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Abstract: Using Simulink© tool, the Complementary MOS (CMOS) modeling of Pulse-Coupled Neural Network is
demonstrated. Compact architectures for computing XOR and Parity functions without the need for weight learning are
explained. Any N-bit parity function can be simulated with N hidden layer neuron, by the conventional method. As N
increases, the network size grows and becomes complex for Very Large Scale of Integration realization. So, the fully
connected networks are tried, which needs only N/2 neurons in the hidden layer. The architectures are claimed to be
suitable for hardware implementation, since the majority of weights are equal to +1 that obviates the need for multiplier.
Finally the network is configured to solve Character Recognition application. It also exhibited a satisfactory
performance accepting 10% noisy patterns.
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1.  Introduction
     Artificial Neural Networks (ANN) are built up
from interconnected objects, which are simplified
representations of biological neurons. They provide a
good solution for the computation intensive problem
like pattern classification.  Data from neurobiological
experiments have made it increasingly clear that
biological neural networks, which communicate
through pulses, use the timing of the pulses to
transmit information and perform computation. Here,
communication is done using frequency modulated
pulse streams [1]. The firing rate of action potentials
is roughly proportional to change in the original
graded potential, which is categorized as frequency
modulation (FM). Neurobiological experiments have
stimulated significant research on Pulsed Neural
Networks varying from theoretical analysis to
hardware implementation [2].
   Hardware implementation of ANN shows inherent
fault tolerance specialties and high speed, which is
usually more than an order of magnitude over the
software counterpart. More and more ANN designs
are carried out in analog, digital, mixed and optical
circuits in Very Large Scale of Integration (VLSI)
hardware because their regular computation and
communication structures makes them a good match

for custom VLSI implementations [3]. Pulse Stream
(PS) techniques for VLSI neural networks have been
developed, to incorporate the merits of both digital
and analog technology. PS implementations have
advantages such as, higher noise immunity, smaller
size, easier to multiplex, interface and reconfigure.
   Many researchers have tried different pulse
modulation schemes. G. Moon et al. [4] designed
neuron cell that encodes the information into the
form of pulse duty cycles. J. Meador et al. [5]
designed FM pulse firing circuits. Review of Pulse
Coupled Neural Network (PCNN) models is
presented in [6, 7] and Padgett et al. [8] presented the
review of PCNN for Pattern recognition applications.
   The Pulse Coupled Neuron (PCN) design adapted
in this paper follows natural biological process that
utilizes FM [9]. It is a simple model without the need
for multiplier and can be implemented in low voltage
mode operation [10]. The PCNN is not extremely
complicated so it does not require extensive
mathematical skills. Using PCNN, two-bit XOR, N-
bit parity and Character recognition applications are
realized. The hardware design uses a leaky integrate-
and-fire pulse generator with adaptive synaptic
coupling. Neuron’s coupling strength determines the
synchronization effect, which is useful in pattern and
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character recognition. Architectural and functional
descriptions, followed by the analysis of simulated
results are presented.
2.  CMOS Architecture of Pulse-Coupled Neuron
     Design of a voltage mode pulse-coupled neuron
using MOSFET with synaptic multiplication and
summation is described in this section. Metal Oxide
Semiconductor FETs (MOSFETs) are the active
elements preferred in VLSI design of circuits.
    Instead of using any conventional tool, the
Simulink tool is used to model the MOSFETs and
hence the neuron. The work presented here, shows a
significant improvement in research, when compared
to a few work reported [11, 12]. A versatile
MOSFET is modeled which could be utilized to
realize different architectures.

2.1 MOSFET Modeling
    Neuron model uses n-channel (nMOS) and p-
channel (pMOS) FETs.  Both function in linear and
saturated mode of operation depending upon the
applied Gate-Source Voltage VGS and conduct a
Drain Current ID represented by the equations (1), (2)
and (3) given below.  The small-signal equivalent
circuit with its Simulink model and the characteristic
curve are shown in Fig. 1 and 2 respectively. The
PCN is modeled with MOSFETs after verifying the
performance.

Fig. 1.  Small Signal Model of nMOS

In Cut-off region, VGS < VT ;  ID = 0                       (1)

In Linear region, VGS > VT & VDS <  VGS - VT ;
ID =( W/L) µnCox[(VGS  VT )VDS  (VDS

2/2)]   (2)

In Saturation region, VGS > VT & VDS >=  VGS - VT ;
 ID = IDsat =( W/ 2L)µnCox(VGS VT)2[1+λ(VDS)]  (3)
Where,

Fig. 2. Characteristic Curve of  nMOS

VGS – Gate-Source Voltage; VT – Threshold Voltage;
ID – Drain Current; VDS – Drain-Source Voltage;
W, L – Width and Length of MOS; µn – Mobility of
electrons; Cox – Oxide Capacitance;
λ - Channel length modulation co-efficient.

2. 2 Structure and Function of Pulse-Coupled neuron
   The Neuron shown in Fig.3 is an electronic
analogy of a biological neuron [9].

Fig. 3.  Model of a Pulse-Coupled neuron

   When an external stimulus is applied, it initiates
reactions by generating a pulse stream. The Neuron
uses two capacitors with different time constants.
Capacitor C1 is used to integrate the incoming signals
and  C2 is to control the threshold voltage of M2 and
refractory period after the pulse stream is generated.
R1 and R2 together with C1 and C2 determine the time
constants. The charge across C1 represents the charge
of Sodium ions (Na+), and its potential should
change at a faster rate than the potential due to
Potassium ions stored across C2. Hence the following
equation (4) is to be satisfied.

R1C1 < R2C2                    (4)
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   Passive resistors are not preferred in VLSI
fabrication. Hence diode-connected transistors that
realize active resistors are used. Modified circuit is
shown in Fig. 4.

Fig. 4.  PCN with active resistors

   Designed neuron has two input nodes, one at each
capacitor, to control both excitatory and inhibitory
signals.  Initially the MOS transistors M3, M4 and M5

are cut-off, when not triggered. Assume both positive
and negative inputs are applied. Now C1 charges
faster than C2 and at a point of time, gate voltage of
M3 exceeds its source voltage by Vt, which turns M3
on. It triggers M4 and M5 on which is a current
mirror. The neuron remains in this state, until the
charge across C2 is insufficient. When charge of C2

exceeds threshold voltage, it turns M3 off and hence
M4 and  M5 are turned off. Now refractory period is
setup and the neuron does not respond to any
excitations until the potential on C1 exceeds the
potential on C2 by the threshold value of M3.
   Positive inputs applied to C1, helps to trigger the
transistor M3 fast. At the same time, the negative
input applied to C2, increases the threshold of M3 and
hence slows down the triggering. The neuron excites,
when the potential due to positive input exceeds the
potential due to negative input. Hence the natural
phenomena- Integrate- and- Fire of biological neuron
is exhibited. Simulink Model of a PCN and its
symbol is shown in Fig. 5. To realize a complete
network, the neurons are to be connected together,
with differing synaptic weights.

Fig. 5.  Simulink Model and Symbol of a PCN

3.  Design Implementation
     Networks to realize the functions of two-bit XOR,
N-bit Parity and Character recognition are
implemented using the PCN explained in Section2.
Details of applications are discussed in the following
subsections.
3.1 Two-bit XOR Function
     In the elementary (single layer) perceptron, there
are no hidden neurons. Consequently, it cannot
classify input patterns that are not linearly separable.
However, nonlinearly separable patterns are of
common occurrence. Two-input XOR is one of the
simplest non-trivial and linearly inseparable
problems. It needs a three-layered network with one
hidden layer. Digital phase detectors and Code
converters are realized using XOR modules. N-bit
parity generator and checker is also designed using
XOR blocks. Fig. 6 shows XOR function with PCN
[9].
3.1.a XOR Function using PCN

Fig. 6.  XOR function using PCN
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3.1.b XOR Function with unipolar neurons
     Design of two-bit (a, b) XOR using unipolar
neuron [13] is done without learning the weight
values. Instead, the following expressions are used to
realize the function.

a + b – 0.5 > 0        (5)
a + b – 1.5 > 0       (6)

Equation (5) is satisfied if any one input is high (i.e)
+1. Equation (6) is met when both inputs are high.
The following observations are made from the above
equations.

i. All weights from input to hidden layer is
+1

ii. Biasing weights are (-0.5, - 1.5)
respectively

iii. Weights for the output neurons are +1, -
1 and the bias is -0.5.

Fig. 7 shows XOR using unipolar neurons, where NH

and NO indicate hidden and output layer neurons
respectively.

Fig. 7.  XOR using unipolar neurons

3.2. N-bit Parity Function
    Parity circuits play a vital role in communication
for error detection and correction. Error detection in
digtal memory is done using parity checks.
Realization of parity-N generator using XOR needs
(N-1) XOR gates. It is implemented in several layers
and hence introduces significant delay. Instead a
simple and straightforward technique is followed in
this paper, to realize N-bit parity functions.
   Many researchers have solved N-bit Parity
Functions using neurons with specific activation
functions [14].  To solve N-bit Parity Functions, the
minimum number of hidden layer neurons is N [15].

In a fully connected network, the number of neurons
in hidden layer reduces to N/2. [16]. The total
number of neurons to solve N-bit Parity Function
problem is further reduced to log2N. [17] MATLAB
results of different architectures were presented in
[13]. As a verification-of-concept, the CMOS
realization of N-bit Parity Function is demonstrated
using specially modeled pulse-coupled neurons.
Hardware realization is further simplified, since the
majority of weights equal +1, and hence weight
multiplication is not needed.
3.2.a Three-bit Parity Function
    To solve three (a, b, c)-bit Parity Function using
unipolar neurons, the equations are given below

a + b + c – 0.5 > 0      (7)
a + b + c – 1.5 > 0     (8)
a + b + c – 2.5 > 0      (9)

Equation (7) is satisfied if at-least one input is high.
Equation (8) is met when any two inputs are high.
Equation (9) is satisfied if all inputs are high. The
following specifications are derived using the above
equations.

iv. All weights from input to hidden layer is
+1

v. Biasing weights are (-0.5, -1.5, - 2.5)
respectively

vi. Weights for the output neurons are +1, -
1, +1 and the bias is -0.5

   Direct realization of network is done without the
need for weight learning. Architecture of three-bit
parity function is shown in Fig. 8.
   Any N-bit parity function with N hidden layer
neuron can be simulated. As N increases, the
network size grows and becomes complex for
hardware realization. So, the fully connected
networks are tried, which needs only N/2 neurons in
the hidden layer.

Fig. 8.  Three-bit Parity Function
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3.2.b Four-bit Parity Function
    For four-bit parity functions, MATLAB simulated
architecture was 4:7:1. It is reduced to 4:2:1 when
fully connected architecture is simulated. Parity N
functions are symmetrical. i.e. the output is
generated based on the number of excited inputs, and
the position of input does not influence it.  Model of
Fully connected network is shown in Fig. 9.

Fig. 9.  Four-bit Parity Function

3.3 Character Recognition
    Character recognition is a trivial task for humans,
but for computers it is extremely difficult. The main
reason for this is, the many sources of variability.
There exist several different techniques for
recognizing characters. One distinguishes characters
by the number of loops in a character and the
direction of their concavities. In terms of recognition
and feature extraction, PCNN can be very effective
[18]. Simulink model and results of all the
applications are discussed in Section 4.

4.  Experimental Results

4.1  Two-bit XOR

4.1.a Using PCN
    By mapping the inputs and weights, the
functionality of PCN is tested. Simulink model is
shown in Fig. 10.

Fig. 10.  Model of XOR Using PCN

4.1.b. XOR using unipolar neuron
Fig. 11 shows the model of XOR Using Unipolar
Neurons.

Fig. 11.  Model of XOR Using Unipolar Neurons

    XOR results are presented with two input
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Fig. 12.  Simulated Results of XOR

4.2 N-bit Parity function

4.2. a. Three-bit parity
   Model and results of three-bit Parity function are
presented in Fig. 13 and 14 respectively.

Fig. 13.  Model of three-bit parity

Fig. 14.  Results of three-bit parity

4.2. b. Four-bit parity
   Fully connected network to solve four-bit parity
function with only two hidden layer neurons and its
simulated results are shown in Fig. 15. and Fig. 16
respectively.

Fig. 15.  Model of four-bit parity
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Fig. 16.  Results of Four-bit Parity

4.3 Character Recognition
    CMOS model of PCN is used to configure the
character recognition application.  The alphabets A
to Z in 7 × 5 matrix are encoded as 32-bit data
stream. The output stage is modeled with 26 display
devices in Simulink. Applied input stream triggers
the corresponding display to indicate ‘1’. For e.g. if
the character ‘S’ is applied, nineteenth display is
excited. Block diagram of the arrangement is shown
in Fig. 17.

Fig. 17.  Block diagram of Character Recognition

Here, each character is represented by 7 X 5 pixels,
forming an array of 35 input stimuli. The input data
is multiplied with the appropriate weight in this
block.
    Totally 35x26 weights are added in this block. The
weights are obtained by using the back propagation

algorithm. As an example command for Character
‘J’ is shown.

s=[0;alphabet(:,10)]';
s = Columns 1 through 18
0 1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0
Columns 19 through 36
1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0

Display ‘10’ is excited to display ‘1’ as shown in Fig.
18.

Fig. 18.  Architecture of Character Recognition

5.  Conclusion
   The PCNN discussed is modeled in CMOS
technology using Simulink tool. The simple and
compact design reduces the circuit complexity.
Different neural network architectures for Two-bit
XOR and N-bit Parity applications are implemented
with PCNN and unipolar neurons. Two-bit XOR is
 realized in two different methods. The first design
uses PCN with trained weight and threshold. Second
design uses uniploar neuron with biasing weights
found from equations and learning was not needed.
For Parity function, the feedforward network with
one hidden layer requires N neuron in the hidden
layer. It is reduced to N/2 in a fully connected
network. As a verification-of-concept, a three-bit
parity using unipolar neuron and four-bit parity using
fully connected network is tested. Performance of
PCNN in different applications is found to be
satisfactory. The architectures are claimed to be
suitable for hardware implementation, since the
majority of weights are equal to +1 that obviates the
need for multiplier. Character Recognition
application also exhibited a satisfactory performance
accepting 10% noisy patterns. Research on higher bit
parity function and cascaded networks with unipolar
neurons are being carried out.
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