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Abstract: In this work a comparison between H  
control and Nonlinear Model Predictive Control is 

carried out for controlling the steering system of 

automated ground vehicles. A rigorous analysis between 

the performances of the two controllers is given, 

presenting advantages and drawbacks of each method, 

using simulation results. A detailed description of the 

design approaches is also given.  
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 1. Introduction 
Currently, both industry and academic fields are 

focusing in making complete automated vehicles a reality. 
Both fields conduct intensive research programs, in order 
to find the best solutions for this challenging task. While 
the available computational power grows and more and 
more advanced control systems can be developed, the 
focus on passengers comfort and especially safety still 
remains a limiting factor in implementing automated 
vehicles control systems. For this reason, auto-makers try 
to bring the concept on the market iteratively, by adding 
different and increasing levels of automation of the 
vehicles year by year. 

Research in automatic driving is ongoing for some 
years and functionalities of partial autonomy are already 
available in series production which are contributing to 
driver safety and comfort, and interested readers may refer 
to [1], [2]. 

Multiple control system approaches are already 
studied in academy and industry for the control of 
automatic driving vehicles, and many of them rely on 
advanced control techniques such as  nonlinear control 
[3], robust control [4], [5] and model predictive control 
[6], [7], [8], and [9]. 

In this paper the mixed sensitivity design method of an 

H  controller and a Nonlinear Model Predictive Control 

are proposed, for the design of automatic steering system 
for ground vehicles, and the obtained closed loop 
performances are studied in vehicle trajectory following. 
Comparison of the two proposed controllers is given, in 
controlling the vehicle lateral dynamic, considering a 
double lane change scenario at constant vehicle speed. 
The desired trajectory of the vehicle is considered already 
known, also it is assumed that all needed sensors for 
measuring the vehicle motion and actuators are available 
in the vehicle. Inclusion of all these aspects is subject to 
future contributions. 

The rest of this paper is structured as follows: in 
Section 2. a short description of vehicle nonlinear 

dynamics and modelling is presented; the H  control 

design by mixed sensitivity  method is presented Section 
3; the design Nonlinear Predictive Controller and the 
controller design for vehicle steering are given in Sections 
4 and 5. Simulation results are presented in Section 6, and 
de conclusions are given in Section 7. 

2. Vehicle Dynamics Modelling 
Typically vehicle dynamics refer to vehicle motion in 

longitudinal and lateral directions. Longitudinal dynamics 
concern the vehicle behavior while accelerating, braking 
and traction properties of the wheels on different road 
surfaces under different conditions. Lateral dynamics is 
governed by the vehicle stability analysis, cornering and 
road keeping. The single-track model or bicycle model is 
widely used in the study of vehicle motion and control 
[10], [11], and is also adopted in this paper for the design 
and study of both control strategies. In Fig. 1, the vehicle 
model is represented. The dynamic model can be written 
using the following differential equations: 
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where xfF  is the longitudinal force of the front wheel tire, 

xrF is the longitudinal force of the rear wheel tire, yfF  is 

the lateral force of the front wheel tire, and yrF  is the 

lateral force of the rear wheel tire. The states of the 
vehicle are as follows: the longitudinal position x , the 

lateral position y  and the yaw angle . Finally m , I , a  

and b  are the vehicle mass, vehicle inertia, distance from 

the front axle to the center of gravity and distance from 
the rear axle to the center of gravity. 

It should be noted that the degrees of freedom of the 
nonlinear model described by (1), are considered in the 
vehicle coordinate system, which is centered in the 
vehicle's center of gravity. An inertial representation of 
the vehicle motion can be obtained by changing these 
coordinates to the inertial coordinate system. 

The tire forces can be obtained by using the nonlinear 
Pacejka Tire Model [12], [13], using the longitudinal slip 

values - for calculating xfF , xrF , and the slip angles - for 

calculating yfF , yrF . The Pacejka Tire Model tire model 

also includes the influences that the normal forces acting 
on the front and rear axles, and describes the tire forces 
as: 


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where f  denotes the front tire slip angle, r  is the rear 

tire slip angle, f  is the longitudinal slip of the front tire, 

r  is the longitudinal slip of the rear tire, and ,zf zrF F  are 

the normal forces acting on the front and rear axles. The 
nonlinearities that have the highest impact in the vehicle 
dynamics, described by equations (2), arise from the tire 
models, as the tire forces are highly nonlinear for high slip 
quantities, which can occur when the vehicle drives over 
slippery roads. 

 

Fig. 1. Vehicle single-track model 

The presented nonlinear model will be further used to 
validate the controller performance. For brevity, the 

nonlinear model will not be presented here, and interested 
readers may refer to [7], [8], [12] and [13] for more 
information regarding the vehicle nonlinear modelling. 

The nonlinear vehicle model will be used for the 

NMPC while for the proposed H  control design; a 

linearization of this model is done, considering constant 
vehicle speed. This linear model can be obtained by 
making linear approximations of the tire forces, of the 
form: 
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where yfC  and yrC  represent the cornering stiffness 

coefficients characterizing the front and rear tires. Using 
small angle approximations, the tire slip angles can be 
calculated as: 
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where   represents the front wheel steering angle. 

Finally, considering constant vehicle speed, the 
nonlinear model described by (1) can be linearized to the 
form: 
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where xV x   represents the longitudinal vehicle speed. 

Using the linear model described by (5) with (3) and 
(4), the state-space formulation of the model gives: 
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and  , , ,
T

z y y     is the state vector, u   and y  are 

the input and the output vector of the model, where   is 

the front wheel steering angle. For more details interested 
readers may refer to [10] and [11]. 

 

3. The Mixed Sensitivity Method for H-infinity 

control design 
In control theory, robust control concerns the design of 

controllers, developed explicitly to account for the process 
uncertainties. 

The “standard” H  optimal control problem is 

concerned with the feedback system shown in Fig. 2, 
where w  represents the system inputs (setpoint and 

disturbance), y  is the available measurement, u  is the 

control signal, and e  is the controlled output. Considering 

the general case of the multivariable systems, the plant is 
described by the transfer matrix P , while H  is the 

controller. In H  context, P  represents not only the 

conventional plant to be controlled (considered in what 
follows as G ) but also any weighting functions included 

to specify the desired performance, which will be 
discussed later. Suppose that P  is partitioned consistent 
with the inputs w , u and outputs e  and y  as: 
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Then, the resulting transfer function of the closed loop 
is given by: 
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Fig. 2. H  feedback control system 

It should be reminded that the singular values of a 
multivariable system, give a measure of the amplitude of 
the respective system, and enable frequency domain 
analysis. For SISO systems, the singular values are 

equivalent with the Bode plot of the system. The H  

norm of a given system G  is defined as 
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where  A  represents the largest singular value of 

matrix A . Essentially, this means that the H  norm 

gives a measure of the frequency gain of the system G . 

Thus the H  control problem is to design the stabilizing 

controller H , that interacting with the plant, minimizes 

the H  norm of the closed loop transfer function, i.e. 

weT


. This can be achieved by setting a certain 

threshold  1,1.5  such that weT 

 . 

One H  control design approach is the "mixed 

sensitivity" method, and interested readers may refer to 
[14], [15] and [16]. For simplicity, consider a SISO closed 
loop system. It is well known that in the closed loop 
control system can be characterized by the following 
transfer functions: 
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Equation (10) describes the "sensitivity function" of 
the control system, and (12) describes the overall closed 
loop transfer function or "complementary sensitivity 
function".  

The H  design approach makes use of the functions 

described by (10) to (12), by imposing the desired 
frequency behavior of each of these functions. For 
example, the performance of a given closed loop system 
can be specified as requiring: 
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where S  is given by (10). Although this is generally 

applicable, it is convenient to formulate the same 
performance criteria using a weight function w  given as a 

transfer function, as follows: 
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Applying such weighting functions on all the transfer 
functions (10) to (12), the closed loop performance of the 
system can be specified and tuned. 

Considering such weighting functions, the original 
plant that needs to be controlled can be augmented for the 

H  control design. The obtained closed loop structure, 

for the augmented plant can be seen in Fig. 3. 

 

Fig. 3. H  closed loop with augmented plant 

Having the performance specifications of the closed 
loop system in time domain, the equivalent specifications 
from frequency domain can be derived. Based on these 
frequency specifications, the weighting functions can be 
designed as follows: 
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 where, b  is the system bandwidth, sM  is the peak 

sensitivity, bc  is the controller bandwidth, uM is the 

peak gain of the controller, bT  is the closed loop 

bandwidth, and TM  is the peak gain of the closed loop 

system. 1 2,   and 3  need to be set to small values. 

Increasing the parameter k   results in a steeper 

rolloff of the frequency response of each weighting 
function. 

The function 1w  is used to weight S , 2w  is used to 

weight R  and 3w  is used to weight T , as follows: 
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Taking into account the weighting functions (14), (15) 
and (16), the plant described by (7) can be written in the 
following form: 

 

1 1

2

3

0
( )

0

w w G

w
P s

w G

I G

 
 
 
 
 
  



By applying (8) to (20) it is obtained 
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thus, the H  control problem becomes 
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The solution of the H  control problem is based on a 

state space representation of the generalized plant P , 
which includes also the weighting functions: 
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The calculation of the controller can then be made by 
using Riccati approach or the LMI approach, see 
[14],[15]. Under certain assumptions of controller 
existence and simplicity, which are skipped here for 
brevity, the following theorems can be formulated. 

Theorem 1: There exists a controller H  such that 

weT 

 , if and only if: 

(1) the matrix 

2
1 1 2 2

1 1

T T

T T

A B B B B

C C A

  
 
   

 has no 

eigenvalues on the imaginary axis; 

(2) there exists 0X   such that 

2
1 1 1 1( ) 0T T TX A A X X B B X C C        ; 

(3) the matrix 

2
1 1 2 2

1 1

T T T

T

A C C C C

B B A

  
 
   

 has no 

eigenvalues on the imaginary axis; 



(4) there exists 0Y   such that 

2
1 1 2 2 1 1( ) 0T T T TAY Y A Y C C C C Y B B         ; 

(5) the spectral radius 
2( )X Y    . 

Theorem 2: If the necessary and sufficient conditions 
of Theorem 1 the obtained controller has the following 
form: 

 
0

A Z L
H

F

  



 
  
  



where 

 

2

2

2 1

2
1 1 2 2

( )

T

T

T

F B X

L Y C

Z I Y X

A A B B X B F Z L C





 

 

 
  


    

 

 

 

   



4. Nonlinear model predictive control 
The model based predictive control (MPC) is a digital 

feedback control approach which is based on predicting 
the controlled system output over a future horizon 
(prediction horizon) and calculating the optimal control 
sequence that will drive the predicted system output as 
close as possible to the future reference trajectory. The 
predictions of the future outputs are done virtually in the 
controller, using a mathematical model of the system, and 
the optimal control sequence is calculated using an 
optimization algorithm which minimizes a given cost 
function. 

At each sampling time t  (discrete time instant) the 

controller will predict the future outputs of the system 

( | ), 1,2,...,y t k t k N   where N  is defined as the 

"prediction horizon". This prediction is employed by 
simulating internally the system model, using the system 
states gathered up to the current sample time  and the 

future control signals ( | ), 1,2,...,u t k t k N  . The future 

control signals are obtained by minimizing a cost function 
defined in such a way that the system output will follow 
as close as possible the reference trajectory 

( | ), 1,2,...,w t k t k N   and additionally satisfy 

predefined constraints. A graphical representation of the 
MPC strategy is presented in Fig. 4. 

At each sampling time, only the first sample of the 

control signal ( | )u t t  (which is equal to ( | )u t t  is actually 

sent to the physical process, and the entire algorithm is 
repeated at the next sampling time. 

It can be observed that the model based predictive 
controller integrates two main components - the 
mathematical model of the controlled system and the 
optimization algorithm which minimizes the desired cost 
function. Both these components play an important role in 

the performance and stability of the closed loop system 
and they will be treated in what follows. 

 

Fig. 4. Model Predictive Control strategy 

A. Mathematical model of the controlled system 

A nonlinear dynamical system can be modeled by 
using the ordinary differential equation (ODE): 

                        ( ) ( ( ), ( ))x f x u                                

with initial condition: 

                           0(0)x x 

where nRx  is the system state vector, mRu  is the 

system input vector and nmn RRRf :  is a nonlinear 

function which describes the system dynamics. The output 
of the nonlinear system can be generically defined as: 

                   ( ) ( ( ), ( ))y h x u                                  

where rRy  is the system output vector and 

rmn RRRh :  represents a linear or nonlinear 

mapping of the input and states to the output of the 

system. In equation (25) and equation (27), R  

represents the independent continuous time variable. 

Using numerical integration algorithms, also known as 
ODE solvers, a numerical approximation of the solution 
of equation (25) is obtained as: 

                    ( 1) ( ( ), ( ))dx t f x t u t                         (28) 

where t  represents the discrete time variable, and 
nmn

d RRRf :  is a discrete approximation of the 

nonlinear function defined in (25). The initial condition of 
this numerical approximation is the same as the initial 
condition of the differential equation, which is given by 
(26), and the system output is thus approximated as: 

                           ( ) ( ( ), ( ))y t h x t u t                        (29) 



There is a wide range of numerical integration 
algorithms that can be used in order to obtain the 
approximation given by (28), and interested readers may 
refer to [17]. 

The approximation given by (28) and (29) will be used 
at each sampling time internally in the controller. The 
starting point (initial condition) of each simulation, at 
each sample time will be set to the actual (measured) 
values of the states of the physical process. 

This type of control system is especially attractive for 
applications in autonomous vehicle steering due to its 
"predictive" behavior, being able to take into account also 
the future shape of the desired vehicle path. On the other 
hand it is intuitive that in order to obtain good 
performance of the closed loop system, the mathematical 
model of the system needs to be found as accurate as 
possible, this representing a big drawback of the NMPC 
because accurate mathematical models are difficult to 
develop. 

Detailed descriptions of the nonlinear system model 
and integration in the predictive controller can be found in 
[18]. 

B. Optimization algorithm 

The role of the optimization algorithm is to search for 
the optimal control signal which minimizes a predefined 
cost function of the form: 

 

1

( , , ) ( ( | ), ( | ), ( | ))

N

N

k

J y x u l y t k t x t k t u t k t



    

where the function l  can be nonlinear, but usually it is 

chosen in a quadratic form, including the error between 
the reference trajectory and predicted output. Equality and 
inequality constraints on the system states x , output y  

and control signal u  can also be considered in the form: 

 ( ( | ), ( | ), ( | )) 0ic y t k t x t k t u t k t   
               



 ( ( | ), ( | ), ( | )) 0jc y t k t x t k t u t k t    

where ic  and jc  can be linear or nonlinear functions. 

As the cost function (30) includes the difference 
between the future reference and predicted output, the 
optimization algorithm will generate the optimal control 
signal u  which will drive the system model output y  as 

close as possible to the desired reference trajectory w  

over the prediction horizon N . Thus the optimization 

operation becomes an optimal control problem, over the 
prediction horizon: 

                min ( , , )N
u

J y x u 

subject to constraints (31), (32), and ( )x t  and ( )y t  are 

given by (28) and (29) over the prediction horizon N . 

The minimization of the cost function can be done 
iteratively, using numerical algorithms of linear, quadratic 
or nonlinear programming. Interested readers may refer to 
[20] for details regarding the most frequently employed 
minimization algorithms and to [18] for detailed aspects 
regarding the integration in the NMPC approach.  

Another advantage of the NMPC can be seen, as it 
inherently achieves optimal control. A compromise 
between performance, stability, robustness and 
computational costs needs to be found in the 
implementation of the NMPC strategy as it can become 
computationally expensive. 

5. Implementation and Simulation Results 
In order to obtain a valid comparison of the two 

proposed control systems, the same vehicle model was 
used. The parameters of the vehicle are given in Table 1. 

Symbol Description Value 

m  vehicle mass  1462 kg  

I  vehicle moment of inertia 22149 kg m 
 

 

a  distance from front axle 
to center of gravity 

 1.108 m  

b  distance rear front axle to 
center of gravity 

 1.392 m  

yfC  front tire stiffness 
coefficient 

 63291 /N rad  

yrC  rear tire stiffness 
coefficient 

 50041 /N rad  

Table 1. Vehicle parameters 

The implementation and simulation of both control 
systems was done in Matlab/SIMULINK software 

package which provides various tools for H  and NMPC 

control designing. 

The test maneuver was considered similar to a double 
lane change, precisely starting at position (0,0) in an 
inertial XY frame, with zero heading angle, the vehicle 

drives forward for  4 sec . At time  4 sect  , the 

vehicle steers to the left (increasing Y direction) whit a 

constant steering speed until  6 sect  . The similar 

steering maneuver is then applied in the opposite direction 
such that the vehicle will realign parallel with the X axis 

after  2 sec . A forward driving segment is required until 

time  12 sect  , when a similar steering maneuver is 

started in the opposite direction (decreasing Y) such that 
the vehicle will realign to the initial lateral displacement 

at time  14 sect  . 



This maneuver is given in form of a desired trajectory 
of the vehicle, which can be obtained by using a trajectory 
planning algorithm which usually is able to calculate the 
future desired trajectory of the vehicle. These algorithms 
will not be discussed in this work, and remain subjects for 
further work. 

5.1. H∞  control implementation 

For implementing the proposed H  controller of 

autonomous vehicle steering, the linear vehicle model was 
used, while the closed loop validation is done by using the 
actual nonlinear model of the vehicle. The vehicle model 

is liniarized at constant vehicle speed of  15 /xV km h  

and  28 /xV km h . The control signal of the 

autonomous steering system is the front wheels steering 
angle  , and the output is the lateral position y  as 

presented in the second section of the paper. The 
sensitivity function (10) and complementary sensitivity 
function (12) were considered, where 

 15 / secb rad  ,  55 / secbT rad  , 1 0.001  , 

3 0.0001   and 1.9s TM M  . The Bode plot of 

inverse of the considered weighting functions, which are 
penalizing the sensitivity and complementary sensitivity 
functions as seen in (17) and (19), can be seen in Fig. 6. 
Considering 1.18  , the obtained closed loop transfer 

function gives the Bode plot shown in Fig. 7. As it can be 

seen, the closed loop transfer function weT  is complying 

with the specified requirement described 1.18weT

 . 

Also the sensitivity and complementary sensitivity 
functions are shown in Fig. 7 and Fig. 8, where it can be 
seen that (17) and (19) are satisfied. 

 

Fig. 5. Bode plot of the inverse of the considered sensitivity functions 

Finally, a six order H  controller is found, that 

stabilizes the vehicle lateral dynamics and fulfils the 
closed loop specifications. The transfer function of the 
controller was obtained: 

 
5 4 3 2( 4159 05) 127.1 8.247 07 3.356 09 3.408 10 0.1074

5 4 3 25101 2.201 06 3.706 08 5.07 09 7.59 7
( )

6 0

E s s E s E s E s
H

s s E s E s E s E
s

      

   




 

The Robust Control Toolbox [21] function set was 
used for this design. 

A simulation of a double lane change maneuver is 
presented in Fig. 10, in order to analyze the trajectory 
tracking of the closed loop control system for the 
automatic vehicle. 

As it can be seen from Fig. 10, where were carried out 

also at different vehicle speeds  15 /xV km h  the 

proposed H  control system is performing very well in 

vehicle trajectory tracking applications, obtaining a very 
small tracking error. 

 

 

Fig. 6.  Bode plot of the closed loop transfer function 

 

Fig. 7. Comparison of 11/ w  and S  



 

Fig. 8. Comparison of 31/ w  and T  

 

Fig. 9. Double lane change maneuver of H  at 15 /xV km h     

 

Fig. 10. Double lane change maneuver of H  at 28 /xV km h     

Simulations were carried out also at different vehicle 

speeds 
 28 /xV km h

. In Fig. 11 it can be seen that the 
automatic steering maneuvers are still performed with 

sufficiently high accuracy, showing that the 
H  

controller is robust. 

5.2. Nonlinear model predictive control 

implementation 
As described in Section 4, in order to implement the 

nonlinear predictive controller for the vehicle steering an 
adequate vehicle model which captures as accurate as 
possible the vehicle dynamics needs to be used. A widely 
used model in industry and literature is the single track 
vehicle model (or bicycle model) [19], [10]. This model 
captures the most important dynamics and nonlinearities 
of the vehicle, and it will also be used in this study. 

In what follows the vehicle modelling using the single 
track model and the optimal control problem used for the 
design of the nonlinear predictive control of vehicle 
steering will be presented. 

C. Vehicle lateral dynamics model 

The nonlinear vehicle model is considered only for the 
lateral dynamics which is described by (5). 

The main external influences in the vehicle lateral 
dynamics described by the proposed vehicle model are 

given by the tire forces yfF  and yrF , which are highly 

nonlinear and have a high impact in vehicle maneuvering. 

Although in the H  control design these forces were 

considered linear, by assuming small slip angles (see 
equation (3)), the NMPC approach gives the possibility to 
incorporate a nonlinear and more realistic model for the 

tire forces yfF  and yrF . The tire model used in this study 

is the Pacejka tire model or also known as Magic Formula 
tire model [13]. 

This model is a semi-empirical model, which was 
continuously improved over the years, developed based 
on experimental results. One of the earliest versions of 
this model describes the lateral tire force as: 

     1 1sin{ tan [ (1 ) tan ( )]}yF D C B E E B     

where  

                         
2

1 2z zD a F a F  

 1.3C  

 
1

3 4 5sin[ tan ( )]za a a F
B

CD



 

 
2

6 7 8z zE a F a F a   



Equation (34) provides the tire lateral force based on 

the tire slip angle   and on the normal force zF  trough 

the parameters , ,B C D  and E .  

The tire slip angle for the front and rear wheels, 
respectively, can be calculated using (4) 

The normal forces used in (35), (37) and (38) are 
considered to be constant, and are given for the front and 
rear wheels as: 

                             
2( )

zf

bmg
F

a b



                                 


2( )

zf

amg
F

a b



                                 

where  represents the gravitational constant. 

The parameters 1 2 8, ,...,a a a  used in (35), (37) and (38) 

are chosen based on the values of zfF  and zrF  as 

explained in [13]. 

The resulting model, using the equations (5) and (34) 
trough (40) describes the vehicle lateral dynamics, 
considering as input the steering angle of the front wheel 
  and as output the vehicle lateral position y  (with 

respect to the lateral axis of the inertial frame- Y ). 

This model will be further used in the control system 
design. 

D. Optimal control problem 

For solving the optimal control task, the cost function 
defined in (30) was chosen in the simple form as: 

       
2

1

[ ( | ) ( | )]

N

N

k

J w t k t y t k t



                  

This cost function is often used in predictive control 
applications. 

No constraints were defined for the cost function (41) 
in this work. The optimal control problem is now given 
as: 

                                  find min N
u

J                                

subject to:  

        0( 1) ( ( ), ( ), ( )), (0)vdy k f y k k k y y    

where  represents the vehicle lateral position, 
 represents the vehicle yaw angle and   is the front 

wheel steering angle. vdf  is the approximation of the 

vehicle model defined by (5) and (34) obtained using the 
built in ODE solver ode45 provided by Matlab [22]. 

The minimization of the objective (42), (43) is 
executed at each sample time using the fmincon function 
with SQP (Sequential Quadratic Programming) algorithm 
which is provided in Matlab. Details regarding this 
minimization algorithm can be found in [20]. At each time 
instant, the optimal control problem (42), (43) will be 
solved and the new generated optimal control sequence 
(front wheel steering angle) will be sent to the vehicle. It 
needs to be noted that only the first sample of the control 

signal ( | )t t  will be actually applied, and the rest of the 

control sequence ( ( | ), 1,2,...,t k t k N   ) will be used 

in the next sample time as initial guess for the 
optimization algorithm. 

The obtained closed loop structure is depicted in Fig. 

5, where ( | ), 1,2,...,w t k t k N  represents the future 

desired lateral position, ( | ), 1,2,...,t k t k N    

represents the future steering angle, 

( | ), 1,2,...,y t k t k N   is the future predicted lateral 

position, ( | ) ( | ) ( | ),t k t w t k t y t k t       

1,2,...,k N  is the future lateral position tracking error, 

( ) ( | )t t t   and ( ) ( | )y t y t t  are the actual applied 

steering angle and the obtained lateral position. The cost 
function (41). used by the optimization algorithm 

 

Fig. 11. Nonlinear predictive control of vehicle lateral dynamics 

 

 

Fig. 12.  Double lane change maneuver of NMPC at 15 /xV km h     



Similar simulations of double lane change maneuvers 
were carried out for the nonlinear predictive controller. In 

Fig. 12 it can be seen the simulation at  15 /xV km h  

while in Fig 13. the simulation at  28 /xV km h  is 

presented. The prediction horizon was chosen 10N  , 

and increasing this value will yield a even better 
performance. 

 

Fig. 13. Double lane change maneuver of NMPC at 28 /xV km h     

7. Conclusions 
As it can be seen from the simulation results, the 

proposed NMPC strategy is giving better trajectory 

tracking results in comparison with the H . The 

advantage of the NMPC is that it incorporates optimal 
control and can take into account the nonlinearities of the 
vehicle model. It also can be seen from the simulation 
results that the NMPC obtained a steering angle waveform 
similar as described in the beginning of Section 5 due to 
the incorporation of optimal control. At the same time, 
closed loop stability needs to be carefully considered, and 
although  this paper does not touch this subject, usually 
additional measures need to be taken in order to ensure 
stability of the NMPC strategy, for example active or 

terminal constraints. The H  controller ensures the 

stability around the functioning states where the vehicle 
model was linearized, and is robust enough for controlling 
when the vehicle speed is higher than the vehicle speed 
considered for linearization. For covering a full speed 

range, a gain scheduling strategy can be adopted for H  

strategy. A disadvantage of the H  control is that the 

degree of the controller can get very high, as is also the 
case in this work and this is usually avoided in the 
automotive industry, due to real-time implementation on 
embedded systems.As future work, further comparison 
analysis will be made concerning the stability of both 
controllers and performances in disturbance rejection or 
unfavorable road conditions. 
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