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Abstract: Using Smulink© tool, the Complementary MOS (CMOS) modeling of Pulse-Coupled Neural Network is
demonstrated. Compact architectures for computing XOR and Parity functions without the need for weight learning are
explained. Any N-bit parity function can be simulated with N hidden layer neuron, by the conventional method. As N
increases, the network size grows and becomes complex for Very Large Scale of Integration realization. So, the fully
connected networks are tried, which needs only N/2 neurons in the hidden layer. The architectures are claimed to be
suitable for hardware implementation, since the majority of weights are equal to + 1 that obviates the need for multiplier.
Finally the network is configured to solve Character Recognition application. It also exhibited a satisfactory

per formance accepting 10% noisy patterns.
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1. Introduction

Artificial Neural Networks (ANN) are built up
from interconnected objects, which are smplified
representations of biological neurons. They provide a
good solution for the computation intensive problem
like pattern classification. Data from neurobiological
experiments have made it increasingly dear that
biologicd neura networks, which communicate
through pulses, use the timing of the pulses to
transmit information and perform computation. Here,
communication is done using frequency modulated
pulse streams [1]. Thefiring rate of action potentials
is roughly proportiona to change in the original
graded potential, which is categorized as frequency
modulation (FM). Neurobiological experiments have
dimulated significant research on Pulsed Neura
Networks varying from theoreticdl andysis to
hardware implementation [2].

Hardware implementation of ANN shows inherent
fault tolerance specialties and high speed, which is
usually more than an order of magnitude over the
software counterpart. More and more ANN designs
are carried out in analog, digital, mixed and optical
circuits in Very Large Scale of Integration (VLSI)
hardware because their regular computation and
communication structures makes them a good match

for custom VLSI implementations [3]. Pulse Stream
(PS) techniques for VLSl neural networks have been
developed, to incorporate the merits of both digita
and andlog technology. PS implementations have
advantages such as, higher noise immunity, smaler
size, easier to multiplex, interface and reconfigure.
Many researchers have tried different pulse
modulation schemes. G. Moon et a. [4] designed
neuron cedl that encodes the information into the
form of pulse duty cydes J. Meador et d. [9]
designed FM pulse firing crcuits. Review of Pulse
Coupled Newral Network (PCNN) modds is
presented in [6, 7] and Padgett et al. [8] presented the
review of PCNN for Pattern recognition applications.
The Pulse Coupled Neuron (PCN) design adapted
in this paper follows natural biological process that
utilizes FM [9]. It is a simple modd without the need
for multiplier and can be implemented in low voltage
mode operation [10]. The PCNN is not extremey
complicated so it does not require extensive
mathematical skills. Using PCNN, two-bit XOR, N-
bit parity and Character recognition applications are
realized. The hardware design uses a leaky integrate-
and-fire pulse generator with adaptive synaptic
coupling. Neuron's coupling strength determines the
synchronization effect, which is useful in pattern and
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character recognition. Architectural and functional
descriptions, followed by the analysis of smulated
results are presented.

2. CMOS Architecture of Pulse-Coupled Neuron

Design of a voltage mode pulse-coupled neuron
usng MOSFET with syngptic multiplication and
summation is described in this section. Metal Oxide
Semiconductor FETs (MOSFETS) are the active
elements preferred in VLS| design of circuits.

Instead of using any conventiona tool, the
Simulink tool is used to modd the MOSFETSs and
hence the neuron. The work presented here, shows a
significant improvement in research, when compared
to a few work reported [11, 12]. A vesdile
MOSFET is moddled which could be utilized to
realize different architectures.

2.1 MOSFET Modding

Neuron mode uses n-channd (NMOS) and p-
channe (pMOS) FETs. Both function in linear and
saturated mode of operation depending upon the
applied Gate-Source Voltage Ves and conduct a
Drain Current Ip represented by the equations (1), (2)
and (3) given bdow. The small-signa equivaent
circuit with its Simulink modd and the characteristic
curve are shown in Fig. 1 and 2 respectively. The
PCN is modeled with MOSFETS after verifying the
performance.
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Fig. 1. Small Signal Moddl of nMOS
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Fig. 2. Characteristic Curve of nMOS

Ves— Gate-Source Voltage; Vr— Threshold Voltage;
Io— Drain Current; Vps— Drain-Source Voltage;

W, L — Width and Length of MOS, W, — Mobility of
electrons; C.x— Oxide Capacitance;

| - Channel length modulation co-efficient.

2. 2 Structure and Function of Pulse-Coupled neuron
The Neuron shown in Fig3 is an dectronic
analogy of abiological neuron [9].
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Fig. 3. Modd of aPulse-Coupled neuron

When an external stimulus is applied, it initiates
reactions by generating a pulse stream. The Neuron
uses two capacitors with different time constants.
Capacitor C; is used to integrate the incoming signals
and C; is to control the threshold voltage of M, and
refractory period after the pulse stream is generated.
R: and R together with C; and C, determine the time
constants. The charge across C; represents the charge
of Sodium ions (Nat), and its potentia should
change a a faster rate than the potential due to
Potassium ions stored acrass C,. Hence the following
equation (4) is to be satisfied.

RiCi < R,Co (4)



Passive resistors are not preferred in VLS
fabrication. Hence diode-connected transistors that
redize active resistors are used. Modified circuit is
showninFig. 4.

| <J VDD
MS | M4
M
_’
+ —_—
iy -“42%

Fig. 4. PCN with active resstors

Designed neuron has two input nodes, one at each
capacitor, to control both excitatory and inhibitory
signals. Initidly the MOS transistors M3, M4 and Ms
are cut-off, when not triggered. Assume both positive
and negative inputs are applied. Now C; charges
faster than C; and at a point of time, gate voltage of
M3 exceeds its source voltage by Vi, which turns M3
on. It triggers My and Ms on which is a current
mirror. The neuron remains in this state, until the
charge across C; is insufficient. When charge of C;
exceads threshold voltage, it turns Ms off and hence
M4 and Ms are turned off. Now refractory period is
setup and the neuron does not respond to any
excitations until the potential on C; exceeds the
potertia on C; by the threshold value of M.

Paositive inputs applied to C,, hdps to trigger the
transistor M3 fast. At the same time, the negative
input applied to C,, increases the threshold of M3 and
hence dows down the triggering. The neuron excites,
when the potential due to positive input exceeds the
potential due to negative input. Hence the natural
phenomena Integrate- and- Fire of biologicd neuron
is exhibited. Simulink Modd of a PCN and its
symbol is shown in Fig. 5. To redize a complete
network, the neurons are to be connected together,
with differing synaptic weights.

Fig. 5. Simulink Mode and Symbol of a PCN

3. Design Implementation

Networks to redize the functions of two-bit XOR,
N-bit Parity and Character recognition are
implemented using the PCN explained in Section2.
Details of applications are discussed in the following
subsections.
3.1 Two-bit XOR Function

In the elementary (single layer) perceptron, there
are no hidden neurons. Consequently, it cannot
classify input patterns that are not linearly separable.
However, nonlinearly separable patterns are of
common occurrence. Two-input XOR is one of the
simplest nontrividl and linearly inseparable
problems. It needs a three-layered network with one
hidden layer. Digitad phase detectors and Code
converters are redlized using XOR modules. N-bit
parity generator and checker is aso designed using
XOR blocks. Fig. 6 shows XOR function with PCN
[9].
3.1.aXOR Function using PCN

A +1

Fig. 6. XOR function using PCN



3.1.b XOR Function with unipolar neurons

Design of two-bit (a, b) XOR using unipolar
neuron [13] is done without learning the weight
values. Instead, the following expressions are used to
realize the function.

at+b-05>0 (5)
atb-15>0 (6)

Equation (5) is satisfied if any one input is high (i.e)
+1. Equation (6) is met when both inputs are high.
The following observations are made from the above
equations.

i. All weights from input to hidden layer is

+1
ii. Biasing weights are (-0.5, 1.5)
respectively

iii. Weights for the output neurons are +1, -
1 and thebiasis-0.5.
Fig. 7 shows XOR using unipolar neurons, where Ny
and No indicate hidden and output layer neurons
respectively.
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Fig. 7. XOR using unipolar neurons

3.2. N-bit Parity Function

Parity circuits play a vitd role in communication
for error detection and correction. Error detection in
digtal memory is done using parity checks.
Redlization of parity-N generator using XOR needs
(N-1) XOR gates. It is implemented in severd layers
and hence introduces significant delay. Instead a
simple and straightforward technique is followed in
this paper, to redize N-bit parity functions.

Many researchers have solved N-bit Parity
Functions using neurons with specific activation
functions [14]. To solve N-bit Parity Functions, the
minimum number of hidden layer neurons is N [15].

In a fully connected network, the number of neurons
in hidden layer reduces to N/2. [16]. The total
number of neurons to solve N-bit Parity Function
problem is further reduced to log:N. [17] MATLAB
results of different architectures were presented in
[13]. As a veification-of-concept, the CMOS
redlization of N-bit Parity Function is demonstrated
using spedaly modded pulse-coupled neurons.
Hardware redlization is further simplified, since the
mgjority of weights equal +1, and hence weight
multiplication is not needed.
3.2.aThree-hit Parity Function

To solve three (a, b, c)-bit Parity Function using
unipolar neurons, the equations are given below

atb+c-05>0 @)
atb+c-15>0 (8
atb+c-25>0 9

Equation (7) is sdatisfied if at-least one input is high.
Equation (8) is met when any two inputs are high.
Equation (9) is satisfied if al inputs are high. The
following spedfications are derived using the above
equations.

iv. All weights from input to hidden layer is

+1

V. Biasing weghts are (-0.5, -1.5, - 2.5)
respectively

Vi. Weights for the output neurons are +1, -

1, +1 and thebiasis -0.5

Direct redization of network is done without the
need for weight learning. Architecture of three-bit
parity function is shownin Fig. 8.

Any N-bit parity function with N hidden layer
neuron can be simulated. As N incresses, the
network size grows and becomes complex for
hardware redlization. So, the fully connected
networks are tried, which needs only N/2 neurons in
the hidden layer.

Fig. 8. Three-hit Parity Function



3.2.b Four-bit Parity Function

For four-bit parity functions, MATLAB simulated
architecture was 4:7:1. It is reduced to 4:2:1 when
fully connected architecture is smulated. Parity N
functions ae symmelrica. i.e the output is
generated based on the number of exdted inputs, and
the position of input does not influence it. Model of
Fully connected network is shown in Fig. 9.

Bias
15

Fig. 9. Four-hbit Parity Function

3.3 Character Recognition

Character recognition is a trivial task for humans,
but for computers it is extremdy difficult. The main
reason for this is, the many sources of variability.
There exit severd different techniques for
recognizing characters. One distinguishes characters
by the number of loops in a character and the
direction of their concavities. In terms of recognition
and feature extraction, PCNN can be very effective

[18]. Simulink mode and results of al the
applications are discussed in Section 4.
4. Experimental Results
4.1 Two-bit XOR
4.1.aUsing PCN
By mapping the inputs and weghts, the

functionality of PCN is tested. Simulink modd is
shownin Fig. 10.

Fig. 10. Mode of XOR Using PCN

4.1.b. XOR using unipolar neuron
Fig. 11 shows the modd of XOR Using Unipolar
Neurons.
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Fig. 11. Mode of XOR Using Unipolar Neurons

XOR results are presented with two input
waveforms and one output waveformin Fig. 12.



Fig. 12. Simulated Results of XOR

4.2 N-bit Parity function

4.2. a. Three-bit parity
Modd and results of three-bit Parity function are
presented in Fig. 13 and 14 respectively.

Fig. 13. Mode of three-bit parity

W

Fig. 14. Resultsof three-bit parity

4.2. b. Four-bit parity

Fully connected network to solve four-bit parity
function with only two hidden layer neurons and its
simulated results are shown in Fig. 15. and Fig. 16
respectively.

|

Fig. 15. Model of four-bit parity



Fig. 16. Results of Four-bit Parity

4.3 Character Recognition

CMOS model of PCN is used to configure the
character recognition application. The aphabets A
to Z in 7 x 5 matrix are encoded as 32-bit data
stream. The output stage is modded with 26 display
devices in Simulink. Applied input stream triggers
the corresponding display to indicate ‘1. For eg. if
the character 'S is applied, nineteenth display is
excted. Block diagram of the arrangement is shown
inFig. 17.

Fig. 17. Block diagram of Character Recognition

Here, each character is represented by 7 X 5 pixds,
forming an array of 35 input stimuli. Theinput data
is multiplied with the appropriate weight in this
block.

Totdly 35x26 weights are added in this block. The
weights are obtained by using the back propagation

algorithm. As an example command for Character
‘J is shown.

s=[0;al phabet(;,10)];

s = Columns 1 through 18
011111001000010000
Columns 19 through 36
100001001010001000

Display ‘10’ isexcited to display ‘1’ as shown in Fig.
18.
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5. Conclusion

The PCNN discussed is modded in CMOS
technology using Simulink tool. The simple and
compact design reduces the circuit complexity.
Different neural network architectures for Two-bit
XOR and N-bit Parity applications are implemented
with PCNN and unipolar neurons. Two-bit XOR is
realized in two different methods. The first design
uses PCN with trained weight and threshold. Second
design uses uniploar neuron with biasing weights
found from equations and learning was not needed.
For Parity function, the feedforward network with
one hidden layer requires N neuron in the hidden
layer. It is reduced to N/2 in a fully connected
network. As a verification-of-concept, a three-bit
parity using unipolar neuron and four-bit parity using
fully connected network is tested. Performance of
PCNN in different applications is found to be
satisfactory. The architectures are claimed to be
suitable for hardware implementation, since the
magjority of weights are equal to +1 that obviates the
need for multiplier. Character  Recognition
application also exhibited a satisfactory performance
acoepting 10% noisy patterns. Research on higher bit
parity function and cascaded networks with unipolar
neurons are being carried out.
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