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Abstract: The paper presents a method for Economic Load
Dispatch (ELD). Economic dispatch problem is basically an
optimization problem where objective function may be highly non
linear, non-convex, and no differentiable and may have multiple
local minima. Therefore classical optimization methods may be
trapped to any local minima and may not be able to reach the
global minima. the solution to this problem was presented by the
application of heuristics methods such as genetic algorithms
unfortunately the long execution time and non-guaranteed in
convergence to the global optimal solution contribute the main
disadvantages of GAs. In this paper provides a solution to this
problem through a hybrid method firefly algorithm-Particle
Swarm Optimization.
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1. Introduction
Economic Load Dispatch (ELD) are designed and

operated to meet the continuous variation of power
demand. The power demand is shared among the
generating units and economic of operation is the main
consideration in assigning the power to be generated by
each generating units. Therefore, Economic load Dispatch
(ELD) [1]. is implemented in order to ensure for economic
operation of a power system. Economic Dispatch problem
is an optimization problem that determines the optimal
output of online generating units so as to meet the load
demand with an objective to minimize the total generation
cost

Various mathematical methods and optimization
techniques have been employed to solve for ELD
problems. Among the methods that were previously
employed include genetic algorithms (GAs), and
evolutionary algorithm (EA) have been increasingly used
to solve for power system optimization problems [2].

Since its introduction in late 1980’s, GAs has been
used to solve many power system optimization problems.
It has been successfully employed to solve for economic
load dispatch problem due its ability to model any kind of
constraints using various chromosome-coding schemes
according to specific problem. On the other hand, long
execution time and non-guaranteed in convergence to the
global optimal solution contribute the main disadvantages

of GAs. However, its long execution time posed its main
disadvantage [3].

In this paper, a new method for solving ELD problem
based on the hybrid genetic algorithm– firefly method.

The hybrid approach executes the two systems
simultaneously and selects P individuals from each system
for exchanging after the designated N iterations. The
individual with larger fitness has more opportunities of
being selected.

The feasibility study of the proposed technique was
conducted on a practical system having 5 generating units.
Several loading scenarios with a number of equality and in
equality constraints were tested in order to demonstrate the
effectiveness of the proposed technique. The results
obtained from the proposed technique were also compared
with those obtained from the GA optimization methods in
order to assess the solution quality and computational
efficiency.

2. Economic Load Dispatch formulation
Consider an Economic Load Dispatch (ELD) with i

generators [4].
The ELD problem is to find the optimal combination of

power generation that minimizes the total cost while
satisfying the total demand. The cost function of ELD
problem is defined as follows [5]:
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In (1), the generation cost function
)( Gii Pf

in US$/h is
usually expressed as a quadratic polynomial [6].

iGiiGiiGii cPbPaPf  2)( (2)
Where

)( GPf
: Total production cost ($/h).

)( Gii Pf
Is the cost of the ith generator in $/h;

GiP
The power output of generator i in MW;

iii cba ,,
The cost coefficients of the i th generator.



In minimizing the cost, the equality constraint (power
balance) and inequality constraint (power limits) should be
satisfied.

 Equality constraint
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Where

DjP : Active power load at bus j

GiP : Active power generation at bus i

LP : Real losses

The transmission loss can be represented by the B-
coefficient method as
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Where ijB
is the transmission loss coefficient, ji PP ,

the
power generation of ith and jth units. The B-coefficients
are found through the Z-bus calculation technique.

 Inequality constraint

The generation capacity of each generator has some
limits and it can be expressed as

maxmin
GiGiGi PPP  (5)

Where
maxmin , GiGi PP

: Lower and upper limit of active power
generation at bus i
N: Number of bus
ND: Number of load buses
NG: Number of generator

3. Description of Firefly Algorithm
Fireflies (lightning bugs) use their bioluminescence to

attract mates or prey. They live in moist places under
debris on the ground, others beneath bark and decaying
vegetation.

Firefly Algorithm (FFA) was developed by Xin-She
Yang at Cambridge University in 2007. It uses the
following three idealized rules:

1) All fireflies are unisex so that a firefly will be
attracted to other fireflies regardless of their sex.

2) Attractiveness is proportional to their brightness;
thus for any two flashing fireflies the less brighter will
move towards the brighter one. The attractiveness is
proportional to the brightness and they both decrease as
their distance increases. If there is no brighter firefly than
a particular one it will move randomly [7].

3) The brightness of a firefly is affected or determined
by the landscape of the objective function. On the first
rule, each firefly attracts all the other fireflies with weaker
flashes [8]. All fireflies are unisex so that one firefly will
be attracted to other fireflies regardless of their sex.

Secondly, attractiveness is proportional to their brightness
which is reversely proportional to their distances.

For any two flashing fireflies, the less bright one will
move towards the brighter one. The attractiveness is
proportional to the brightness and they both decrease as
their distance increases. If there is no brighter one than a
particular firefly, it will move randomly. Finally, no firefly
can attract the brightest firefly and it moves randomly.

The brightness of a firefly is affected or determined by
the landscape of the objective function. For a
maximization problem the brightness can simply be
proportional to the value of the objective function. Other
forms of brightness can be defined in a similar way to the
fitness function in genetic algorithms based on these three
rules.

3.1 Attractiveness

In the firefly algorithm there are two important issues:
the variation of light intensity and the formulation of the
attractiveness. For simplicity, we can always assume that
the attractiveness of a firefly is determined by its
brightness which in turn is associated with the encoded
objective function [9].

In the simplest case for maximum optimization
problems, the brightness I of a firefly at a particular
location x can be chosen as I(x) corresponding to f(x).
However, the attractiveness β is relative; it should be seen
in the eyes of the beholder or judged by the other fireflies.
Thus, it will vary with the distance rij between firefly i and
firefly j. In addition, light intensity decreases with the
distance from its source and light is also absorbed in the
media so we should allow the attractiveness to vary with
the degree of absorption. In the simplest form, the light
intensity I(r) varies according to the inverse square law

  2/rIrI s where sI is the intensity at the source. For a

given medium with a fixed light absorption coefficient, the
light intensity I varies with the distance r .

That is
reII  0 , where I0 is the original light

intensity. In order to avoid the singularity at

r = 0 in the expression   2/rIrI s the combined

effect of both the inverse square law and absorption can be
approximated using the following Gaussian form:
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Sometimes we may need a function which decreases
monotonically at a slower rate. In this case we can use the
following approximation:
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At a shorter distance, the above two forms are
essentially the same. This is because the series expansions
about r = 0 have the form:
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and are equivalent to each other up to the order of 0(r3).
Since a firefly’s attractiveness is proportional to the

light intensity seen by adjacent fireflies, we can now
define the attractiveness β of a firefly by:
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where β0 is the attractiveness at r = 0. As it is often
faster to calculate 1/ (1 + r2) than an exponential function,
the above expression, if necessary, can conveniently be

replaced by 2
0
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 . Equation (9) defines a

characteristic distance


1
 over which the

attractiveness changes significantly from 0 to
1

0
e .

In the implementation, the actual form of attractiveness

function  r can be any monotonically decreasing

function such as the following generalized form:

 
mrer   0 with 1m (10)

For a fixed , the characteristic length becomes

11   m as m .

Conversely, for a given length scale  in an
optimization problem, the parameter 

can be used as a typical initial value. That is m


1
 .

3.2 Distance and Movement

The distance between any two fireflies i and j at ix and

jx is the Cartesian distance given by as follows:
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Where ikx is the k-th component of the spatial

coordinate ix of i-th firefly as shown in fig.2 the

movement of a firefly i is attracted to another more
attractive firefly j is determined by
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Where the first term is the current position of a firefly,
the second term is used for considering a firefly’s
attractiveness to light intensity seen by adjacent fireflies
and the third term is used for the random movement of a
firefly in case there are not any brighter ones.

The coefficient α is a randomization parameter
determined by the problem of interest, while rand is a
random number generator uniformly distributed in the
space [0, 1]. As we will see in this implementation of the
algorithm, we will use β0 =0.1, α Є [0, 1] and the
attractiveness or absorption coefficient γ= 1.0 which 
guarantees a quick convergence of the algorithm to the
optimal solution.

Fig. 1. Flow chart of firefly algorithm.



Fig. 2. Movement of fireflies.

4. Genetic Algorithm
The genetic algorithm is a search algorithm based on

the mechanics of natural selection and natural genetics
[10]. As summarized by Tomassini [11], the main idea is
that in order for a population of individuals to adapt to
some environment, it should behave like a natural system.
This means that survival and reproduction of an individual
is promoted by the elimination of useless or harmful traits
and by rewarding useful behavior. The genetic algorithm
belongs to the family of evolutionary algorithms, along
with genetic programming, evolution strategies, and
evolutionary programming. Evolutionary algorithms can
be considered as a broad class of stochastic optimization
techniques. An evolutionary algorithm maintains a
population of candidate solutions for the problem at hand.
The population is then evolved by the iterative application
of a set of stochastic operators. The set of operators
usually consists of mutation, recombination, and selection
or something very similar [12].

Globally satisfactory, if sub-optimal, solutions to the
problem are found in much the same way as populations in
nature adapt to their surrounding environment.
Using Tomassini’s terms, genetic algorithms (GAs)
consider an optimization problem as the environment
where feasible solutions are the individuals living in that
environment.

The degree of adaptation of an individual to its
environment is the counterpart of the fitness function
evaluated on a solution. Similarly, a set of feasible
solutions takes the place of a population of organisms.

An individual is a string of binary digits or some other
set of symbols drawn from a finite set. Each encoded
individual in the population may be viewed as a
representation of a particular solution to a problem. In
general, a genetic algorithm begins with a randomly
generated set of individuals. Once the initial population
has been created, the genetic algorithm enters a loop [13].
At the end of each iteration, a new population has been
produced by applying a certain number of stochastic
operators to the previous population. Each such iteration is
known as a generation [14].

The evolutionary cycle can be summarized as follows:

Generation = 0
Seed population
While not (termination condition) do
Generation = generation + 1
Calculate fitness
Selection
Crossover
Mutation
end while

Fig.3. Simple flow chart of the GA

5. Genetic Algorithms Assisted by firefly algorithm

The hybrid approach executes the two systems
simultaneously and selects P individuals from each system
for exchanging after the designated N iterations. The
individual with larger fitness has more opportunities of
being selected. The main steps of the hybrid approach are
depicted below:
1. Initialize GA and FA subsystems.
2. Execute GA and FA simultaneously.
3. Memorize the best solution as the final solution and stop
if the best individual in one of the two subsystems satisfies
the termination criterion.
4. Perform the hybrid process if generations could be
divided exactly by the designated number of iterations N.
Select P individuals from both sub-systems randomly
according to their fitness and exchange. Go to step 3.

6. Simulation Results
The proposed method in this paper is been compared to

the GA and the FA by applying to two tests systems (case
1 and case2).

Case 1
First, proposed algorithm is tested for the 6-generator

system. This system has a single quadratic cost function
for each generator. As a sample system, IEEE 30-bus
system, which has 6-generator, is chosen. Total power
demand D is set to 189.2 MW.

Case 2
Second, proposed algorithm is tested for the 7-

generator, IEEE 57 bus system [15], which consists of 7
thermal generators.



The values of fuel cost coefficients are given in Table
1,Total load demand of the system is 1250.8 (MW), and 7
generators should satisfy this load demand economically.
The results obtained from the proposed method are shown
in Tables 4-5. This method has been tested 25 times.

Two test cases are considered, specifically, the first test
case ignores the transmission losses. The second test case,
the transmission line losses are calculated and maintained
constant (PL = 19.06MW).

First Variant
The first test case ignores the transmission

losses (PL = 0.00 MW), table 4, figure 4.

Second Variant
Transmission line losses are calculated and maintained

constant (PL =19.06MW), table 5, figure 5.

Table 1 Generators parameters of the IEEE 30 Bus

Bus
min
Gip max

Gip Cost coefficients

(MW) (MW) ia ib ic

PG1 50 200 0.00375 2.00 0.00
PG2 20 80 0.01750 1.75 0.00
PG5 15 50 0.06250 1.00 0.00
PG8 10 35 0.00834 3.25 0.00
PG11 10 30 0.02500 3.00 0.00

PG13 12 40 0.02500 3.00 0.00

Table 2 Generators parameters of the IEEE 57 Bus

Bus
min
Gip max

Gip Cost coefficients

(MW) (MW) ia ib ic

PG1 0.0 575.88 0.01 0.30 0.20
PG2 0.0 100.00 0.01 0.30 0.20
PG3 0.0 140.00 0.01 0.30 0.20
PG6 0.0 100.00 0.01 0.30 0.20
PG8 0.0 550.00 0.01 0.30 0.20
PG9 0.0 100.00 0.01 0.30 0.20
PG12 0.0 410.00 0.01 0.30 0.20

Table 3. EPD results for load 189.2 (30 bus)

FA BGA RGA GA-FA

PG1’(MW) 65.010627 44.839351 50.0012 43.8139
PG2(MW) 19.957552 70.894148 39.9898 57.1967
PG3(MW) 23.444470 12.426175 25.0067 21.7218
PG4(MW) 40.818984 21.038463 36.3094 29.8614
PG5(MW) 11.124227 2.104106 17.5255 14.9448
PG6(MW) 22.813034 30.062627 9.99999 15.5570
PD(MW) 189.2 189.2 189.2 189.2

Cost
($/h)

589.841591 574.154619 561.838 553.633

Table 4 Results of GA-FA compared with GAmatpower,
GA and FA for the IEEE 57-bus system, (PL = 0.00 MW)

Table 5 Results of GA-PSO compared with GAMatpower,
GA and FA for the IEEE 57-bus system. With the constant

losses =19.06
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Fig. 4 The generation cost evolution during The iterative
procedure with the losses=0

Variable GAMatpower
OPF[15]

GA FA GA-FA

P1(MW) 262.352 269.9591 305.12976 301.49463
P2(MW) 100.000 98.8967 99.078087 74.938124
P3(MW) 140.000 136.554 131.99147 117.55363
P4(MW) 100.000 91.9394 97.704647 99.231235
P5(MW) 275.537 245.5221 276.20137 295.46947
P6(MW) 99.9999 98.9920 93.520327 48.916911
P7(MW) 272.265 308.1162 246.76597 281.84984

Totalfuel
cost($/h)

3062.89 3044.442 3042.398 3016.627

PL(MW) 0.00 0.00 0.00 0.00

Variable GAMatpower
OPF[15]

GA FA GA-FA

P1 (MW) 277.149 289.04 343.399 262.296
P2 (MW) 100.000 96.851 99.349 96.4467
P3 (MW) 140.000 134.83 134.872 138.410
P4 (MW) 100.000 87.664 97.4055 99.0715
P5 (MW) 277.282 303.55 219.134 292.827
P6 (MW) 100.000 95.319 99.6873 87.8319
P7 (MW) 275.403 260.98 275.176 291.326

Total fuel
cost ( $/h)

3173.982 3185.44 3171.99 3166.72

PL (MW) 19.06 19.06 19.06 19.06
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Fig. 5 The generation cost evolution during the iterative
Procedure, with the constant losses= 19.06MW

7. Conclusion
Firefly (FA) is a relatively recent heuristic search

method that is based on the idea of collaborative behaviour
in biological populations. FA is similar to the Genetic
Algorithm (GA) in the sense that they are both population-
based search approaches and that they both depend on
information sharing among their population members to
enhance their search processes using probabilistic rules.

The objective of this research is the combination of
these two methods to improve their effectiveness (solution
quality),

The feasibility of the proposed algorithm is
demonstrated on two systems IEEE 30 bus and IEEE 57-
bus. The results show that the proposed algorithm is
applicable and effective in the solution of ELD problems
that consider nonlinear characteristics of power systems.
GA-FA can generate an efficiently high quality solution
and with more stable convergence,

The advantage of GA-FA over other method is
modelling flexibility, sure and fast convergence.
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