
 1

Development of wireless sensor network for
environment monitoring Applications

Abstract This paper presents a self-organizing wireless sensor network that can be used
for environmental surveillance tasks, like wildlife behavioural studies. The parameters of
interest that are measured and recorded are temperature, humidity, illumination and the
motion of living objects inside the span of the network. An accurate time-synchronization
algorithm has been implemented and tested successfully. A vital task during the whole
development process was to keep the power consumption to a minimum, since the used
nodes are battery powered. This paper shows that the TelosB mote combined with the
TinyOS operating system provides an easy to implement infrastructure establishment.
The TelosB has been extended with additional hardware, without disturbing the low
power operation. The extension board can be fully controlled via software and has a sleep
state where the current consumption drops to less than 0.1 A

Keywords: WSN; TelosB; TinyOS; Intrusion Detection; Time synchronization .

1 Introduction

The development of the human society in the last 100

years has significantly influenced the habitat of almost

all mammals all over the world. As a result 22 percent of

all known species were known to be globally threatened

or extinct [1]. Habitat loss, affecting over 2,000 mam-

mal species, was the greatest threat globally. A prime

example was the population development of the Indian

tiger. With an estimated population of 100000 in 1900,

the value dropped by the factor 34 to less than 3000 in

the year 2011 [2]. A key factor in preserving a species

was to understand the behavior in their natural habitat.

Wildlife behavioral studies were a crucial task to gather

the necessary information. However, the observation by

humans was restrained since the habitat might spread

over a large area and the behavior of animals changed

when humans were present. A method to overcome these

problems was to deploy a network of electronic devices,

each equipped with several sensors and a communication

unit[17]. These so called wireless sensor networks

(WSN) offer the opportunity to monitor large wildlife

habitats without the intrusion and distortion by humans.

The so collected data gave reliable information on the

behav- ior of animals in their natural habitat. The

sensors used were commercial of the shelf (COTS) to

keep the cost of each node at a minimum. A gateway

node that was connected to a device with Internet

access gathers all collected sensor data and makes it

available in real time to research groups all over the

world. Furthermore a user interface that displayed the

data in a user-friendly man- ner and offered the

possibility to reconfigure the system has been designed.

The work of this paper consisted of hardware- as well as

software development. A vital task during the whole

development process was to keep the power

consumption to a minimum, since the used sensor nodes

were battery powered.

2 Related Work

Wireless sensor networks are often mentioned as one of

the key technologies of the 21st century. The high in-

terdisciplinarity of the topic demands for improvements

in various research areas. Low power electronics, en-

ergy aware routing algorithms, time synchronization and

hardware miniaturization were just some of the disci-

plines that have to be mastered for the deployment of a

functional WSN. Research prototype motes like the Mi-

caZ [3] or the TelosB [4], both developed at the Univer-

sity of California, enable research groups to deploy and

study real life sensor networks. Cerpa et al. [5] describe

habitat monitoring as a driver application for wireless

sensor networking. They proposed a tiered architecture

for such applications and a Frisbee model[5] that op-

timizes energy efficiency when monitoring moving phe-

nomenon. Mubarak et al. [6] showed a way for energy

efficient intrusion detection, which could be transferred

to the detection of a moving animal inside a habitat

monitoring system. Their method could increase the net-

work lifetime by using only few of the available sensors

within a region of the WSN. A similar system, developed

for border and perimeter security, was introduced by the

Indian Institute of Science in 2010 and is called Smart-

Detect [7]. They use analog passive infrared sensors to

detect human intrusions and reliably communicate such

intrusions to the base station in a secure manner. The

project focused on power optimal self-organization, re-

liable message delivery, security, low false alarm event

detection, sleep-wake scheduling, energy efficient moni-

toring and debugging mechanisms. A prototype imple-

mentation of SmartDetect has been successfully field

tested in an outdoor environment comprising of 25-30

nodes.Sanchez et al. developed a WSN for moving target

monitoring in areas of special interest [8]. In particu-

lar, it has been applied for tracking animals approaching

wildlife passages under roads. The system uses a combi-

B. Karthikeyan
School of Electronics Engineering

VIT University, India

bkarthikeyan@vit.ac.in

R. Kumar

Wipro Technologies, India

Rajagopal.kumar@wipro.com

Srinivasa Rao Inabathini

School of Electronics Engineering

VIT University, India
israo@vit.ac.in

mailto:israo@vit.ac.in

2 2

nation of tracking capabilities, provided by infrared mo-

tion sensors, together with target identification through

the use of camera sensors. They studied the effects of

using different node layouts and densities with respect

to system performance. Viani et al. have presented a

WSN-based system for the monitoring of wildlife activ-

ity and the prevention of vehicle collisions in 2011 [9].

Their system consists of a network of sensors and actu-

ators. Wildlife approaching the road gets detected with

radar sensors and the drivers on the road get warned

in real-time by means of light signal devices. The capa-

bilities of the proposed system have been preliminarily

assessed by means of an experimental setup. This system

has been installed in a controlled environment located in

Alps regions strongly affected by the problem of wildlife-

vehicle collisions. A method for time synchronization in

wireless sensor networks was proposed by Marti et al.

in 2004 [10]. They analyzed all timing uncertainties that

can occur during message delivery and came up with a

protocol that they implemented successfully on the Mica

[3] platform. Tests with real-world applications verified

that the performance was markedly better than those of

other existing time synchronization approaches on the

same platform.

The achievements of all mentioned projects were used

as a base for the development of a self-organizing WSN

that uses COTS infrared sensors for the detection of in-

truder [16]

3 Methodologies

The first step was to analyze the major problems that

will occur during the development process. The available

low-cost infrared sensors could not directly be attached

to the TelosB mote, due to their different supply volt-

ages. A hardware that was able to match the supply

voltages have to be developed. The major part of real-

izing this project consisted of software development. A

first approach was to divide the whole project in a sum

of subproblems. By doing this, it was possible to get a

better overview over the numerous tasks that have to be

fulfilled and the tools that can be used. The chart shown

in Figure 1 was generated. The TelosB hardware was de-

signed to run programs that were written in nesC for the

operating system TinyOS. Besides TinyOS at least one

more programming language has to be used. The system

to the gateway node was connected must be able to re-

ceive the gathered information. This means it must run

a dedicated software that listens to the serial port and

dispatches the payload of the data packages.

In a real life sensor network the system to the gateway

node was connected could be anything, from a headless

Linux computer to an android smartphone with UMTS

connection. Because of this, Java has been chosen as pro-

gramming language, due to the portability provided by

the Java Runtime Environment (JRE). This offers max-

imum flexibility for the hardware and the operating sys-

tem that is used to inject the data into a network. The

Figure 1: Division of the project into subproblems

sensor network has to fulfill numerous tasks, which are

all interconnected to each other. The final system has to

work reliable and must not fail because of its subsystems

fails. The diagram in Figure 1 was further disassembled.

By this procedure it was possible to analyze the re-

quirements for each subsystem specifically. Afterwards

each of the subsystem passed through a trusted develop-

ment process including its own phase of simulation and

verification, like it is intended in the Waterfall model.

The aim by using this sequential design process was to

detect errors in early stages, so that they can be fixed by

changing only the subsystem where the error occurred.

If in a later process for example the communication and

the sensing subsystem are interconnected, an error in the

message delivery could also spread into the measurement

process. The concentration on requirements and design

before the code writing started also ensured minimal

wastage of time. Linux has been chosen as environment

for the network development, specifically Ubuntu 12.04

has been used. The tool chain consisted of Eclipse (He-

lios release), which was extended with a plug-in called

Yeti 2 [11], so that it was possible to develop Java as well

as TinyOS software with this SDK. The installed Java

version was 1.6. TinyOS must be installed to work with

the Yeti 2 plugin. For this work TinyOS version 2.1.1

was used, this includes the nesC compiler (ncc) version

1.2.4 and the msp430-gcc version 3.2.3. Also the Cooja

[12] simulator was used to test the software in an early

phase of development. With Cooja it is also possible to

simulate huge sensor network deployments, consisting of

hundreds of nodes.

4 Wireless Sensor Network Development

The parameters that should be measured and recorded

by the sensor network are temperature, humidity, illumi-

nation and motion. The first three parameters could be

measured with the TelosB directly. For motion detection

the nodes were equipped with passive infrared sensors

(PIR-sensor)[18]. All nodes gather information and

after a given time interval, which is called collection

period, they send a data packet to a gateway node. The

region that

3 3

Figure 2: Overview of the whole measurement system

would be covered by the nodes are bigger than the ra-

dio transmission range of a single node. This meant that

not all motes could reach the gateway node directly. To

enable each node to send packets to the gateway, other

nodes have to act as a bridge, meaning they relay incom-

ing messages. The gateway node, which is also known as

the root, forwards the data packets via serial interface to

a computer with a storage device and a network connec-

tion. A program on the computer is listening to the serial

port and receives the data of the root node. It makes

all gathered information available through TCP/IP, so

that clients can log into the server and also retrieve the

data packets. As an example, a client Java application

has been written. For each node that is sending data, a

new file gets created and each incoming data packet gets

appended into this file. The files allow the post data pro-

cessing and analysis. Additionally a LabView program,

which displays the data in a user-friendly manner, has

been written. The program reads the data packets from

the Java application and allows the examination of the

parameters in realtime. Also with the LabView program

one is able to send data into the network. So for example

the collection period can be changed during the runtime

of the program. Figure 2 shows a schematic of the whole

system.

4.1 Hardware Development

The TelosB is powered with two AA batteries and there-

fore operates on 3 Volts. To operate the PIR-sensor mod-

ule with the TelosB, a boost converter plug-in PCB was

designed. It can get connected to the TelosB 10-pin ex-

pansion port, which also directly delivers the supply volt-

age. The module has a shutdown pin that can switch

the boost converter on and off. The pin is connected to

an output pin of the microcontroller. This allows for the

development of software algorithms that switch on the

motion detection sensor only when it is really needed,

like in the Frisbee model [5]. The PIR-sensor output pin

is connected to TelosBs MSP430 and can be used to trig-

ger an interrupt on the MSP430 whenever a motion de-

tected by the PIR sensor. A TelosB mote equipped with

the boost converter board and a PIR-sensor can be seen

in Figure 3.

Figure 3: TelosB mote equipped with boost converter

and PIR sensor module

4.2 TinyOS

The motes must be able to measure the desired param-

eters and communicate with each other. As one of the

nodes will be connected to a computer as a data sink, it

will potentially have to fulfill more tasks than the other

nodes[15]. The gateway node gets assigned with the

ID 1. While the mote is booting it will check its number.

The mote with number 1 configures itself automatically

in a way that it can fulfill all the additional tasks of the

base station. The network must be capable to

communicate bidirectional. That means each node can

send data to the gateway, and also that the gateway is

able to send information to each node. This is useful to

reconfigure the system and change the collection period.

The collec- tion period is the time after which a node

generates a data packet and initiates the message

sending. The data collection of the nodes has been

realized by the basic multi-hop networking abstraction

of TinyOS, which is called tree collection. The motes

organize themselve into a routing tree, centered on a

particular mote, which is assigned as root. All messages

that are generated flow automatically to the tree. The

messages coming from the nodes that cannot reach

the root directly get re- layed by the other nodes,

which act as a bridge. The counter piece to the

Collection protocol is the Dissem- ination protocol. It

efficiently distributes a value across the network. The

network got configured in a way that only the root node

is able to do this. So the value of the collection period

that the root node holds is the master value. By the use

of Collection and Dissemination, the communication

infrastructure in the network was estab- lished.

Extensive tests with the Cooja simulator should verify

the operability of the communication subsystem. The

TelosB mote is equipped with two photodiodes that are

connected to ADC ports of the microcontroller. The

combined temperature and humidity sensor is connected

via TWI, and the PIR sensor delivers its output signal

to an I/O port, which got configured as digital input. To

generate a data packet, all this three sources have to be

4 4

Figure 4: Data flow of the sensor reading

read out. A schematic of the information flow is shown in

Figure 4. A message structure in the form of a TinyOS

nx struct has been defined to send all the collected sen-

sor data to the gateway. The structure has variables to

store temperature, humidity, two times illumination and

the motion data. Besides these it also contains the ID of

the sending node, which is necessary to assign the data

packages later to its destination. Additionally it has one

variable to store the time period over which these data

got collectedThe diodes as well as the temperature and

the humidity get read out with the TinyOS split phase

interface Read. In case of the humidity the raw data is

a 12-bit value, and in case of temperature it is a 14-bit

value. The values have to be converted into an absolute

value. Also sensor nonlinearities have to be compensated.

In order to decrease the computational load on the bat-

tery powered nodes, this task was shifted to the gateway.

That means, that the data packets with the sensor data

that get send over the radio contain the raw measure-

ment values. The gateway node sends this raw values

over the serial port to the computer, where they finally

get converted into absolute temperature and humidity

values.

4.3 Low Power Consumption scheme

The values of the infrared sensor get read out with a

pin that triggers an interrupt on the microcontroller. In

the case of illumination, temperature and humidity, one

value per collection period is sufficient, but in the case

of the motion data, it is not accurate enough to receive

only one value every 20 minutes. To achieve a higher res-

olution the motion sensor data gets encoded into a 32-bit

variable. Since the output of the sensor is binary (either

there is motion, or not), one bit is sufficient to store the

current state of the sensor. The collection period gets di-

vided into 32 parts, and so a resolution 32 times higher

than the collection period can be achieved. Figure 5 ex-

plains the used scheme The scheme gets realized via a

32 bit mask which has the value 1 and gets shifted every

Figure 5: The values delivered by the motion sensor

get coded into a 32 bit variable

Figure 6: The communication windows dont match, so

no communication is possible

(collection period / 32) seconds to the left by one. If the

interrupt associated with the PIR-sensor gets triggered,

a logical OR operation between the mask and the vari-

able for the PIR values gets executed. As a result the

1 of the bit mask gets integrated into the PIR variable.

While the radio service is switched on it will consume

between 7.4 to 18.8 mA, additionally to the power con-

sumed by the other components like microcontroller and

sensors. This permanent power consumption is not ac-

ceptable for achieving long-term operation of the sensor

network without changing the batteries. In order to ex-

tend the operational time of the system, the radio service

is periodically switched on and off (duty cycled) to save

energy. The collection time for the packets is somewhere

in the range of 10-30 minutes. During this whole time the

radio is turned off. After one collection period is over,

the radio on each node gets turned on for a short time

interval and all the generated packets get flooded to the

root node. This synchronous low power message deliv-

ery scheme allows to maximize the energy savings [19].

The problem that occurs here was that during the

deploy- ment of a sensor network each node gets

switched on at a different time. As a result the timing

windows of the on and off time of the radio are not

overlapping. Figure

6 shows the problem.

4.4 Time Synchronization Algorithm

The synchronous switching of all nodes is only possi-

ble when there is a time synchronization between them.

The timer of the root node gets defined as the global

time scale, and all the other nodes have to synchronize

with this scale. The synchronization has to be repeated

periodically to compensate for clock drifting that will

occur between the nodes. The reason can be slight dif-

ferences in the resonance frequency of the quartz that is

5 5

Figure 7: Timing delays that occur during the

transmission of a radio message

Figure 8: Detailed synchronization scheme clocking

the microcontroller. The drift effect gets even

bigger when there is a temperature difference between

the nodes, which in a large-scale sensor network could

occur. Message sending over a radio channel contains

various timing uncertainties. Some of them are strictly

deterministic, others are highly non-deterministic. The

delays have to be analyzed and compensated in order

to achieve an accurate time synchronization between

the nodes. Figure 7 shows a schematic of the most im-

portant delays that occur when a TelosB mote sends a

message to another TelosB Mote. The meaning of var-

ious delay is discussed in [13]. The transmission time

of the sender and the reception time of the receiver are

overlapping To realize the time synchronization, a new

message type TimeSyncMsg has been introduced. Each

message consists of a single variable called globalTime.

The User Button on the root node is wired to trigger

an interrupt that initiates the time-sync process for the

entire network. This process gets repeated automati-

cally every hour. Once the process is initiated the global

time is saved in the variable of the TimeSyncMsg in-

stance. This time is used as the synchronization point.

The message is then sent via the TimeSyncAMSend

interface of TinyOS. It is similar to the AMSend inter-

face, but has an additional parameter that can store

the time of an event expressed in the local clock of the

sending node. The receiver is able to read this time and

translate it to its own local clock time via the TimeSync-

Packet interface [14]. The interface has direct access to

the MAC layer and performs a message time stamp-

ing during transmission and reception. This allows for

the elimination of the highly non-deterministic delays.

The only delay that is left theoretically is the propaga-

tion time, and as this is in the order of nanoseconds it

can be neglected. Figure 8 shows a more detailed view

of the synchronization scheme. The sync button on the

root node gets pressed at point A. As mentioned above

the TimeSyncAMSend interface allows to determine the

time of point A expressed in the local time of the receiv-

ing node. This time will be called receiveEventTime in

the following. The message contains also the global time

of the root node, with this information one can calcu-

late the clock offset between the sender and the receiver

as shown in equation 1.

clockoffset = globalT ime receiveEventTime (1)

This calculation is done immediately after the mes-

sage has been received by the event handler. The clock

offset is known for obtaining the absolute global time of

the root node with equation 2.

globalTime = localTime + clockoffset (2)

The next step is to estimate the time at which the

timer on the root node will fire the next time, expressed

in the local clock of the receiver. The length of c equals

the collection period, with this information one can cal-

culate the length of a with equation 3.

a = globalT ime % c (3)

The remaining time period b until the timer fires

equals c - a. One can now calculate the occurrence of

event B with equation 4.

B = globalTime + c - a (4)

Finally the time at which the timer on the root node

will fire is known, expressed in the local time of the re-

ceiver. With this information a synchronous timer on the

local node can be started. The synchronization process

is completed with this step.

4.5 Serial Interface

The gateway node is sending all incoming data via se-

rial interface to the computer. A possibility to acquire

the data would simply be to listen to the serial port

with a Java application. The problem that occurs when

the application is directly listening to the serial port is

that only one PC program can interact with the mote.

Also it requires that the application, which is processing

the data, is running on the PC that is physically con-

nected to the basestation. The TinyOS SerialForwarder

is a simple tool to get rid of these limitations. The pro-

gram listens to the incoming packets at the serial port,

and makes the data available over a TCP/IP stream. Ap-

plications that want to retrieve the packet data connect

to the SerialForwarder, which acts as a proxy to read

and write packets. This connection makes it also possi-

ble to connect a client over the Internet. The Message

Interface Generator (MIG) is a tool that can generate a

Java class that represents a nesC nx struct, like the data

packets that get send from each sensor node to the root.

With this class and the net.tinyos.message package the

6 6

Figure 9: Structure of the Java program

data can able to send and receive TinyOS Active Mes-

sage (AM) packets, whose payload is a value of the given

nx struct. The class also offers accessor methods to read

the variables that are contained in the payload of the

messages. The main task of the Java program is to pro-

cess and store the incoming serial packets. The scheme

of the Java program that has been written to solve all

this tasks is shown in figure 9. Besides the MIG gener-

ated Java class for the handling of the AM packets, also

classes for timestamping and file I/O are needed. Also it

has to convert the raw data of temperature and humidity

into absolute values and compensate the nonlinearities.

The program generates a text file for each node from

which it is receiving data packets. Every new incoming

data packet gets timestamped and appended into the

corresponding text file. Additionally the Java applica-

tion can send serial messages to the gateway node. This

message contains the value of the collection period. If

the collection period gets changed the gateway node au-

tomatically initiates the dissemination process to spread

the new changed value over the network. When the Java

program gets started it needs a packet source as

pa- rameter. With the Serial Forwarder running, this

packet source is a TCP/IP port.

4.6 GUI

To display the data in a user-friendly manner and to of-

fer real time data analysis, a LabView program with a

graphical user interface has been written. The program

reads the data from the Java program and displays it in

a graph. The data of each node get displayed is shown

in figure 10. Also the collection period can be changed

out of the program. The software was a very useful tool

during the development and can also be used in a real

life application to get an overview about changing mea-

surement values.

5 Results

5.1 Simulation

The communication system has been simulated and

tested with the Cooja simulator. A simulation with 10

Figure 10: LabView program output

Figure 10: Lab View Program output

Figure 11: Traffic flow in a network consisting of 10

nodes

nodes proofed that multi-hop communication is working.

The traffic flow of this simulation can be seen in figure

11

Only the nodes with the numbers 2, 4 and 5 can reach

the root node (ID = 1) directly. The messages of all

the other nodes have to be relayed by these nodes. As

one can see in the log listener interface, the root node is

receiving messages also from the nodes that are not in

the direct range. The test messages contain the number

of the sending node, as well as the collection interval,

with that the nodes send the messages. The functionality

has also been tested with a bigger network, consisting of

50 nodes.

5.2 Hardware

Tests with the developed PCB and the PIR-sensor

showed that the current drawn during motion sensing

is 220 A. If the sensor detects some motion and has to

trigger the digital pin of the microcontroller, the value

7 7

Figure 12: Power consumption of the TelosB mote

Figure 13: Linux console message generated by the

Java program

increases to 1.2 mA. These are good values that fit to

the rest of the power consumption of the TelosB mote,

as shown in figure 12. The Java program generates a

console output to inspect the incoming packets. Figure

13 shows the example of a console message. It contains

all information that were included in the data packet,

including the timestamp

6 Conclusion and future work

This paper presented the development of a wireless

sensor network that can be used for wildlife monitor-

ing, as well as other surveillance tasks. It showed that

the TelosB mote combined with the TinyOS operating

system provides an easy to implement infrastructure

establishment. An accurate time-synchronization algo-

rithm has been implemented and tested successfully.

The TelosB could be extended with additional hard-

ware, without disturbing the low power operation. The

hardware can be seen as a universal extension board,

which makes it easy to modify the function of the sensor

network. It can be used for all sensors with operating

voltages between 2,5 and 12 Volts, which have either a

digital, analog, serial or TWI signal output. The board

can be fully controlled via software and has a sleep

state where the current consumption drops to less than

0.1 A. The gathered information gets collected from a

data gateway and is available over the Internet to re-

search groups all over the world. The system offers also

a graphical user interface that displays the sensor data

in a user-friendly manner, and offers the possibility to

reconfigure the network.

As a future work the software could be extended with

an algorithm to manage the infrared sensors. A possi-

bility would be to deactivate all motion sensors that are

completely enclosed by other motion detection ranges.

In the moment, one of the neighboring motes detects

a moving object, it sends a signal to activate all mo-

tion sensors that are close to it. The software could also

be extended by an algorithm to determine the speed of

a moving object that crosses through the network, by

a simple distance per time calculation. Another way to

improve the system would be to expand it with cam-

era modules. Most of these modules need a 5 V supply,

which could be delivered by the PCB. Since the camera

consumes a lot of power compared to the PIR-sensor, it

could stay switched of until the infrared sensor detects

motion in the area. When that happens it switches the

camera module on as long as there is some movement in

the area. The combination of infrared motion detection

and a camera offers a possibility for low power image

capturing, which otherwise would not be possible.

7 References

[1] International Union for Conservation of Nature, An

analysis of mammals on the 2008 IUCN Red List, Ari-

zona State University, Texas AM University, University

of Rome, University of Virginia, Zoological Society Lon-

don. 2008, www.iucnredlist.org/mammals

[2] Wildlife Protection Society of India, The Indian

Tiger - Quick Facts, S-25 Panchsheel Park New Delhi

110017, India, www.wpsi-india.org

[3] J. Hill and D. Culler, Mica: a wireless platform

for deeply embedded networks, IEEE Micro, vol. 22, no.

6, pp. 1224, November/December 2002

[4] Joseph Polastre, Robert Szewczyk, and David

Culler, Telos: Enabling ultra-low power wireless re-

search, Computer Science Department, University of

California, Berkeley, 2005

[5] Cerpa et al. Habitat monitoring: Application

driver for wireless communications technology, UCLA

Computer Science Technical Report 200023, December

2000

[6] Mubarak et al. Intrusion detection: An energy ef-

ficient approach in heterogeneous WSN, International

Conference on Emerging Trends in Electrical and Com-

puter Technology, 2011, IEEE 978-1-4244-7926-9

[7] The SmartDetect WSN Team, SmartDetect: An

efficient WSN implementation for intrusion detection,

Indian Institute of Science, Bangalore and Centre for AI

and Robotics (CAIR) IEEE 978-1-4244-5489-1/10/

[8] Sanchez et al. Wireless sensor network deploy-

ment for monitoring wildlife passages, Sensors 2010, 10,

7236-7262; doi:10.3390/s100807236 ISSN 1424-8220

http://www.iucnredlist.org/mammals
http://www.iucnredlist.org/mammals
http://www.wpsi-india.org/
http://www.wpsi-india.org/

8 8

[9] Viani et al. WSN-based early alert system for

preventing wildlife- vehicle collisions in Alps regions,

ELEDIA Research Center @ DISI, University of Trento,

2011, IEEE 978-1-4577-0048-4/11

[10]Marti, Kusy, Simon, Ldeczi, The flooding time

synchronization protocol, SenSys 04,November 3-5, 2004

ACM 1-58113-879-2/04/0011

[11] Benjamin Sigg, Yeti 2 - TinyOS plugin for

Eclipse,” http://tos-ide.ethz.ch/wiki/index.php

[12] Fredrik sterlind, A sensor network simulator for

the Contiki OS, SICS Technical Report ISSN 1100-3154,

November 2006

[13] Marti, Kusy, Simon, Ldeczi, The flooding time

synchronization protocol, SenSys 04, November 3-5,

2004 ACM 1-58113-879-2/04/0011

[14] Marti, Sallai, Packet-level time synchronization,

www.tinyos.net/tinyos-2.x/doc/html/tep133.html

[15] James Carnley, Bo Sun, S. Kami Makki “TORP:

TinyOS Opportunistic Routing Protocol for Wireless Sensor

Networks” 5th IEEE Workshop on Personalized Networks

(PerNets 2011)

[16] Jochen Rust, Xinwei Wang, Rong Shen, Rainer

Laur, Steffen Paul “Equidistant Piecewise Function

Approximation for Neurocomputing Based Environmental

Monitoring in Wireless Sensor Networks” Environmental

Energy and Structural Monitoring Systems (EESMS), 2011

IEEE Workshop on 28-28 Sept. 2011

[17] Alin Argeseanu, Krisztina Leban, Ileana Torac

“matrix sensor for solar tracking systems” Journal of

Electrical engineering [www.jee.ro], Volume 9 / 2009 -

Edition : 2

[18] Mohand saïd djouadi, razibaouene amir, zeghlache

samir “Motion Detection and Tracking by Autonomous

Mobile robot in Indoor Environment”,Journal of Electrical

Engineering [www.jee.ro] Volume 10 / 2010 - Edition : 3

[19] Pramod kumar, ashvini chaturvedi, shraddheya

shrivastavaa “geographical location aware energy efficient

routing scheme for query based wireless sensor networks “

journal of electrical engineering [www.jee.ro] volume 13 /

2013 - edition : 2

http://tos-ide.ethz.ch/wiki/index.php
http://tos-ide.ethz.ch/wiki/index.php
http://www.tinyos.net/tinyos-2.x/
http://www.tinyos.net/tinyos-2.x/

