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Abstract - The paper presents design of near-time-optimal 
position control of electrical drive with permanent 
magnet synchronous motor.  The principles of time-
optimal-control and forced dynamic control are 
combined to form a novel method of achieving a nearly 
time optimal position control performance in drives 
equipped with controllers enabling close following of 
time varying reference position inputs from ‘near time 
optimal’ model.  For compensation of the dynamic lag 
between model generated position and the real drive 
position response a precompensator is implemented.  
The simulations and experimental results show 
possibility to achieve ‘near time optimal’ behavior of the 
drive. 
 
Index Terms - Vector control, Feedback linearisation, Time 
optimal control, Permanent magnet synchronous motor. 
 
 

I. INTRODUCTION 

In many applications of position controlled 
electrical drives it is desirable to achieve the 
demanded position in the minimum possible time 
within the limitations imposed by available hardware.  
This can be achieved by means of the ‘time optimal 
control’, which is a form of ‘bang-bang’ control in 
which control variable switches between its saturation 
limits.  Such control system then suffers from limit 
cycling with no damping upon approaching the 
reference position.  To solve this problem some 
modifications of the ‘time optimal control’ were 
introduced.  Small price to pay for the limit cycle 
elimination measures and the assumption of zero 
friction is that the settling time is increased slightly 
with respect to the theoretical one and therefore the 
phrase ‘near time optimal’ is introduced.  

For the development of suitable control system for 
changing the position of one degree of freedom the 
principles of forced dynamic control [1], [2] and time 

optimal control [3], [4] are combined to form ‘near 
time optimal’ control algorithm.  The dynamic 
behaviour of the drive is further improved by adding 
of precompensator into control system. 

Forced dynamic control, based on the principles of 
vector control [5], [6] and feedback linearisation [7], 
[8], is a relatively new method for control of AC 
drives.  In the permanent magnet synchronous motor 
(PMSM) application, mutual orthogonality of the 
torque producing stator current vector and rotor 
magnetic flux vector is maintained as in conventional 
vector control.  The control system has a shaft 
sensorless inner speed control loop utilising a speed 
estimation algorithm based on current and voltage 
measurements.  This loop has linear first order 
dynamics with an adjustable time constant. 

The reason for utilising this control method of ac 
drives is that it is relatively easy to design the control 
system to closely follow a time varying position 
reference input with predictable tracking errors [9], 
[10].  An outer position control loop with an 
adjustable gain is then closed via a suitable position 
measurement.  The system automatically counteracts 
load torque by producing a nearly equal and opposite 
control torque component, provided by a load torque 
observer. 

The system is made almost time optimal by the 
novel use of a software-implemented model of a 
closed-loop time optimal control system of the 
mechanism, utilising a non-linear switching boundary 
in the state space which adapts to the load torque 
estimate from the load torque observer.  Control 
chatter is eliminated from the model by introduction 
of a boundary layer and a linear term to the switching 
boundary equation.  The position output from this 
model forms the reference input to the outer position 
control loop, which responds with a relatively small 
position error.  It is important to note that the drive 
position controller does not have to be ‘near time 
optimal’.  For further improvement of the dynamical 



response the dynamic lag precompensator was added.  
Precompensator eliminates the dynamic lag between 
the continuously varying model output and the actual 
rotor position so that the motion of the real 
mechanism is ‘near time optimal’ through being 
slaved precisely to that of the model.  The experiment 
results presented show good agreement with 
theoretical predictions. 

 
 

II. NEAR-TIME-OPTIMAL CONTROL 
 
2.1. Control System Structure 

Time optimal control theory was introduced via 
‘Maximum Principle’ of L. S. Potryagin, the most 
important result of which is that the control function 
of an nth order plant subject to the control saturation 
constraints, maxuu ≤ , is a ‘bang-bang’ control 

function switching between the extreme values, 
 and having a finite number of maxu± 1n −  

switches, where n is the order of the plant [3].  The 
mathematical expression for the time-optimal 
switching boundary in the state space needed for 
closed-loop implementation is rather complicated for 
plants of greater than second order.   

However switching boundaries yielding time 
optimal control for first or second order plants are 
easily obtained and applicable to many electrical drive 
applications.  Therefore a reduced second order model 
is used here to derive a closed-loop time optimal 
controller.  The drawback with this approach, 
however, is that any un-modelled dynamic lags in the 
system might give rise to unacceptable overshooting 
in the transient response and limit cycling behavior 
about a constant set-point.  The proposed exploitation 
of a real time model of the reduced order time optimal 
control system circumvents this problem.  The 
behavior of the closed-loop time optimal control 
model can be made free of any overshooting or limit 
cycling because the plant of this model is well known.  
The position response of this model then provides the 
reference input for the drive control loop.  The 
stability of the closed-loop system, which structure is 
shown in Fig.1, then depends entirely on the drive 
control loop. 

It is assumed that rotor angle demand, ( )tmϑ , is 

piecewise constant.  The time optimal switching 
boundary is dependent on the load torque and hence 
its estimate is fed back to the closed-loop time-

optimal-control model.  The fact that the drive control 
loop is not based on a time optimal control law will 
not prevent the overall system from approaching 
closely to time-optimality.  All that is required is for 
the drive control loop to make the rotor angle, ( )trϑ  
follow ( )tmϑ  with a small error such that 

( ) ( ) dm t ϑ∆−ϑ

dϑ

s

r t <<ϑ , where  is the change of 

.  If, however, too large a value of  was 

applied, the motor would be forced into its torque 
saturation limits and the actual settling time would not 
only be longer than T , but also longer than T  due 

to the sub-time-optimality of the drive control loop. 
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Fig. 1.  Basic control system structure 

In the system of Fig. 1, a step input is never 
applied to the drive control loop.  Instead, )  is 

continuously varying and is very close to the true time 
optimal response of the drive.  In making  follow rϑ

( )t , the drive control loop automatically causes 

the motor torque at first to swing between values 
approaching the maximum limits to achieve near-
time-optimal control.  

 
 

2.2. Closed-Loop Time-Optimal-Control Model 

Fig. 2 shows a block diagram of the double 
integrator plant model upon which the closed-loop 
time optimal control model is developed. 
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Fig. 2.  Double integrator model as a base for 
 near time optimal control 



 The model control law is developed by 
considering the phase-portrait for maxm uu ±=  , 

where,  is the maximum available control 

acceleration from the electrical drive.  In this case, the 
plant state differential equations are: 

maxu

( ) maxelLel
r

m

mm

,ˆ
J~
1

Γ≤ΓΓ−Γ=ω

ω=ϑ

&

&

 
(1a,b) 

The general state trajectory is the solution of the 
state trajectory differential equation obtained by 
dividing (1b) by (1a): 
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For constant electrical torque and constant load 
torque equation (2) can be solved analytically yielding 
the trajectory equation. 

( ) ( ) ( ) ( )[ ]0~2
J~0t 2

m
2
m

Lel
mm ω−ω

Γ−Γ
+ϑ=ϑ    (3) 

In this initial investigation, the load torque, , is 

assumed constant and the demanded rotor angle, ϑ , 

is constant.  The time optimal control of such a plant 
has one switch during the period of the state trajectory 
leading to the desired state. 
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Fig. 3.  Switching boundary and close-loop phase portrait 

In this case, the time optimal switching boundary 
comprises two parabolic segments coincident with the 
two trajectories leading directly to the origin of the 
error phase plane for maxel Γ+=Γ  and maxel Γ−=Γ .  

These are sketched as a function of position errer in 
Fig. 3a for , together with the closed-loop phase 

portrait in Fig. 3b.  
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For digital implementation, control chatter and 
oscillations about the phase-plane origin are 
eliminated by replacement of the switching boundary 
by a boundary layer and introduction of a linear 
velocity feedback term into the model control law, 
which is as follows: 
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where ( )
( )





≥

<
=

1eKforesign

1eKforKe
K,esat .  Equation (4) 

is used to create output of the real time closed loop 
near-time-optimal control model. 

Another important feature of the system is the 
representation of the motor and its mechanical load as 
it is shown in Fig. 4. 
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Fig. 4.  Representation of motor and its load 

      Thus only the motor rotor inertia is included in the 
forward path as a rigid body moving without friction.  
The dynamics of the driven mechanism (including any 
significant bearing friction), is represented by its 
inverse dynamics in the feedback path, producing a 
dynamic component, LdΓ , of the load torque, LΓ , as 

shown.  The external load torque component, LeΓ , is 

added in the usual way.  It is also important to note 
that it is unnecessary to provide an accurate model of 
the inverse load dynamics in Fig. 2.  It is sufficient to 
obtain an accurate estimate, , of the load torque 

and this may be obtained from a suitable observer [2], 
[11]. 

LΓ̂



2.3. Drive Control Loop 

The motor model on which the drive control loop 
designs are based are as follows.  First, the 
synchronous motor model is formulated in the ( )d q,  

co-ordinate system rotating at synchronous speed: 
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Here  and  are, 

respectively, column vectors whose elements are the 
stator current and voltage components (this notation 
being convenient for development of the control 
algorithm),  and  are the rotor velocity and 

position,  p is number of pole-pairs, c is constant 
c=3p/2,  Γ  is the external load torque, R  is the 

phase resistance,  and  are the direct and 

quadrature phase inductances,  is permanent 

magnetic flux and J

[ qd
T iiI =

rω

L

dL

] ][ qd
T uuU =

S

qL

PMΨ

rϑ

r is the lumped moment of inertia. 

The control strategy for the synchronous motor is 
based on feedback linearisation [5], forming a non-
linear multivariable control law to obtain a prescribed 
linear speed dynamics together with the vector control 
condition of mutual orthogonality between the stator 
current and rotor flux vectors (assuming perfect 
estimates of the plant parameters).  Estimates of the 
rotor speed and the load torque, required by the 
control algorithm, are obtained from two special 
observers [1], [2].  The drive is rendered robust with 
respect to the external load torque and changes in the 
dynamics of the driven mechanical load by 
incorporating load torque compensation in the control 
algorithm.  An important feature of this system is that 
the rotor speed is controlled with a closed-loop time 
constant chosen by the control system designer.  The 
rotor angular velocity is made to satisfy: 

( )rd
r

T
1

dt
d

ω−ω=
ω

ω
   (6) 

The technique is to equate the right hand side of 
this equation with the right hand side of the 
corresponding motor equation (5b).  The result is the 
rotor speed linearising equation.  This forces the non-
linear differential equation (5b) to have the same 
response as the linear equation (6).  The linearising 
equation is as follows: 

[ ]{ } ( )rdLdqqd5 T
1iic

J
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ω−ω=Γ−ψ−ψ
ω

   (7) 

where  ψ   and   are the 

magnetic flux components. 
PMddd iL Ψ+= qqq iL=ψ

The second part of the control law is formulated on 
the basis of vector control which, in geometric terms, 
requires that the rotor magnetic flux vector is at the 
right angles to the stator current vector.  For surface 
mounted magnets of synchronous motor up to nominal 
speed is maximal torque achieved, [6] for: 

0id =  
  (8) 

By solving equations (7) and (8) the following 
expressions for the demanded values of the current 
components are obtained: 
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where estimates of rω̂  and Γ  are obtained from the 

suitable observer algorithms [11], [12].  The stator 
current demands are realised by the usual current 
loops realised by the switched power electronic 
circuits.  Control law equation (9) yields a rotor speed 
response with linear, first order dynamics and unity dc 
gain, the closed-loop time constant, T , being chosen 

by the system designer.  Thus: 
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2.4. Position Feedback and Precompensator 

It remains to close a position loop around this 
speed control system.  It is done in two steps.   
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Fig. 5.  Block diagram of drive control loop 

First, as it is shown in the block diagram of Fig. 5 
only proportional gain multiplies the error between 
model and real position. 

It is straightforward to show that the parameters, 
KP and Tω can be adjusted to yield any desired second 
order closed-loop transfer function.  For example a 
settling time, Ts, to 95% of the step response, can be 
realized by coincident closed loop poles at 

sT29s −= , the closed-loop transfer function being: 
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sP T49K =  and 9Ts=ωT . 
(11b) 

The second approach with precompensator is 
shown in the block diagram of Fig. 6.  For its design it 
is necessary to know the closed loop dynamic of the 

electrical drive position controller, which is shown in 
Fig. 5 and done by equations (11a).   

The next step is to create precompensator, which is the 
inverse of the closed/loop transfer function (11a): 
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Figure 6 shows block diagram with transfer 
functions of the position controlled system and 
precompensator and Fig. 7 shows complete 
implementation of precompensator. 
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Fig. 6.  Precompensator for zero dynamic lag 
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Fig. 7.  Complete ‘near-time optimal’ position control system with dynamic lag precompensation 
 

 
 

2.5. Load Torque Observer 

The real time model of the load torque observer is 
based on the differential equations for the motor 
position and speed, (5b) and (5c) together with the 
differential equation for the load torque .  The load 
torque is treated as a state variable, which is assumed 
to be constant, therefore its differential equation is 

simply, Γ .  The observer equations correspondto 

those of the real plant, when the error between 
observer’s input and output,  multiplied 

with corresponding gains is added into every observer 
correction loop (13):  
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where ,  and Γ  are, respectively estimates of 
,  and Γ .  The observer correction loop is 

actuated using the error between the measured rotor 
position and its estimate from the observer as can be 
seen from Fig.

rϑ̂

r

$ω r
$

L

rϑ ω L

 3a.  Equations (13) are then 
numerically integrated by the Euler explicit formula 
using the iteration interval corresponding to the 
achieved sampling frequency.   

Equations (13) constitute a conventional third 
order linear observer [13] with a correction loop 
characteristic polynomial, which may be chosen via 
the gains  kθ ,  kω  and  kΓ .  If all three observer poles 
are placed at  s=-ω0 , then the filtering time constant, 
Tf , corresponding to (11b) satisfies ω0=6/Tf  (for n=3) 
and is a single design parameter.  Comparing the 
observer characteristic polynomial with the prescribed 
one the gains can be calculated as follows: 
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For the selection of ω0 a rule of thumb which is 
ω0<5/h0 may be taken such, that the discrete time 
correction loop behavior approximates to that of the 
theoretical continuous observer  (h0 - sampling 
period). 

Although the load torque is assumed constant in 
the formulation of its real time model the estimate, 

, will follow an arbitrarily time varying 

disturbance torque and will do it more closely as T

$ΓL

f is 
reduced, but at the expense of sensitivity to any noise 
in rotor position measurement.  If the rotor speed is 
measured, then the alternative observer for load torque 
estimation shown in the block diagram of Fig. 3b can 
be employed. 
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Fig. 8:  Load torque observer from rotor position measurement. 

III. SIMULATION AND EXPERIMENTAL RESULTS 

The simulations and preliminary experiments were 
performed with iddle running a DutymAx DS PMSM 
having the following parameters:-  Pn=375 W  at  
ωn=314,16 rad/s;  p=3;  Rs=36,5 Ω;  Ld=Lq=50 mH;  
ΨPM=0,312 Vs; Jr=0,032 kgm2.  A sampling frequency 
of 10 kHz was achieved during implementation.  The 
control algorithms were implemented on a Pentium 
PC.  The stator currents were measured through LEM 
transformers and evaluated using a PC Lab Card 
PL818 built into the PC.  A six-transistor IGBT 
module was used as the three-phase inverter.  All the 
experiments presented were carried out with a DC 
supply voltage of Udc=200 V. 

The simulation results are shown in Fig. 9a and 
Fig 9b for control system, which corresponds to 
control system without and with precompensator.  
The demanded position for both cases was ϕdem =50 
rad. 
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Fig. 9.a:  Simulation results for outer loop with proportional gain. 



The graphical results comprise: 
(a) position of the near time optimal model and 

real rotor position as a function of time,  
(b) speed of the model and real rotor speed as a 

function of time,  
(c) position of the model and rotor position as a 

function of model and rotor speed, 
(d) estimated rotor speed (not used in the control 

algorithm) and load torque (multiplied by 10) 
from the filtering observer, 

(e) iq stator current component as a function of 
time and phase ‘a’ current as a function of time. 

Fig. 10  shows corresponding experimental results 
for the near-time-optimal position control system and 
idle running PMSM without precompensator.  Due to 
technical problems the precompensator was not 
implemented yet.   

The variables of the near-time-optimal controlled 
model are displayed as blue coloured graphs to 
distinguish them from the drive responses (black).   
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Fig. 9.b:  Simulation results for control loop with precompensator. 
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Fig. 10:  Experimental results for ‘near-time optimal control’ without 
precompensator. 

IV. CONCLUSIONS AND RECOMMENDATIONS 

     The simulation and preliminary experimental results 
presented for no load state show the possibility of forcing 
a drive, via a time-optimal model to respond nearly time 
optimally to responses to step changes in the demanded 
position.  
      As it was shown in simulations the accuracy with 
which this is this achieved could be improved through 
implementation of precompensator.  Therefore the 
implementation of the precompensator in experiments 
is the most important suggestion for future research 
work.   

     Also further investigations of load torque estimation 
are recommended for loaded drive.  The tracking 
accuracy for small, slowly varying reference positions 
should also be investigated. 
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