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Abstract – This paper presents the control of 3D crane system 

by using a decoupled adaptive neuro-fuzzy controller based on 

the sliding mode theory. The considered 3D crane involves a 

planar motion in conjunction with a hoisting motion. The control 

inputs are three (trolley and hoisting forces), whereas the 

variables to be controlled are five (the trolley position in the 

XOY plane, the length of the lifting cable, and the two angles of 

swing). The interactions between each control subsystem are not 

taken account explicitly, but are considered to be disturbances in 

control of each individual subsystem. In the proposed approach, 

a conventional controller (PD) is used in parallel with the neuro-

fuzzy controller, the PD controller ensures the asymptotic 

stability in compact space, the parameter update rules of the 

fuzzy neural network are derived, and the proof of the online 

learning algorithm is verified by using the Lyapunov stability 

method. Experimental results are given to solve the crane 

position control problem of 3D crane system laboratory 

equipment. 
 

Keywords:adaptive neuro-fuzzy control, sliding-mode learning 

algorithm, 3DCrane system.  

 

I. Introduction 

 

   The gantry crane systems are used mainly for lifting 

heavy and moving loads beyond the normal capability of a 

man, For this reason, the control of these systems, which is 

not a simple task because of the complexity of their model 

(MIMO systems, strongly coupled and nonlinear), play an 

important role in industrial applications because of the 

good performance they must offer. During the past 

decades, many approaches regarding crane control have 

been developed and reported in the literature, A. 

Nowacka-Leverton, et al [1] proposed a sliding mode 

control strategies for the point-to-point motion control, 

C.Vazquez, et al [2] present the sliding mode control 

design based on the Super-Twisting Algorithm (STA), 

Sun, N., et al [3] have applied an energy coupling-based 

output feedback (OFB) control scheme, neural and fuzzy 

logic compensators are introduced in anti-swing control 

schemes as shown in [4-9], time-optimal  control and 

visual feedback are applied by Yoshida Y., Tabata, H in 

[10] to solve position and anti-swing control problems, 

genetic algorithms are employed in [11] to obtain the 

parameters in simple models of 3D crane systems, Sam 

Chau Duong et all [12] are used a recurrent neural network 

(RNN) which is evolved by an evolutionary algorithm to 

control of an underactuated three-dimensional tower crane 

system.  An adaptive sliding mode fuzzy control approach 

is proposed in [13] for a two-dimensional overhead crane, 

in [14-15] adaptive control schemes are used. D. Chwa 

proposed in [16] a nonlinear control method for trajectory 

tracking of 3-D crane systems robust towards the load 

variation and initial swing angle, a three-dimensional 

generalization of an anti-swing control law based on the 

second-order sliding -mode approach was proposed by A. 

Pisano in [17], previously proposed for the 2-D model of 

crane. The authors in [18] have introduced a methodology 

to design controllers that can cope with different load 

conditions on an Ethernet network. And have used an 

interpolated, delay-dependent gain scheduling law to deal 

with time-varying delays between measurement and 

control. M.-B. Radac and all developed a Previous and 

Current Cycle Learning (PCCL) approach to the position 

control of a 3D crane system in the framework of a new 

Iterative Learning Control (ILC) structure [19]. 

   The severely nonlinear dynamic properties as well as 

lack of actual control input for the sway motion might 

bring about undesired significant sway oscillations, 

especially at take off and arrival phases, In addition, the 

gantry crane systems have the characteristic of having a 

limited number of input to control more output. In this 
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case, the uncontrollable oscillations may cause severe 

security problems and stability, and would severely limit 

the effectiveness of the operation. However these 

undesirable phenomena would also make the conventional 

control strategies fail to achieve the goal. 

   In most control engineering applications the 

performance of controller is directly related to the 

accuracy of the mathematical model obtained for the 

controlled system. During the last decades, intelligent 

computing techniques using either fuzzy logic or neural 

networks have been studied in order to overcome the 

difficulties existing modeling. The concept of 

incorporating fuzzy logic in the neural network has 

emerged and has become a popular research area [20]. 

Fuzzy neural networks (FNNs) combine the advantages of 

both techniques. Like the fuzzy systems and neural 

networks, FNNs have been proven to be universal 

approximators too [21]. 

   The present paper addresses the design of an adaptive 

neuro-fuzzy controller, used for each input variable of the 

3D crane system to control the position in three direction 

xyz plan with a minimum swing of the carried load. The 

proposed controller uses a new variable structure systems-

based on-line learning algorithm for parameter adaptation. 

It controls the error dynamics. It is defined as the control 

signal produced by a conventional controller connected in 

parallel and is described using a differential equation. 

Learning parameters are tuned by the proposed algorithm 

in a way to enforce the error to satisfy this stable equation. 

   The present work consists of four sections. Section 2 

presents the Mathematical model of the 3DCrane systems, 

and continues with the proposed neuro-fuzzy structure. 

Then, the developed new variable structure systems-based 

method for parametric adaptation of fuzzy rule-based 

neural networks is presented in section 3, and finally in 

section 4 we present the experimental results with 

interpretation obtained by the proposed method with 

discussion. 
 

II. Mathematical model of the 3DCrane 

 

   The schematic diagram of 3DCrane is given in Fig .1. 

[22]. the forces acting on this system and relevant 

variables, needed for the model development, are 

presented. An important element in the construction of the 

mathematical model is the appropriate choice of the 

system of coordinates. The Cartesian system, although 

simple in interpretation and determining the position in 

space in a unique way in both directions, it is not 

convenient for the description of the rotational motion 

dynamics, so we choose the spherical system. The position 

of the payload is described by two angles, α and β, shown 

in Fig.1. 

   The shortcoming of the spherical system of coordinates 

is that for every point on the y-axis, the corresponding 

value of β is not uniquely determined. However, this is not 

valid in the case of the real crane systems, so it can be 

neglected. The position of the payload is described by the 

following equations. 

   The position of the payload is described by the 

equalities: 
                                                         (1) 

                                                             (2) 

                   .                                             (3) 

 

 
Fig.1. 3D crane system: coordinates and forces. 

   Where     represents the distance of the rail with the cart 

from the center of the construction frame, and    is the 

distance of the cart from the center of the rail. The 3dcrane 

parameters are shown in Table1. 

   In similar manner, the dynamics of the crane can be 

obtained as: 

 

                                                                   (4) 

                                                                   (5) 

                                                           (6) 

                                                  (7) 

                                                        (8) 

 

Where  ,    and    are the components of vector S 

 

                                                                (9) 

                                                                 (10) 

                                                           (11) 

 
Table.1. Parameters of 3DCrane model 

 

Symbol Description 

R length of the lift-line. 

α angle between the y-axis and the lift line. 

 

β 

angle between the negative direction on the z-

axis and the projection of the lift line onto the 

x z plane. 

   mass of the payload. 

   mass of the cart. 

   mass of the moving rail. 

         coordinates of the payload. 

S reaction force in the lift-line acting on the cart. 

   force driving the rail with cart. 

   force driving the cart along the rail. 

      friction forces. 

 



 

   The complete nonlinear model with varying pendulum 

length and three control forces of 3D crane system is 

completely determined by these equations. 

 

III. Controller design  

III.1. The Control Scheme and the Neuro-Fuzzy Structure  

   The conventional proportional plus derivative (PD) 

controller is provided both as an ordinary feedback 

controller to guarantee global asymptotic stability in 

compact space and as an inverse reference model of the 

response of the system under control. The PD control law 

is described as follows [23, 24, 25, 26]: 

                                                 (12) 

Where   is the vector of the feedback error 

                                                     (13) 

                     
(            are the desired positions axis. 

 

                      and                        are the 

vectors of the controller gains. 

 

 
 

 

 

 

 

 

 
Fig.2.  Adaptive Neuro-Fuzzy Sliding Mode Control scheme. 

 

   We assumed that the system to be controlled is 

decoupled, therefore the developed controller is applied to 

each of the three axis individually, in the following section 

to simplify, the design of the controller is developed for 

one axis of 3d crane systems. 

   The structure of fuzzy neural networks used for the three 

axes of 3dcrane system is presented in Fig.2. This 

structure with two inputs            ,              and 

one output is implemented as a feedback controller in the 

control law Fig.3. 

 

 
Fig.2. schematic diagram of fuzzy neural network 

 

   In the first layer signals x1 and x2 are fuzzified using 

Gaussian membership functions, which are defined by 

their corresponding membership functions         and 

        for i=1,…I and j=1,…J. 

 

   Each Gaussian membership function is defined by two 

parameters: its center c and the distribution σ which are 

among the tunable parameters of the fuzzy-neural 

structure. 

The takagi sugeno type of fuzzy rule base is used, when 

each rule     can be expressed by: 

 

     : if    is    and    is    then    =               

 

Where        and        
 

For simplification we suppose that the two parameters    

and    are zero. 

 

The output signal of the neuro-fuzzy feedback controller 

can be determined as follows: 

 

                
          

 
   

 
   

       
 
   

 
   

                                (14) 

 

Where the strong     of the rule     is obtained as a T-

norm of membership functions in the premise part: 

 

                                                          (15) 

 

The normalized value of      is obtained by the following 

equation: 

 

     
   

     
    
   

    
   

 
               

                 
    
   

    
   

        (16) 

 

Therefore    is written as follow: 

 

                   
 
   

 
                                     (17) 

 

The following assumptions have been used:  

The input signals        and      , and their time 

derivatives can be considered bounded :  

 

          ,                                          (18) 

 

            ,                                            (19) 

 

Where    and      are assumed to be known positive 

constants. 

The vectors defining the tuning parameters   and c of the 

Gaussian membership functions are considered bounded as 

follows: 

 

          ,                                        (20) 

       ,                                               (21) 

       

     
   3Dcrane  

 
     PD 

 

   NNFC 

   
 

   

  

- 

- 



 

Where    and     are assumed to be known positive 

constants. 

 

   It will be assumed also that, due to physical constraints, 

the time-varying weight coefficients of the connections 

between the neurons from the second hidden layer and the 

output neuron of the neuro-fuzzy network are bounded: 

                                                           (22) 

For some positive constant    . 

From (18) to (22) it follows that   and    will be bounded 

signals too, 

 

         ,                                              (23) 

Where    and     are some known positive constants. 

III.2. The Sliding Mode Learning Algorithm 

 

   Based on the principles of the  sliding mode control  

theory [11]  we defined the zero value of the learning error 

coordinate τc (t) as time-varying sliding surface, i.e., 

 

                                                (24) 

 
   Which present the condition that the neuro-fuzzy 

network is trained to become a nonlinear regulator to 

obtain the desired response during the tracking-error 

convergence movement by compensation for the 

nonlinearity of the controlled plant.  

  The sliding surface for the nonlinear system under 

control        )  is defined as: 

 

       ) =  +                                              (25) 

   

   With    being a constant determining the slope of the 

sliding surface. 

 

Definition: A sliding motion will have place on a sliding 

manifold                    after a time     , if the 

condition                                     is 

satisfied for all   in some nontrivial semi-open subinterval 

of time of the form                   
 

   It is desired to devise a dynamical feedback adaptation 

mechanism or online learning algorithm for the neuro-

fuzzy network parameters such that the sliding mode 

condition of the above definition is enforced. 

 
Theorem 1: If the adaptation law for the parameters of the 

considered neuro-fuzzy network is chosen respectively as: 
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 Where         
    

       
  
 
 ,                   

  
 
  

   
       

     
       

 

and α is a sufficiently large positive design constant 

satisfying the inequality: 

 

                                                        (31) 

 
   Then given an arbitrary initial condition       , the 

learning error        converges to zero during a finite time 

    and a sliding motion sustained on          for all 

        
 

Proof:  

Consider the following Lyapunov function candidate: 

   
 

 
  
                                                        (32) 

The time derivative of    is given by: 

                                                     (33) 
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                             (42) 

                                                                 (43) 

                                                             (44) 

 

    The inequality (44) shows that the controlled 

trajectories of the learning error τ (t) converge to zero in a 

stable manner. 

The relation between the sliding line Sp and the zero 

adaptive learning error level    , if   is taken as 

  = 
  

  
  , is determined by the following equation: 



 

           +             
  

  
              (45) 

 

   The tracking performance of the position control system 

in 3D crane is analyzed by the following Lyapunov 

function candidate: 

 

   
 

 
  
                                          (46) 

Theorem 2: If the adaptation strategy for the adjustable 

parameters of the NNFC is chosen as in (26-30), then the 

negative definiteness of the time derivative of the 

Lyapunov function in (46) is ensured. 

 

Proof: 
Evaluating the time derivative of the Lyapunov function in 

(46) yields: 

           
 

  
       

 

  
                                (47) 

                 
 

  
        < 0                                      (48) 

 

The obtained result means that, assuming the sliding mode 

control task is achievable, using    as a learning error for 

the NNFC together with the adaptation laws (26)-(30) 

enforces the desired reaching mode followed by a sliding 

regime for the system under control. 

 

IV. Experimental Results 

 

In this section, the practical verification of the proposed 

adaptive neuro-fuzzy controller based on the sliding mode 

theory is performed on the experimental 3D crane setup 

presented in Figure 4, commercially available from Inteco 

Ltd.The control algorithms are implemented in a 

Matlab/Simulink.  

 

 
 

Fig.4. 3D Crane System made by Inteco. 

 

The initial parameters used to obtain the experimental 

results are: 

x axis parameters:  

                

 

     
    
    
    

        
    
    
    

        
    
     
    

       
    
     
    

   

 

    
                 
                
                 

   

 

y axis parameters: 

                

 

     
    
    
    

        
    
    
    

        
    
     
    

       
    
    
    

   

 

    
                  
                
                 

   

 

z axis parameters: 

                 

 

     
     
     
    

        
    
    
   

        
    
     
    

       
    
    
    

   

 

    
                
               
                

   

 

 
Fig.5. X position  

 
Fig .6. Y position 
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Fig.7. Z position 

 
Fig.8. swing angle alpha  

 
Fig.9. swing angle beta  

 

  Experimental results presented in Fig.5, fig.6 and fig.7 

shows the difference between the response of the system 

with the PD controller and the decoupled neuro-fuzzy 

sliding mode controller proposed in Section 3, and those 

for the three axes X, Y and Z. 

Observed in these results with a Pd controller whose 

gains Kp and Kd are chosen preciously, the system cannot 

achieve a desired trajectory. The proposed controller 

schemes, and with the same values of the gains Kp and Kd 

forces the system to achieve and pursue the desired 

trajectory in the three axes controlled with minimum 

oscillation in the angle alpha and beta system. 

It can be clearly seen in Figure 8 and 9 that the swing 

produced by the proposed control law is smaller than that 

produced by a PID control, and reached the minimum 

faster. 

 
Fig .10. X axis control signal 

 
Fig.11. Y axis control signal 

 

In the fig.10 and fig.11, we can see that the signal of the 

NNFC controller corrects the PD control signals even if 

these signals are disrupted, for obtain a hybrid signal 

which gives a good pursuit of desired trajectory and helps 

to minimize the error until that it tends to zero in 

permanent regime. 

 

V. Conclusion 
 

This paper deals with the problem of tracking of 

trajectory and reducing oscillations during the positioning 

of the payload of 3D crane system. a novel approach for 

generating and maintaining sliding regime in the behavior 

of a system with uncertainties in its dynamics is presented. 

In this control algorithm, a conventional PD controller and 

an adaptive variable structure neuro-fuzzy controller are 

used in parallel to system control. The experimental results 

have demonstrated that the predefined sliding regime 

could be generated and maintained in case the NNFC 

parameters are tuned using the proposed approach. 
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