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Abstract - In this paper a Differential Evolution with 

Global and Local Neighborhood (DEGL) was applied to Non 

– convex Economic Load Dispatch. Many nonlinear 

characteristics of the generator such as ramp rate limits, 

prohibited operating zone, and non-smooth cost functions are 

considered using the above presented method in practical 

generator operation. The feasibility of the method is 

demonstrated for three different systems, and it is compared 

with other DE variants in terms of the solution quality and 

computation efficiency. The experimental results show that the 

above method was indeed capable of obtaining higher quality 

solutions efficiently in ED problems. 

  

Index Terms— Economic dispatch problem, Differential 

Evolution with Global and Local Neighborhood, Prohibited 

operating zones, valve-point loading effect. 

I. INTRODUCTION 

CARCITY of energy resources, increasing power 

generation cost and ever-growing demand for 

electric energy necessitates optimal economic dispatch 

in today‟s power systems. Economic Load Dispatch 

(ELD) is an important optimization task in power system 

operation. The main objective of Economic Load 

Dispatch is the allocation of power generation to 

different generating units so as to minimize the 

operating cost while satisfying various physical 

constraints. This makes the ELD problem a large-scale 

non-Linear constrained optimization problem. Typically, 

the cost function of each generator has been 

approximately represented by a single quadratic function 

where the valve-point effects and multiple fuels are 

usually ignored. This would be often introducing 

inaccuracy into the dispatch result. 

Because of physical limitations of the power 

generators, a generating unit may have prohibited 

operating zones between the minimum and maximum 

power outputs. Generators that operate in these zones 

may experience amplification of vibrations in their shaft 

bearings, which should be avoided in practical 

application. On the other hand, due to the fact that unit 

generation output cannot be changed instantaneously, 

the unit in the actual operating processes is restricted by 

its ramp rate limit [3, 5]. Moreover, the units of real 

input–output characteristics include higher order non-

linearities and discontinuities owing to the valve point 

effect, which has been modeled as a circulating 

commutated sinusoidal function in [6, 7]. The ED 

problem with the above considerations is usually a non-

smooth/non-convex optimization problem [3, 4]. 

Conventional techniques offer good results but when the 

search space is non-linear and it has discontinuities they 

become very complicated with a slow convergence ratio 

and not always seeking to the optimal solution. The 

increase of the accuracy of the cost function usually 

results in higher nonlinear, non-smooth and non- convex 

function where the classical or gradient based methods 

cannot be applied [1].Therefore, the cost curve of a 

generator should not be too much simplified for 

practical power system operation. This kind of 

optimization problem is very hard, if not impossible, to 

solve using traditionally deterministic optimization 

algorithms.  

Many mathematical assumptions-such as convex, 

quadratic, and differentiable objective and linear or 

linearized objective and constraints were required to 

simplify the problem. Hence the true global optimum of 

the problem could not be reached easily. New numerical 

methods are needed to cope with these difficulties, 

especially those with high-speed search to the optimal 

and not being trapped in local minima. An important 

goal in the economic dispatch area is the utilization of 

improved models for the generator production cost 
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curves, with the ability of capturing a better cost-power 

output relationship. As a result, cost functions that 

consider valve point loading effects [8]-[11], fuel 

switching [28], [29], [13], and prohibited operating 

zones [14]-[17] have been proposed. These improved 

models generally increase the level of complexity of the 

resulting optimization problem. 

 The economic dispatch problem has been solved via 

many traditional optimization methods, including: 

Gradient-based techniques, Newton method, Linear 

programming, and Quadratic programming. The 

Lagrangian multiplier method [1], which is generally 

used in the ED problem, is no longer directly applicable. 

Such classical optimization methods are highly sensitive 

to starting points and often converge to local optimum or 

diverge all together. Newton based algorithms have 

difficulty with handling a large number of inequality 

constraints [29]. Other methods like Lambda Iteration 

Method (LIM), Gradient Search (GS), Linear, Quadratic 

and Dynamic Programming (LP, QP, DP), and Newton 

Methods (NM), gained a lot of popularity in the last four 

decades.  

 Lin et al. [20] presented integrated evolutionary 

programming, Tabu search (TS) and quadratic 

programming (QP) methods to solve non-convex ED 

problems. This integrated artificial intelligence method 

also requires two-phase computations. Lin et al. 

developed an improved TS algorithm for ED with non-

continuous and non-smooth cost functions, but the 

prohibited zones and system spinning reserve are 

relaxed in this work. Methods based on artificial 

intelligence techniques, such as artificial neural 

networks, have also been applied successfully and are 

reported for example in [17]. Similarly, EP has also 

successfully to solve for ED problems. However, its 

long execution time is its main disadvantage. 

 Differential Evolution developed by Storn and Price is 

one of the excellent evolutionary algorithms. 

Differential Evolution (DE) is one of the most recent 

population-based techniques. The DE algorithm has 

been applied to various fields of power system 

optimization. DE is an extremely powerful yet simple 

evolutionary algorithm that improves a population of 

individuals over several generations through the 

operators of mutation, crossover and selection. 

Differential evolution presents great convergence 

characteristics and requires few control parameters [21], 

[30], [31], which remain fixed throughout the 

optimization process and need minimum tuning. 

  The purpose of this paper is to present a solution 

methodology for the economic power dispatch problem 

using the Differential Evolution with Global and Local 

Neighborhood when non-convex, non-continuous and 

highly non-linear cost functions are used. This is the 

case when valve point loading effects, and prohibited 

operating zones are considered. 

II. PROBLEM FORMULATION 

The ELD problem is about minimizing the fuel cost of 

generating units for a specific period of operation so as 

to accomplish optimal generation dispatch among 

operating units and in return satisfying the system load 

demand, generator operation constraints with ramp rate 

limits and prohibited operating zones. 

The objective of the classical economic dispatch is to 

minimize the total system cost by adjusting the power 

output of each of the generators connected to the grid. 

The total system cost is modeled as the sum of the cost 

function of each generator, which also intakes the 

generating limits. That is to operate each generator 

within the minimum and maximum values. The 

objective of ED is to determine the generation levels for 

all on-line units which minimize the total fuel cost, 

while satisfying a set of constraints 

A. ECONOMIC DISPATCH (ED) PROBLEM 

FORMULATION 

The fuel cost functions of the generating units 

are usually described by a quadratic function of power 

output. Thus the objective function is given as[23], 
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2
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Where 

          ai, bi, ci - the fuel cost coefficients of the i
th
 unit 

          N- Number of generating units in the system 

          Fi (Pgi) - total fuel cost 

[1] Power balance constraint 
N

i

lossDgi PPP
1

MW               (2) 

Where, 

        PD – Total power demand 

        PL – Total network losses 

[2] Capacity limits constraints 

The generation outputs Pgi are restricted to be 

within the lower and upper operating limits    Pg, min and 

Pg, max 
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Where, 

       Pi
min

 – minimum generation limit 

       Pi
max 

– maximum generation limit 

B. VALVE POINT EFFECT 

Large steam turbine generators will have a 

number of steam admission valves that are opened in 

sequence to obtain ever–increasing output of the unit. 

As the unit loading increases the input to the unit 

increases and the incremental heat rate decreases 

between the opening points for any two valves. 

This “valve point” effect which leads to non-

smooth, non-convex input-output characteristics, to be 

solved using the heuristic techniques. The valve point 

effect is incorporated in ED problem by superimposing 

the sine component model on the quadratic cost curve 

which is given below [3], 
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Where 

          Fi*(Pi)–fuel cost if i
th
 unit with valve point effect                                                                                                                                        

          ei, fi – the fuel cost coefficients of the i
th
 unit with 

valve point effect 

C. RAMP RATE LIMITS 

One of unpractical assumption that prevailed for 

simplifying the problem in many of the earlier research 

is that the adjustments of the power output are 

instantaneous. However, under practical circumstances 

ramp rate limit restricts the operating range of all the 

online units for adjusting the generator operation 

between two operating periods. The generation may 

increase or decrease with corresponding upper and 

downward ramp rate limits. The Ramp-Up and Ramp-

Down rate limits of i
th
 generator are given by, 

As generation increases, 

         iii URPP 0                                            (5)                                                        

As generation decreases, 

        iii DRPP 0                                      (6) 

Otherwise we can written as,  
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Where, 

           Pi is the current output power  

            Pi0 is the output power in the previous interval of 

the i
th
 generator unit 

           URi is the up-ramp rate limit of the i
th
 generator 

and 

           DRi is the down-ramp rate limit of the i
th
 

generator 

D.  PROHIBITED OPERATING ZONES 

The generating units may have certain ranges 

where operation is restricted on the grounds of physical 

limitations of machine components or instability e.g. due 

to steam valve or vibration in shaft bearings. 

Consequently, discontinuities are produced in cost 

curves corresponding to the prohibited operating zones. 

For unit with POZs, the feasible operating zones can be 

described as follows: 
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III. DIFFERENTIAL EVOLUTION  

  The differential Evolution algorithm (DE) is a 

population based algorithm like genetic algorithm using 

the similar operators; crossover, mutation and selection. 

The main difference in constructing better solutions is 

that genetic algorithms rely on crossover while DE relies 

on mutation operators. This main operation is based on 

the differences of randomly sampled pairs of solutions 

in the population. 

            The algorithm uses mutation operation as a 

search mechanism and selection operation to direct the 

search toward the prospective regions in the search 

space. The DE algorithm also uses a non uniform 

crossover that can take child vector parameters from one 

parent more often than it does from other [23, 27]. By 

using the components of the existing population 

members to construct trial vectors, the recombination 

(crossover) operator efficiently shuffles information 

about successful combinations, enabling the search for a 

better solution space. 

The highlights of Differential Evolution (DE) are, 

 No derivatives are used 

 Very few parameters to set 

 A simple and apparently very reliable method. 

DE is reported [22]-[32] to be the only 

algorithm, which consistently found the optimal 

solution, and often with fewer function 

evaluations than the other direct search methods 

on benchmark nonlinear functions 

 Simple vector subtraction to generate „random‟ 

direction 

 More variation in population (because solution 

has not converged yet) leads to more varied 

search over solution space 

 Size and direction 



 

 The main steps of the DE algorithm are given below, 

A. INITIALIZATION 

     Initialization generates initial population P0 which 

contains Np individuals x
0, 

i, 1 ≤ i ≤ Np. 
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Where, [bj
U
,bj

L
] is the search space of the j

th
 

optimization parameter; α
i
j is a real random number      

but not necessarily uniform in the range [0, 1] 

B. MUTATION 

The mutation operator creates mutant vectors by 

perturbing a randomly selected vector xa with the 

difference of two other randomly selected vectors xb and 

xc , 
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        Where xa, xb and xc are randomly chosen vectors 

among the NP population, and a ≠ b ≠ c. xa, xb and      

xc are selected a new for each parent vector. The scaling 

constant “F” is an algorithm control parameter used to 

adjust the perturbation size in the mutation operator and 

improve algorithm convergence. 

C. CROSSOVER 

The crossover operation generates trial vectors xi
‟‟ 

by 

mixing the parameters of the mutant vectors xi
‟
 with the 

target vectors xi according to a selected probability 

distribution, 

           
otherwise
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where i=1, …, NP and j=1,…, D; q is a randomly chosen 

index  1,…,Np that guarantees that the trial vector gets 

at least one parameter from the mutant vector; ρj s a 

uniformly distributed random number within [0 , 1] 

generated anew for each value of j. The crossover 

constant CR is an algorithm parameter that controls the 

diversity of the population and aids the algorithm to 

escape from local minima. xj,i
„(G)

 and xj,i
”(G)

 are the 

j
th
 parameter of the i

th
 target vector, mutant vector, and 

trial vector at generation G, respectively.  

D. SELECTION 

The selection operator forms the population by 

choosing between the trial vectors and their 

predecessors (target vectors) those individuals that 

present a better fitness are more optimal. 

            
otherwise
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Where i=1.., NP. 

 

This optimization process is repeated for several 

generations, allowing individuals to improve their 

fitness as they explore the solution space in search of 

optimal values. 

            DE has three essential control parameters: the 

scaling factor (F), the crossover constant (CR) and the 

population size (NP). The scaling factor is a value in the 

range [0, 2] that controls the amount of perturbation in 

the mutation process. The crossover constant is a value 

in the range [0, 1] that controls the diversity of the 

population. The population size determines the number 

of individuals in the population and provides the 

algorithm enough diversity to search the solution space. 

            The most common method used to select control 

parameters is parameter tuning. Parameter tuning adjusts 

the control parameters through testing until the best 

settings are determined. Typically, the following ranges 

are good initial estimates: F = [0.5, 0.6], CR = [0.75, 

0.90], and NP = [3*D, 8*D] in [38].           

 In order to avoid premature convergence, F or 

NP should be increased, or CR should be decreased. 

Larger values of F result in larger perturbations and 

better probabilities to escape from local optima, while 

lower CR preserves more diversity in the population thus 

avoiding local optima. 

E. DE STRATEGIES 

Depending on the way the parent solutions are 

perturbed to generate a trial vector, there exist many 

trial vector generation strategies and consequently many 

DE variants.  

 

 DE/best/1 

 DE/best/2 

 DE/rand/1/bin 

 DE/rand/2 

 DEGL 

 

F.DEGL 
 Only in 2006, a new DE-variant, based on the 

neighborhood topology of the parameter vectors was 

developed to overcome some of the disadvantages of the 

classical DE versions. The authors in proposed a 

neighborhood-based local mutation operator that draws 

inspiration from PSO. For each member of the 

population a local mutation is created by employing the 

fittest vector in the neighborhood of that member and 

two other vectors chosen from the same neighborhood 

[26].  

 



 

The model may be expressed as, 
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where the subscript nbest indicates the best vector in the 

neighborhood of iX


 and p
th
, q

th 
(i − k, i + k).  

 A vector‟s neighborhood is the set of other parameter 

vector‟s that connected and it considers their experience 

when updating its position. The graph of 

interconnections is called the neighborhood structure. In 

the local model, whenever a parameter vector points to a 

good region of the search space, it only directly 

influences its immediate neighbors, its second degree 

neighbors will only be influence after those directly 

connected to them become highly successful themselves. 

Thus, there is a delay in the information spread through 

the population regarding the best position of each 

neighborhood. Therefore, the attraction to specific 

points is weaker, which prevents the population from 

getting trapped in local minima. 

IV. SIMULATION RESULTS 

This section presents the computation results of 

ED problem solved by Differential Evolution with 

Global and Local Neighborhood for 10, 13and 15 unit 

power systems. The non-smooth economic load dispatch 

(ELD) problem has been solved by variants of   DE 

algorithm and is implemented by MATLAB program on 

Pentium IV, 3.00 GHz personal computer. In order to 

simulate the valve point effects of the generating units, a 

recurring sinusoid component is added with the 

objective function of fuel cost. However, many practical 

constraints of generators, such as ramp rate limits, 

prohibited operating zones, and power loss are also 

considered in the optimization process. The population 

size N =500, the scaling factor F = 0.9 and the crossover 

factor C = 0.9 are considered for the study. These values 

were determined by parameter setting through trial and 

error method. Large number of population is used to 

allow the algorithm to search the solution space 

thoroughly but at the expense of computational time. 
 

A. CASE STUDY I 
This case study consisted of 10 thermal units of 

generation with the effects of valve-point loading, Ramp 

rate limits, Prohibited operating zones, equality and 

inequality constraints as in [2], [30]. In this case, the 

load demand expected to be determined was 

PD=2000MW. The comparative results of DE are shown 

in the Table I. 

Table I 

CONVERGENCE RESULTS FOR 10 

GENERATOR SYSTEMS 
Load demand=2000MW 

Unit 

MW 

DE/best 

/1 

DE/ 

best/2 

DE/rand

/1/bin 

DE/ 

rand/2 
DEGL 

Unit 1 212.087 173.299 222.146 183.633 195.193 

Unit 2 350.335 293.045 376.980 268.188 286.109 

Unit 3 340 339.969 340 299.552 340 

Unit 4 300 263.943 300 300 300 

Unit5 243 243 243 243 243 

Unit 6 160 160 160 160 160 

Unit 7 130 130 130 130 130 

Unit 8 120 120 120 120 120 

Unit 9 80 80 80 80 80 

Unit 10 142.503 274.902 106.151 293.549 223.236 

Ploss 70.92 78.15 78.27 77.92 77.53 

Fuel cost 

($/hr) 

126342.

398 

126737.

619 

128222.

622 

127543.9

66 

124916.5

73 

Total power 

output 
2077.92 2078.15 2078.27 2077.92 2077.53 

 

B. CASE STUDY II 
This case study consisted of 13 thermal units of 

generation with the effects of valve-point loading, Ramp 

rate limits, Prohibited operating zones, equality and 

inequality constraints as in [21]. In this case, the load 

demand expected to be determined was PD=1800MW. 

The comparative results of DE are shown in the Table II. 
 

Table II 

CONVERGENCE RESULTS FOR 13 

GENERATOR SYSTEMS 
Load Demand=1800MW 

Unit 

MW 

DE/ 

best/1 

DE/ 

best/2 

DE/rand/

1/bin 

DE/ 

rand/2 
DEGL 

Unit 1 399.60 400.685 213.886 406.888 226.501 

Unit 2 182.54 29.844 198.338 41.017 337.490 

Unit 3 32.09 47.887 37.774 191.190 192.635 

Unit 4 180 180 180 86.810 83.926 

Unit 5 180 180 180 180 180 

Unit 6 82.352 180 180 86.810 82.593 

Unit 7 82.352 180 180 180 180 

Unit 8 180 180 180 180 180 

Unit 9 180 180 180 180 83.170 

Unit 10 120 55.592 40 59.380 57.139 

Unit 11 55.586 40 120 59.380 55.173 

Unit 12 55 77.340 55 74.260 71.030 

Unit 13 70.462 68.651 55 74.260 70.336 

Fuelcost 

($/hr) 

16377.

271 

16373.9

98 

16652.9

74 

16174.4

21 
16149.012 

Total 

power 

output 

1800 1800 1800 1800 1800 

 



 

C. CASE STUDY III 
This case study consisted of 15 thermal units of 

generation with the effects of valve-point loading, Ramp 

rate limits, Prohibited operating zones, equality and 

inequality constraints as in [25]. In this case, the load 

demand expected to be determined was PD=2630MW. 

The comparative results of DE with different strategies 

are shown in the Table III. 
 

Table III 

CONVERGENCE RESULTS FOR 15 

GENERATOR SYSTEMS 
Load Demand=2630MW 

Unit 

MW 

DE/ 

best/1 

DE/ 

best/2 

DE/rand/ 

1/bin 

DE/ 

rand/2 
DEGL 

Unit 1 399.304 455 431.846 455 455 

Unit 2 455 455 455 455 455 

Unit 3 130 130 130 130 130 

Unit 4 130 130 130 130 130 

Unit 5 198.054 236.935 260.659 235.371 240.930 

Unit 6 460 460 460 460 460 

Unit 7 465 465 465 465 465 

Unit 8 60 60 60 60 60 

Unit 9 25 25 25 25 25 

Unit 10 25 25 25 28.742 25 

Unit 11 80 80 80 77.764 76.093 

Unit 12 75.636 80 80 80 80 

Unit 13 85 25 25 25 25 

Unit 14 15 15 15 15 15 

Unit 15 15 15 15 15 15 

Fuel cost 

($/hr) 

32913.4

56 

32548.2

49 

32665.3

76 

32548.2

89 
32548.154 

Total 

Power 

Output 

2630 2630 2630 2630 2630 

 

From the table I, II and III it is proved that the fuel cost 

obtained by computation of DEGL method for economic 

dispatch problem with multiple constraints were lesser than the 

fuel cost obtained by other strategies of Differential Evolution. 

V. CONCLUSION 

This paper reported and compares the performance of 

different DE strategies to solve the ED problem with the 

generator constraints. The DE algorithm with Global and 

Local Neighborhood has been demonstrated to have superior 

features, including high-quality solution, stable convergence 

characteristic, and good computation efficiency. Many 

nonlinear characteristics of the generator such as ramp rate 

limits, valve-point effect, prohibited operating zones and non-

smooth cost functions are considered for practical generator 

operation in this paper. The results show that the presented 

technique in DE was indeed capable of obtaining higher 

quality solution efficiently in ED problem.  
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