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Abstract: The optimal weighting matrices selection of linear 

quadratic regulator (LQR) using state transformation 

search (STS) particle swarm optimization (PSO) is affianced 

in this work. The most challenging aspect in LQR is the 

selection of state (Q) and control (R) weighting matrices 

because proper selection of weights determines the efficacy 

of the controller. The selection of Q and R matrices is 

mostly done through trial and error approach resulting in 

non optimal response. This motivates the usage of PSO 

algorithm for an optimal selection of Q and R matrices, 

which also results in trapping of particles in local optima 

leading to suboptimal results. As a measure to overcome 

this drawback, STS-PSO algorithm is formulated. The 

efficacy of STS-PSO tuned LQR is compared with PSO 

tuned LQR by applying to the servo control of inverted 

pendulum. The computational performance shows that the 

performance of STS-PSO tuned LQR is better than the 

classical PSO. 
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1. Introduction. 
 Optimal control theory focused to operate the 

dynamic system with minimum cost without 

compromising the quality. Linear Quadratic Regulator 

(LQR) being a keystone of optimal control described 

by quadratic cost function is most popular due to the 

concern taken by the control algorithm in optimizing 

the performance, which not only reduces the tedious 

work done by the control systems engineer but also 

ensures the robustness and stability properties [1]. In an 

effort to yield an optimal response, LQR plays a vital 

role in minimizing the quadratic cost function even at 

small perturbations. This leads to the usage of LQR in 

many complex systems such as aircraft [2], vibration 

control [3], and fuel cell systems [4]. In an effort to 

achieve optimal results, proper selection of the state 

weighting matrices called the Q matrices and the input 

weighting matrices called R matrices is the leading 

issue in LQR design. Normally the tuning of Q and R 

matrices will be done either by trial and error approach 

or through experience. These conventional approaches 

are tedious and tiresome to a control person, which 

initiated the application of PSO algorithms [5]. The 

performance evaluation in terms of computational time, 

computational effort and convergence rate of PSO are 

compared with GA based feedback controller design 

[6], and it is reported that the performance of PSO is 

healthier than GA. In [7] automatic fighter tracking 

problems, PSO based LQR is proved superior to LMI 

based methods. PSO algorithm is effectively used in 

load frequency control of power systems [8]-[9] and in 

shunt active power filter design [10].  Even though 

PSO has all these merits, it has two undesirable 

characteristics that degrade its exploration abilities. 

One is premature convergence, that result in diversity 

loss of the particles and the second is the inability to 

balance between local search exploitation and global 

exploration. Too much search exploitation leads to 

premature convergence of swarm and overemphasize 

of the global exploration prevents the convergence 

speed of swarm. All these limitations impose constraint 

on wider applications of PSO in real world problems 

[11], [12]. Hence to address the premature 

convergence, space transformation search (STS)-PSO 

is engaged to continue the search for global optima and 

to break away from local optima with a new disturbing 

factor and a convergence monitor. To assess the 

performance of the STS-PSO based weighting matrices 

selection of LQR, simulation studies have been carried 

out on an inverted pendulum, which is a typical single 

input multi output (SIMO) system. Where the input is 

the motor voltage and, the cart position and pendulum 

angle are the outputs.  
 
2. Problem Formulation 
 Consider a linear time invariant (LTI) multivariable 
system whose state and output dynamics are 
represented as 

)()()( tButAXtX


    (1) 

)()()( tDutCXtY     (2)

 The customary LQR design is to compute the 
optimal control input u* by minimizing the following 
integral quadratic cost function. 
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where the state weighting matrix Q = Q
T
 is a positive 

semi definite matrix and the input weighting matrix     

R = R
T
 is a positive definite matrix.  The optimal state 

feedback gain matrix (K) can be computed by solving 

the following Lagrange multiplier optimization 

technique,  

PBRK T1      (4) 

where P is the solution of following algebraic Riccati 

equation 

01 QPBPBRPAPA TT   (5) 

When the system deviates from the equilibrium or 

desired position the elements of Q and R matrices play 

an essential role in determining the penalty on system 

states and control input.  
 
3. STS-PSO Algorithm. 

Most of the evolutionary algorithms starts with some 
arbitrary solution and make an effort to improve 
towards the optimal solutions. The iteration or process 
terminates either with predefined iteration number or 
with the satisfaction of predefined conditions. In PSO 
particles fly through the search space using the 
following position and velocity update equations. 
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where 
i

d

bestpp  and 
d

gbestp are the particles best and 

global best positions, r1 and r2 are the random numbers, 
c1 and c2 are the cognitive coefficients ,w is the inertia 
weight, i is the particle index and d is the dimension of 
the decision variables. In a few cases the search ends 
with local optima leads to sub-optimal solutions. This 
is one of the major de-merit of PSO and this problem is 
addressed by space transformation search (STS) 
algorithm. STS algorithm introduces a mechanism that 
will act as a watchdog to monitor the occurrence of 
premature convergence. Under these situations the 
current search space hardly contains the global solution 
[12]. Now, STS algorithm transforms current search 
space to a new search space called the transformed 
space. The new transformed solution x* in the 
transformed space S can be calculated as follows:  
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x € R within an interval of [a, b] and k can be set as a 
random number within [0, 1]. Where a and b are the 
particles minimum and maximum values. To be more 
specific for an optimization problem of d decision 
variables, according to the definition of the STS [12], 
the new dynamic STS model is defined by 
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    The sum of the particles maximum and minimum 

positions are multiplied by a random number k and it is 
subtracted from the actual particle positions will 
transform the search space (9). The simultaneous 
evaluation of solutions in the current search space and 
transformed space is done and the search space giving 
the minimum cost is finalized as the current search 
space. Moreover, the interval boundaries 
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i  are dynamically updated according to 

the size of current search space. The pseudo code of 
the STS-PSO is shown in Table 1.  
 
Table 1 
Pseudo code: STS-PSO 
 

 

Arbitrarily initialize the particles in  swarm 

for  i ≤ 100 

set convergence monitor (S) = 0 

Evaluate the cost function 2 ( )f ISE e t dt  

for  i = 1 to 30 

if f < fpbesti 

fpbesti             f 

xpbesti           xi 

end if 

if f < fgbesti 

fgbesti             f 

xgbesti           xi 

else if  

S = S+1 

end if 

if S > Sthreshold 

for d = 1 to dimensions 
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end for 

end if 

for d = 1 to dimensions 

update the particles position and velocities using 

equations 6 and 7 

end for 

end for 

  

 
4. Single Inverted Pendulum. 

The effectiveness of STS-PSO tuned LQR 

framework is demonstrated using single inverted 

pendulum, a typical single input multiple output 

(SIMO) benchmark system. Problem formulation starts 

with linear time invariant system and here nonlinearity 

is duly appreciated. This system consists of a pendulum 

attached to the shaft of a DC motor. Two encoders are  

used, one to measure the pendulum angle and the other 



 

to measure the position of the cart.  Fig. 1 shows the 

schematic diagram of a single inverted pendulum. 

         
Fig. 1. Schematic diagram of Single Inverted 

Pendulum. 
 

Stabilization control is the control scheme used to 
meet the control objective of maintaining the pendulum 
angle at zero degree, while the cart tracks the reference 
trajectory. Due to the practical limitation on control 
input (motor voltage) given to the cart system, 
stabilization control is implemented using LQR. Based 
on Euler-Lagrangian energy approach the nonlinear 
equation of motion of pendulum can be written as  
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Four variables namely, cart position, cart velocity, 
pendulum angle, and pendulum velocity are taken as 
state variables and the state space model is obtained by 
linearizing the model around the equilibrium point   

1)cos(,)sin( . Therefore the linearized 

model of the inverted pendulum can be written as  
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  For the controller design the system parameters are 

borrowed from [13], and by substituting those 
parameters in the A and B matrices the following state 
representation is arrived. 

 
0 0 1 0 0

0 0 0 1 0
 

0 2.2643 15.8866 0.0073 2.2772

0 27.8203 36.6044 0.0896 5.2470
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5. Results and Discussion. 

STS-PSO tuned LQR framework is implemented for 
control engineering problems for the first time to the 
best of our knowledge and the dynamic performance 
over conventional PSO tuned LQR framework is also 
compared in this work. STS-PSO based LQR servo 
control algorithm is implemented in MATLAB 2011a. 
The number of decision variables to be optimized for 
the servo control of the single inverted pendulum is 
chosen to be three (q11, q22 and r). The parameters 
used for PSO and STS-PSO algorithms are shown in 
Table 2.  

 
 Table 2 
Parameters of PSO and STS-PSO algorithms 

Parameters STS-PSO PSO 

No of Population (N) 30 30 

No of Iterations (i) 100 100 

Dimensions (d) 3 3 

C1 0.9 0.9 

C2 1.2 1.2 

Inertia weight (w) 0.9 0.9 

 
Parameters for both the algorithms remain the same. 

According to the cost or fitness function ISE, the 
optimization algorithms are executed for the specified 
number of iterations and with the help of convergence 
monitor the global best of the particles, so called the 
weights of LQR, are obtained. Table 3 gives the 
corresponding Q and R matrices and controller gain of 
LQR obtained using the PSO and STS-PSO 
algorithms.  
The particles best positions of the STS-PSO and PSO 
algorithms are illustrated in Fig. 2. Where the X-axis 
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represents the number of decision variables, Y-axis 
represents the number of iterations and Z-axis 
represents the matrix dimensions. From the Z-axis 
dimensions it is evident that, smooth convergence 
occurs in STS-PSO compared to PSO tuned LQR 
framework. 
 
Table 3 
Parameters of PSO and STS-PSO algorithms 

 

Optimiza
tion 

algorithm 

 

Weighting matrices Controller gain 

PSO 
0000

0000

0097.80

00088.31

Q
  

]22.0[R  

T

K

85.18

16.53

47.145

61.82

 

STS-PSO 

0000

0000

0094.230

00017.830

Q

 

]11.0[R  

T

K

71.16

47.48

86.114

87.86

 

  
 

   
Fig. 2. Comparison of Particles best positions. 

  
 It is worth to note that in the iteration number 80 of 
STS-PSO, whole population transformation occurs due 
to local trapping. Integral square error is taken as the 
fitness function and, the fitness function convergence 
of STS-PSO and PSO is illustrated in Fig. 3. 

 
Fig. 3. Fitness functions of PSO and STS-PSO. 

 
From the illustration it is evident that smooth 

convergence occurs in STS-PSO compared to PSO 
tuned LQR framework. On the successful completion 
of the specified number of iterations, global best of the 
particles are obtained.  

 
4.1. Trajectory Tracking Response 

Test signals such as square, saw tooth and sine 
waves having amplitude of 20 cm (peak to peak) 
frequency of 0.05 Hz are given as input to the system. 
The corresponding output responses of STS-PSO and 
PSO tuned LQR are illustrated in Fig. 4,5 and 6. 

  
Fig. 4. Cart position for square trajectory. 

 
Fig. 5. Cart position for sawtooth trajectory. 
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Fig. 6. Cart position for sine trajectory. 

 
 The time domain specifications of the cart position 
response with respect to square, sine and sawtooth 
waves are shown in Table 4. It is evident that the 
response of STS-PSO tuned LQR framework is 
appealing compared to PSO tuned framework in terms 
of maximum peak overshoot, rise time and settling 
time. Pendulum angular responses for the test signals 
are shown in Fig. 7, 8 and 9. 

 
Fig.7. Pendulum angle for square trajectory. 

 

 
Fig. 8. Pendulum angle for sawtooth trajectory. 
 

 
Fig. 9. Pendulum angle for sine trajectory. 

 
 Table 5 gives the deviation and convergence time of 
pendulum angular response. It is worthy to note that 
the convergence time of STS-PSO tuned LQR 

framework appeals the PSO tuned LQR.  
 
Table 4 
Comparison of Cart position response  
Optimization method 

 

Time domain parameters 

td ts %Mp 

PSO 0.4 3.5 20 

STS-PSO 0.35 1.5 12.5 

 
 Moreover, from table 4 it can be inferred that 
maximum peak overshoot is reduced by 35 %, settling 
time is reduced by 57 % and the delay time is reduced 
by 12.5 % in STS-PSO algorithm compared to PSO 
algorithm. 
 
Table 5 
Pendulum angle response 

Optimization 
algorithm 

Convergence time (s) 

PSO 3.4 

STS-PSO 3.2 

 
 From table 5 it can be inferred that the convergence 
time is reduced by 5.8 % in STS-PSO algorithm 
compared to PSO algorithm. It is evident from the 
analysis that the STS-PSO tuned LQR controller 
performance is dynamic in servo control applications. 

 
6. Conclusions 

In this paper, the premature convergence problem of 
PSO tuned LQR has been solved using STS-PSO and 
the efficacy of the controller has been tested on an 
inverted pendulum. Trapping up of the particles in 
local optima is identified by the convergence monitor 
and, the convergence in sub optimal solutions due to 
premature convergence is avoided by introducing a 
transformed search space. The trajectory tracking 
response of inverted pendulum shows that compared to 
PSO tuned LQR, the STS-PSO tuned LQR can result 
in not only improved tracking response but also 
reduced tracking error. 
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