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Abstract: Actuator dead-zone is common in industrial 
control. However, while designing linear controllers, the 
actuator dynamics are usually assumed to be linear. 
Therefore, the dynamic performance degrades when there 
is governor dead-zone. In this paper, design and analysis 
of load frequency control for power systems with 
governor dead-zone via linear active disturbance 
rejection control (LADRC) is presented. In order to 
improve the performance of LADRC with governor 
dead-zone, two schemes are proposed to overcome the 
dead-zone nonlinearity, where the nonlinearity is 
estimated via the extended state observer (ESO) and 
rejected quickly in LADRC. Simulation results show that 
the proposed two schemes can achieve good control 
performance for power systems with governor dead-zone.  
 
Key words: Load frequency control (LFC), governor 
dead-zone nonlinearity, linear active disturbance 
rejection controller (LADRC), extended state 
observer(ESO); 

 
1. Introduction 

Controlling large interconnected power systems 
is one of the most challenging problems for 
controller designers. One of the most important 
control objectives in power systems for supplying 
sufficient and reliable electric power with quality is 
to control the output power of generating units. 
Frequency variations in interconnected power 
systems can cause serious instability problems. For 
stable operation, constant frequency and active 
power balance must be provided. To improve the 
stability of the power networks, it is necessary to 
design LFC systems that control the power 
generation and active power on tie-lines. Therefore, 
to ensure the power quality, a load frequency control 

(LFC) system is needed. The goal of LFC is to 
return the frequency to its nominal value and 
minimize unscheduled tie-line power flows between 
interconnected control areas. 

Load Frequency Control (LFC) is one of the most 
importance issues in electric power system design 
and operation, and conventional LFC uses an 
integral controller. The high integral gain may 
deteriorate the system performance and cause large 
oscillations and instability. Thus, a lot of approaches 
have been reported to tune the gain of the integral 
controller. 

With the increase in size and complexity of 
modern power systems, the risk that system 
oscillation might propagate into wide area resulting 
in a wide-area blackout is increased. So advanced 
control methods were applied in LFC, e.g., optimal 
control [1, 2]; variable structure control [3]; adaptive 
control [4]; and robust control [5,6], and PID control 
[7-10]..  

Actuator dead-zone is common in industrial 
control. However, while designing linear controllers, 
the actuator dynamics are usually assumed to be 
linear. Therefore, the dynamic performance degrades 
when there is governor dead-zone. [11] proposed a 
gain scheduling PI controller for an Automatic 
Generation Control (AGC) system consisting of 
two-area thermal power system with governor 
dead-zone nonlinearity; [12] proposed a sliding 
control accounting for hardware limitation of 
mechanical actuators with dead-zone; [13] proposed 
a fuzzy two-degree-of-freedom controller and its 
application to the speed control of an induction 
motor drive; [14] proposed a motion control with 
dead-zone estimation and compensation using 
GRNN for TWUSM drive system; [15] studied 
stabilization of control systems with dead-zone 
nonlinearity of unknown characteristics; [16] 



designed a dead-zone compensator of a DC motor 
system using fuzzy logic control (FLC).  

Recently, an active disturbance rejection control 
(ADRC) method was applied to the LFC problem 
[17]. The method aims to reject the disturbance by 
providing its estimation through an extended 
observer, thus external disturbance can be rejected 
more quickly. However, the ADRC scheme has not 
considered system nonlinearities such as governor 
dead-zone. . 

In this paper, load frequency control for power 
systems with dead-zone nonlinearity is studied. Two 
compensation schemes are proposed for linear active 
disturbance rejection controller (LADRC) to 
overcome the dead-zone nonlinearity for power 
systems with governor dead-zone. Simulation results 
show that the compensation scheme can improve the 
performance of the controlled system. 

 
2 System model of LFC 

Consider the case of a single generator supplying 
power to a single service area. The system can be 
adequately represented by the linear model shown in 
Fig. 1. The symbols are explained in table 1. 

It is obvious that the plant LFC consists of three 
parts: 

 1) Governor with dynamics:   
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With the droop characteristics R , the system 
model can be expressed as 
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So LFC is a disturbance rejection problem: it uses 

feedback  u K s f    to stabilize  G s  under 

the load disturbance dP  and meanwhile minimize 

the effect of dP  on. f . 
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Fig. 1. Block diagram of single-area power system 
 
Table 1 
Nomenclature 

dP  Load disturbance(p.u.MW) 
PK  Electric system gain 

PT  Electric system time 
constant(s) 

TT  Turbine time constant(s) 
GT  Governor time constant(s) 

R  Speed regulation due to 
governor action(Hz/p.u.MW) 

 f t  Incremental frequency 
deviation(Hz) 

 GP t  Incremental change in 
generator output(p.u.MW) 

 GX t  Incremental change in 
governor valve position 

 
3 Linear active disturbance rejection control  

[18] first proposed active disturbance rejection 
control (ADRC) for rejecting disturbance of a 
nonlinear system in 1998. The scheme is to use an 
extended state observer (ESO) to estimate the 
disturbance of the system, and then try to reject it 
effectively using simple a control law. The scheme 
is similar to feedback linearization but it is much 
simpler in structure and applicable to a variety of 



systems. However, the original nonlinear version of 
the ADRC has a lot of parameters to tune and thus 
hard to be applied in practice. [19] simplified the 
ADRC design procedure by considering its ‘linear’ 
version. The number of tuning parameters of 
LADRC is reduced to 2, stability and frequency 
response are applied to analyze the LADRC 
controlled system instead of manual tuning, thus 
help develop the LADRC idea and make it 
applicable to industry. 

 
3.1 Structure of LADRC 

Consider a generalized second-order system: 
( , , , , )y f y y u t bu                (2) 

where y  and u  are output and input 
respectively,   is the disturbance and b  is a 
constant. The entire ( , , , , )f y y u t   is assumed to be 
unknown and denoted as the generalized 
disturbance, which is the combination of the 
unknown internal dynamics of the system and 
external disturbance. 

In ADRC framework, the central idea is to 
estimate and cancel the unknown generalized 
disturbance ( , , , , )f y y u t  .To do so, an extended 
state observer (ESO) is used. Let 

1 2 3, , ( , , , , )z y z y z f y y u t              (3) 
Assume that ( , , , , )f y y u t  is differentiable and let 

( , , , , )f y y u t h   .The augmented model of (2) can 
be written as 
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The state space observer, here, denoted as the 
Extended State Observer (ESO) is constructed as 

ˆˆ ˆ ( )
ˆ ˆ
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where L is the observer gain vector  

 1 2 3L    
               (7) 

which can be obtained using any known method 
such as the pole placement technique. 1 2 3, ,   are 
the parameters of the ESO, 1 2 3ˆ ˆ ˆ, ,z z z  approach 

,y y and ( , , , , )f y y u t   respectively if the observer 

gain L  is chosen properly, thus the generalized 
disturbance f  is available for control. 

If we choose the control law as 

3 0ẑ uu
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Then the original plant (2) becomes  

3 0ˆ( , , , , ) zy f y y u t u               (9) 

If the ESO is properly designed, 
i.e. 3ẑ ( , , , , ),f y y u t   then the original plant is 
reduced to be a simple double-integral system 
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Fig. 2. Block diagram of 2nd-order LADRC 

Finally, the system can be easily controlled with 
a PD (Proportional-Derivative) controller 

1 20 ˆ ˆ( )p du k r z k z              (11) 

where r  is the set point, pk   and dk  are control 

parameters. The structure of LADRC is shown in 
Fig. 2.  
3.2 Parameter tuning 

Let 

1 /p dK K K b                (12) 

Then an LADRC has two sets of gains to tune: L , 

the observer gain for LESO, and K , the controller 

gain for double integral plant. For practical reason, 

tuning of these two gains is reduced to tuning 

parameters as suggested in [19]: cw  is the 



controller bandwidth, and ow  is the observer 

bandwidth. 

Consider the LESO, the transfer function from 

f  to 3ẑ  is 
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      (13) 

In order to place all the eigen-values of the ESO at 

o , the observer gains are chosen as 
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that makes o  the only observer parameter to be 
tuned. Here, o  is denoted as the bandwidth of the 
observer. 
  Similarly, in order to simplify controller 
parameters, the bandwidth of the controller, denoted 
as c , is introduced. Assume that all the 
closed-loop poles of the PD controller are placed at 

c , and then the controller gains in (11) are given 
by 
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2d c

p c
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k
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              (15) 

4 Load frequency control design with dead-zone 
The model of single-area power system is shown 

in Fig. 1. In the actual system, there are nonlinear 
characteristics in the steam turbine governor, e.g., 
saturation, hysteresis, and dead-zone. The nonlinear 
characteristics will deteriorate the system 
performance. This phenomenon can be verified from 
the following example. 

Example 1 Considering a single-area power system 

with the following parameters [10]: 

120, 20, 0.3,
0.08, 2.4.

P P T

G

K T T
T R

  
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       (16) 

The system is controlled by a 2nd-order LADRC 
with the following parameters: 

5.5, 45, 1.1c ob w w           (17) 

A step load 0.01dP   is applied to the system at 

1t  , and the responses of the system are shown in 
Fig- 3 with and without dead-zone nonlinearity. It is 
observed that the control performance is degraded a 
lot with dead-zone=0.1. 
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Fig. 3. The responses of power system under LADRC in 

LFC system 
 

In order to overcome the effect of dead-zone, we 
will propose two compensation schemes. 
4.1 Observer-based scheme 

Note that LADRC has an observer-based 
feedback structure, the nonlinear characteristics will 
deteriorate the control performance because the 
controller state cannot be accurately estimated, thus 
we can overcome the effect if the controller state can 
be accurately estimated. Note that the observer of 
LADRC is exasperated and cannot be accurately 
estimated because of the governor dead-zone. 
Therefore, if only the nonlinear part of the governor 
feeds back to ESO, the problem because of the 
governor nonlinearity can be solved, and then the 
effect of the governor dead-zone is overcome. At the 
moment, the scheme is shown in Fig. 4, and 
N represents the static nonlinear of governor. 



ESO

K

1
R

1

TT
1
s

1

PT 1
s

PK
u fGX GP

dP

  





 



Governor
Turbine

Power System

N

1
GT

1
s




Dead Zone

Steam

Fig. 4. Block diagram of observer-based scheme for 
LADRC in LFC system 

 
To the show the performance of the LADRC 

with compensation scheme, a step load 0.01dP   

is applied to the system at 1t  , and the responses of 
the system are shown in Fig. 5. It is observed that 
the control system cannot return to set value for a 
long time, and control performance is degraded a lot 
with dead-zone. However, when using the 
compensation scheme, the control system can 
quickly return to set point, and control performance 
can significantly improved. Therefore, we can 
overcome the effect of dead-zone using the 
compensation scheme. 
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Fig. 5. The responses of power system under LADRC 

with the observer-based scheme 
 

4.2 Error-compensation-based scheme 
The observer-based scheme is easy to implement. 

However, the scheme must know the exact 
nonlinearity of the dead-zone, and it lacks some 
degree of freedom. Therefore, in this paper, another 
scheme is proposed for LADRC to overcome the 
dead-zone nonlinearity. The scheme is shown in Fig. 
6, where the error of actual output of governor and 

theoretical output of controller is added into ESO as 
an external disturbance for estimation and it can be 
used in the feedback control to reject quickly. 
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Fig. 6. Block diagram of error-compensation-based 
scheme for LADRC in LFC system 

 
Using the error-compensation-based scheme, 

cK  is a static compensation coefficient, the system 

is controlled by a 2nd-order LADRC with the 
following parameters: 

0.85, 5.5, 45, 1.1c c oK b w w       (18) 
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Fig. 7. The responses of power system under LADRC 

with the error-compensation-based scheme 
 

To the show the performance of the LADRC 

with compensation scheme, a step load 0 .01dP   

is applied to the system at 1t  , and the responses 
of the system are shown in Fig. 7. It is observed that 
the control system can faster return to set point, and 
control performance can significantly improved. 
Thus we can overcome the effect of dead-zone using 
the error-compensation-based scheme for LADRC 
in LFC system, and the scheme is practical and 
effective. 



According to the proposed schemes and the 
effect, the following information is obtained: 
1) The observer-based scheme can be adopted if the 
form and parameters of static nonlinear of governor 
is known. 
2) One drawback of the observer-based scheme is 
that there are no adjustable parameters, so the 
error-compensation-based scheme may be used if it 
is needed. The scheme is to put the error of actual 
output of governor and theory output of controller 
into ESO, the error is eliminated using the aid of 
ESO, and the control performance is also improved. 
However, because the error-compensation-based 
scheme needs a static compensation coefficient, thus 
this parameter needs to be manually adjusted to 
avoid the instability of ESO. 
5 Two-area extension 

The LADRC for the load frequency control of a 
multi-area power system is readily extended. The 
load frequency control problem for multi-area power 
systems requires that not only the frequency 
deviation of each area must return to its nominal 
value but also the tie-line power flows must return to 
their scheduled values. So a composite variable, the 
area control error (ACE), is used as the feedback 
variable to ensure the two objectives. For simplicity, 
consider load frequency control for two areas. The 
model is shown in Fig. 8. 

All symbols are similar to Fig. 1, except that 

1 2T  is the synchronizing power coefficient, 12a  is 

the ratio of base power of area1 to that of area2, and 

tieP  is the departure from the scheduled tie-line 

exchange power, 
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1B  and 2B  are frequency bias settings, and 1AC E  
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 Fig. 8. Block diagram of LFC of two-area power system 
with governor dead-zone 

From Fig.8, a 2 2  model from iu  to 

 1, 2iACE i   can be obtained: 
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and 
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A decentralized controller can be tuned 
assuming that there is no tie-line exchange power, 

i.e., 12 0T  . In this case 
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Thus load frequency controller for each area can 
be designed independently, and the LADRC design 
discussed for the single-area power system is readily 
applied to multi-area case. However, since there is 



coupling among areas, the design for each area 
should take this into consideration. The robustness 
of the closed-loop system against the tie-line 
operation should be checked as proposed in [20]. 
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(a) Frequency deviation at AREA 1 
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(b) Frequency deviation at AREA 2 

Fig. 9. The responses of two-area power system under 
LADRC with the observer-based scheme 

Example 2 Considering a two-area power 
system, for simplicity, the two areas are assumed to 
be identical, and the model parameters are: 

1 2 1 2
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    (24) 

The frequency bias settings are 1 2 0.425B B  , 

and the synchronizing power coefficient is 

12 0.545T  . Using the observer-based scheme, the 

following parameters of LADRC for two areas are: 

1 2 1 2

1 2
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w w
   

 
      (25) 

Using the error-compensation-based scheme, the 

following parameters of LADRC for two areas are: 
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(a) Frequency deviation at AREA 1 
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(b) Frequency deviation at AREA 2 

Fig. 10. The responses of two-area power system under 
LADRC with the error-compensation-based scheme 

 
To the show the performance of the decentralized 

LADRC, the step load 1 2 0.01d dP P     are 

applied to the system at 1t  , and the responses of 
the system are shown in Figs. 9-10. It is observed 
that the control system cannot return to set point for 
a long time, and control performance is degraded a 
lot with dead-zone=0.1. However, when using the 



two compensation schemes, the control system can 
quickly return to set point, and control performance 
can significantly improved. Therefore, we can 
overcome the effect of dead-zone using the two 
compensation schemes. 
6 Conclusion 

In this paper, design and analysis of load 
frequency control for power systems with governor 
dead-zone via linear active disturbance rejection 
control (LADRC) is presented. In order to improve 
the performance of LADRC with governor 
dead-zone, two schemes for overcoming the 
dead-zone nonlinearity are proposed, where the 
nonlinearity is estimated via the extended state 
observer (ESO). One is used to estimate the 
controller states, the other is to estimate the error of 
actual output of governor and theoretical output of 
controller. Simulation results show that the two 
schemes are practical and effective.  
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