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Abstract: Today progress in railgun research is usually achieved
experimentally with support from static simulations. It is of great
interest to set up dynamic simulations that allow to asses time
dependent information about the parameters involved in the elec-
tromagnetic acceleration of masses. In this investigation a dynamic
3-d finite element simulation of a small, 28 mm caliber railgun was
implemented. The novelty of this approach is, that after a simulation
run, the time history of, for example the velocity of the projectile is
available. To validate the simulation results, a series of shots with a
28 mm caliber railgun was performed. Good agreement between the
experiment and the dynamic simulation was observed.
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1. INTRODUCTION

Electrical machines are complicated setups, involving the
interplay of electrical, magnetic and mechanical effects. In
the design and optimization of such machines a multitude
of analytic, simulation or combined methods are applied (to
name just two examples, see [1], [2]). One type of an electrical
device that pushes the limits of the existing technologies is the
railgun. An electric railgun is a device that uses the Lorentz
force to propel masses to typically large velocities. One of
the driver for the development of railguns was and is the
military, as can be seen for example in the current development
of the largest railgun installation in the world, the US-naval
railgun [3]. Nevertheless, the inherent flexibility in masses to
be accelerated and in velocity range allow for a multitude
of possible applications in the civilian sector. Same of these
would be the launch of small satellites [4], the disposal of
nuclear waste into the depth of space [5], the injection of
pellets into a fusion reactor [6] or as a tool for material
research [7], [8]. Apparently, the wide field of applications
with very different requirements can not be served with one
implementation of the railgun principle, instead there is a large
range of technical variations, quite a few being summarized
in [9], [10].

Analytic calculations and simulations are being used to
design and optimize railguns, but the extreme conditions
and the many physical process being involved during the
acceleration make an accurate modeling of a firing railgun a
difficult task. Therefore the design efforts usually concentrate
on the most important key-parameters and use simplified
simulations. Recent examples for this approach are [11],
analytically optimizing for two parameters, the geometrical
inductance gradient and the allowable current density and [12]
using 2-d finite element simulations and lumped parameter

Fig. 1. The small caliber railgun SR\3-60.

models to evaluate a large number of different geometries.
In [13] the authors implement a static 3-d railgun model,
solving the Maxwell equations for an array of fixed projectile
velocities.

At the ISL1, the railgun group launched an effort to use the
modern finite element program COMSOL [14] with the goal
to set up a realistic dynamic, moving projectile simulation in
3-d. To the authors knowledge, this is the first time such a
simulation is performed and compared to experimental data.

2. EXPERIMENTAL SETUP

One of the smaller railguns installed at the ISL is the
SR\3-60 [15]. Figure 1 shows the railgun to the right hand
side. The SR\3-60 is a segmented railgun with three segments
and a total barrel length of 225 cm. Each segment is connected
to a 150 kJ capacitor bank (visible in the background of the
figure) with a typical pulse length of about 10 ms. Due to its
internal configuration, the segments can be used sequential,
in parallel or individually. In this investigation the gun is
used as simple railgun, using one pair of 75 cm long rails
and one capacitor bank. The aluminum box in the center of
the picture, just under below the muzzle, houses a Doppler
radar. This device allows to accurately determine the velocity
of the projectile during the acceleration process. The left hand
barrel is used to install further instrumentation to investigate
projectile properties during its free flight phase. Finally, the
red box to the very left of the picture stops the flight of
the projectile. The rail cross-section is shown in figure 2.
Each rail is assembled of two copper bars, one with a width
of 20 mm and a height of 10 mm, another with 12 mm and
15 mm, respectively. The projectile is made out of glass-
fiber reinforced plastic and makes use of a 8 mm diameter,
copper wire brush. The caliber of the projectile is 28 mm,
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Fig. 2. Cross-sectional view of the rail geometry. Shown is one rail and the
distance to the mirror line (on the right hand side).

with the brush having a small over length to ensure good
electrical contact during the acceleration process. The average
weight of the used projectiles is about 92 g. The measured
current and velocity distribution for a typical shot performed
with the SR\3-60 is shown in figure 3. As the inset shows,
the doppler radar signal stabilizes only after approximately
0.7 ms, allowing for an accurate determination of the projectile
velocity only after this time.

2.1. Dynamic Simulations using a 3-d Model

Implementing a realistic railgun with a moving projectile
as a 3-d model in a finite element simulation is a challenge
in itself. The size of the mesh is dictated by the physics that
influences the acceleration. In this case, the current distribution
in the rails is strongly influenced by the skin effect, at higher
velocities the velocity skin effect comes into play, too. To
correctly model the current distribution therefore requires
a mesh size with dimensions smaller than the skin depth.
The skin depth is a strong function of the frequency. For
the frequencies being involved in a discharge of a capacitor
bank, the typical size is of the order of millimeters. This
scale is in stark contrast to the longitudinal dimensions of
a railgun, which is of the order meter(s). An even more
severe complication is that the full simulation of a moving
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Fig. 3. The current and velocity distribution for a typical SR\3-60 shot. The
signal from the doppler radar is shown as inset in the upper left corner.
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Fig. 4. A 3-d view of the simulation model for the SR\3-60 in COMSOL.
Due to symmetries only a quarter of the railgun needs to be modeled. The
areas marked by numbers are the following: (1) the surrounding air volume,
(2+3) the current carrying rail and (4) the volume in which the brush moves.

projectile requires a stationary and a moving mesh. Even
so COMSOL is capable of simulating moving meshes, the
railgun simulation was simplified by following the example
in [19]. There the armature is represented by a volume of
material with the conductivity of the corresponding metal,
being surrounded by an insulator. To simulate the movement,
the position of the armature is recalculated for each time
step. This position is used to change the conductivity of the
corresponding volume of the space in between the rails. This
procedure involves no movement of the mesh. By attaching
the weight of the projectile to this region, and using the
value of the Lorentz force derived for every time step by
the simulation, the acceleration of the projectile is calculated.
From the acceleration and the known size of the time step
in the simulation, the velocity and position of the projectile
is derived. This value is then used in the next time step.
The geometrical setup is shown in figure 4. Using the usual
symmetries for the simple railgun implementation in 3-d FEM
modeling, only a quarter of the problem is simulated. The
cylindrical volume around the railgun (marked by (1) in the
figure) is filled by air, the current carrying rail is the above
mentioned composite of two sections marked with (2) and (3).
Within the region (4) the conductivity of the mesh elements
is changed at the current position of the armature in a volume
corresponding to the volume the armature. The current pulse
being driven through the railgun is a smoothed, measured pulse
as shown in figure 3. To compare the simulation to experiments
being performed with different primary energies, the pulse
height (maximum current) was adjusted accordingly. During
a simulation run, the so simulated armature will travel in this
volume from left to right. A more detailed description of the
implementation can be found in [20].

1) Simulation Results: The well known railgun force law
can be written as (direction of flight along the z-axis):

Fz(t) = m · a(t) = 1

2
L′I(t)2. (1)

The velocity of the projectile is gained by integrating equation
1 over the acceleration time (from t = 0 to t = tf ). The
right hand side of equation 1 implies that L′ is a constant,
being fixed by the geometry of the accelerator. But, due to



the development of the driving current pulse and the magnetic
field in the vicinity of the armature, the inductance gradient L′

is becoming a function of time. Further on, the current running
through the armature will interact not only with the magnetic
field behind the center of the armature, but will also “see” the
magnetic field in front of it. Thus the inductance gradient being
relevant for an dynamic experiment will be reduced compared
to the calculated geometrical inductance gradient value. In
the above formula these effects can be taken into account
by replacing the inductance gradient L′ with an averaged,
constant, so called effective inductance gradient, L′

eff [10].
The integration of the modified formula (1) results in:

2 ·m · (v(t = tf )− v(t = 0)) = L′
eff

∫ t=tf

t=0

I2dt. (2)

Assuming an initial velocity of v(t = 0) = 0m/s, this equation
simplifies to:

2 ·m · v = L′
eff

∫ t=tf

t=0

I2dt. (3)

Here v is the end velocity of the projectile after the accelera-
tion. This formula shows that the end velocity is proportional
to the action integral (

∫
I2dt) and inversely proportional to the

mass of the projectile. For a given set of data points, drawing
the left hand side of equation (3) versus the action integral
should result in a linear relation, with the slope being the
effective inductance gradient, L′

eff . To verify this relation and
to determine the value of the effective inductance gradient a
series of 3-d COMSOL simulations was performed, using a
normalized pulse shape closely resembling the experimental
current pulse. Two parameters, the peak current and the mass
of the projectile were varied. The current pulse was scaled to
a peak amplitude ranging from 100 kA to 200 kA in steps of
20 kA, and for each amplitude the mass of the projectile was
changed from 60 g to 92 g, 120 g and 150 g. This simulation
neglects friction, but includes joule heating. Figure 5 shows
the validity of equation (3) over the full simulated parameter
space. The end velocities range from 43 m/s (100 kA) to
160 m/s (200 kA) for the 60 g projectile and from 18 m/s to
68 m/s for the 150 g projectile. In the figure, the data points
representing the simulations with the four different masses
are mostly overlapping and differ only for the two largest
values of the action integral by about three percent. This
deviation can be regarded as the remaining uncertainty in the
simulation. By fitting the data points with a line, the value
of the effective inductance gradient can be determined to be
L′
eff = 0.478± 0.009µH/m.

2.2. Comparison to Experimental Data

For a comparison of experiment and simulation, different
variables can be looked at. Some obvious candidates are the
position of the projectile and the acceleration or velocity as
a function of time. Figure 6 shows such a direct comparison.
Feeding the experiment and simulation with a current pulse,
the projectile is accelerated and will reach, when the current
has decayed, its end velocity. Using the above mentioned 3%

Fig. 5. The mass-scaled velocity of the projectile as a function of the action
integral for four different projectile masses (COMSOL 3-d railgun simulation).
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Fig. 6. Comparison between experimental and simulated data. Shown are the
current distributions and the resulting velocity profiles for a projectile weight
of 92 g.

as error estimate for the simulation and assuming that the
error from the Doppler radar measurement above the above
mentioned 0.7 ms can be neglected, the simulation results in
a velocity of (57 ± 1.7) m/s, while the experimental value is
54 m/s. Taking into account the slightly different current pulses
(the action integral of the simulation is about 2% higher) and
the neglected friction in the simulation, both velocities are in
good agreement. This direct comparison has the disadvantage,
that one needs to know the exact output of the current pulse
from the pulse forming network and the mass of the projectile.
If instead the mass-scaled velocity versus the action integral is
compared, the mass and the current profile do not need to be
the same in experiment and simulation, as long as the geometry
of the launcher is correctly modeled. Figure 7 shows the values
of a series of 20 experimental shots with the small caliber
railgun SR\3-60 and the simulation results for a projectile
mass of m = 92 g. This mass corresponds to the average mass
of the projectiles used in the experiment. The figure shows
good agreement between the experimental and the simulation
values. It also reveals that the experiment has an overall shot



to shot variation for the same action integral value of less
than 5%. Without doing an additional fit to the experimental
data, the effective inductance gradient, L′

eff = 0.48 µH/m,
as extracted from the 3-d COMSOL simulation can be used
for the experimental setup. Further inspection of figure 7
shows one shot with a too low velocity for it’s action integral
(marked by “Plasma”). Inspecting the muzzle voltage profile
for this shot gives evidence that during the launch the metal to
metal contact between the armature and the rails was lost and
plasma developed. This plasma results in additional resistance
and therefore more energy is lost that can not be used for
acceleration. Turning this around, such an analysis can be used
to identify shots with anomalies.

3. CONCLUSION

Using the COMSOL Multiphysics simulation program a
dynamic 3-d simulation of the small caliber SR\3-60 rail-
gun was implemented. This setup was used to calculate the
effective inductance gradient to L′

eff = 0.48µH/m. Further
on a series of experiments with the SR\3-60 was performed
and compared to the simulation. This comparison included
the velocity history of the shots and the mass scaled velocity
versus the action integral. Overall good agreement between
simulation and experiment was found. Thus it was shown
that the simulation of the dynamics of railgun acceleration is
possible. In the future it is planned to extend the simulation to
higher velocities and more complicated setups. Improving the
spatial resolution of the 3-d simulation, it should be possible
to investigate the velocity skin effect and use this simulation
to interpret magnetic field measurements taken with the sub-
millimeter scale colossal magneto-resistance effect sensor [21]
at railguns.

Fig. 7. The mass-scaled velocity of the projectile for simulations using
COMSOL and 20 experimental railgun shots.
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