports Bus 3. 

0.5 

max,2323 II >  Does not seriously affect any bus, however it results 
in the loss of the backup line. 

0.2 
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Figure 3(a) illustrates the convergence of active 

power capacity exceeding the probability of Bus 1 
for 0.1=β . It converges to the probability of 0.19 
with the convergence error (e) of 0.025 after 40,000 
random samplings. Decreasing of convergence error 
with number of random samplings is illustrated in 
Figure 3(b). While convergence error sharply 
decreases around 3,000 random samplings, it 
asymptotically approximates to levels of 0.025 
throughout 40,000 samplings. The 40,000 random 
samplings provided an adequate accuracy in the 
probabilistic estimations. Figure 3(c) illustrates a 
histogram of active power at Bus 1. In this figure, 
the scanned area on the left hand side of the maxP  
line shows the number of tests exceeding maximum 
capacity allocated. This histogram reveals that 
roughly 8,000 out of 40,000 random tests resulted in 
the active power capacity overloading during the 
simulation for 94.3max =P . 

For an illustration of safe capacity planning, the 
risk-cost ( TR φ, ) analysis was conducted in )2,0(  
range of the capacity enlargement factor β  with an 
increment of 0.1 via the Monte Carlo simulation 
method. Figure 4(a) reveals alterations in the 
overload probabilities (p~ ) during the increment 
of β . Effects of increases in β  on the parameters of 

R  and Tφ  are demonstrated in Figure 4(b) and (c), 
respectively. In addition, Table 3 lists some 
important system parameters calculated during the 
simulations. These parameters provide data that is 
useful in power system capacity planning. An 
affordable overload risk of power components is 
determined according to the risk-cost assessment of 
the system.  According to this table, the best risk-
cost product is obtained as 09.5=TRφ , 
when 8.1=β .  

 Figure 4(d) shows numbers of random samplings 
( N ) in the Monte Carlo simulation to have a 
convergence error (e) lower than 0.05 ( 05.0<ε ). 
As the capacity-exceeding probability decreases, it 
requires more random samplings to retain this 
convergence error level. It is because of this that 
there is a need for more tests (random sampling) to 
approximate lower probability values in the Monte 
Carlo simulations. 

 In this power system design example, 
authors used a fractionated version of the WSCC 9-
bus test system for illustrative proposes to avoid 
unnecessarily complicating analysis result for the 
benefit of readers. The method can be applied to 
more complex, large-scale systems, at the expense of 
larger computational complexity and therefore more 
computational time requirements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. (a) Convergence of active power overload 

probability ( )(~
max1 PPp > ) of Bus 1 in Monte Carlo 

simulation ( 0.1=β , 94.3max =P ). (b) Convergence 

error (e) characteristics. (c) Histogram of Bus 1 active 

power ( 13.3)( 1 =PE , 81.0)( 1 =Pσ ). 
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Table 3. List of allocated capacities (maxP , maxQ max,12I , max,13I , max,23I ) in per unit (pu), their calculated overload 

probabilities (p~ ),  overall overload risk factor (R ), and installation cost (Tφ ) for the various values of β  
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R  Tφ  TRφ  

0.3 3.38 / 0.44 2.83 / 0.44 2.41 / 0.42 1.98 / 0.44 1.04 / 0.44 1.41 29.56 41.85 

0.6 3.62 / 0.33 2.96 / 0.32 2.50 / 0.30 2.07 / 0.31 1.14 / 0.32 1.04 31.20 32.53 

0.9 3.86 / 0.24 3.10 / 0.23 2.61 / 0.22 2.16 / 0.22 1.23 / 0.23 0.75 32.93 24.84 

1.2 4.12 / 0.16 3.25 / 0.15 2.72 / 0.15 2.26 / 0.15 1.33 / 0.15 0.50 34.77 17.52 

1.5 4.36  /0.09 3.39 / 0.08 2.82 / 0.08 2.35 / 0.08 1.42 / 0.08 0.28 36.5 10.27 

1.8 4.60 / 0.04 3.53 / 0.03 2.93 / 0.04 2.44 / 0.04 1.52 / 0.04 0.13 38.21 5.09 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. (a) Overload probabilities versus capacity enlargement factor plots for )2,0(∈β . (b) Overall capacity risk 

factor (R ) versus capacity enlargement factor. (c) System cost ( Tφ ) versus capacity enlargement factor. (d) Number of 

random sampling (N ) which have a convergence error (e) lower than 0.05 ( 05.0=ε ). 
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4. Conclusion 

This paper presented a Monte Carlo simulation 
method for the overload security analysis of power 
systems in the case of uncertain power demand and 
fluctuation of line parameters. A risk-cost analysis 
was also conducted for a rational, secure power 
system plan. In an affordable and reliable power 
system design, risk-cost analyses on the bases of 
stochastic modeling of system parameters are more 
appropriate than deterministic methods of analysis, 
because deterministic models cannot provide a bird's 
eye view of a power system on the risk-cost plane. 
This disadvantage of deterministic security analysis 
methods may result in wasting security budgets, due 
to lack of risk-cost optimization of system 
parameters. As power systems get more 
complicated, deterministic planning of complex, 
large scale power systems become more vulnerable 
to unpredictable contingencies. Hence, probabilistic 
analyses based on stochastic models of system 
components are more reliable in risk analyses of 
large scale complex systems. Although the method 
was demonstrated on electrical power systems in this 
paper, the technique presented can also be adopted 
for other capacity-limited systems, such as 
mechanical structures with limited stress capacities, 
or channel systems with limited flow capacities.     

As a methodology, it contributes to solution of 
risk-cost effective design problems of complex 
systems with uncertain parameters. The method 
offers a simple and reliable solution for power 
system planning problems.  
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