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ABSTRACT – The proposed work aims at 

the implementation of Motor Current 

Signature Analysis (MCSA) for detecting 

the bearing fault in squirrel cage induction 

motor. This proposed scheme monitors the 

stator current spectrum to detect the bearing 

faults and to extract fault signature by using 

Fast Fourier Transform (FFT) analyzer. For 

fault diagnosis, Neural Network (NN) is 

used. The fault detection scheme is 

implemented in real time. Since this scheme 

detect the faults at their earlier stage, the 

maintenance can be carried out in organized 

manner, which reduces the down time and 

repairing cost. This approach is validated in 

a 1 HP 415V 50HZ 960-rpm three phase 

induction motor. 

Keyword – MCSA, Bearing Fault, FFT 

Analyzer, Neural Network. 

I. INTRODUCTION 

The simple, robust design and construction 

of AC induction motor have encouraged 

their successful in industry for many years. 

However, these motors are required to 

operate in highly corrosive and dusty 

environments. These factors coupled with 

the natural aging process of any motor make 

the motor subject to faults. These faults if 

undetected, contribute to the degradation 

and eventual failure of the motors. As it is 

not economical to introduce redundant 

backup motors, condition monitoring for 

induction motor is important for safe 

operation. In order to keep the motor 

condition, techniques such as fault 

monitoring, detection, classification and 

diagnosis have become increasingly 

essential. Earlier detection of the fault 

reduces repair cost and motor outage time 

thereby improving safety [1].        

In general, condition monitoring schemes 

have concentrated on specific failures modes 

in one of three phase induction motor 

components: the stator, the rotor, or 

bearings. Even though thermal and vibration 

monitoring have been utilized for decades, 

most of the recent research has been directed 

toward electrical monitoring of the motor 

with emphasis on inspecting the stator 

current of the motor.  

1.1 Bearing Faults in Induction Motors 

Bearings play an important role in the 

reliability and performance of all motor 

systems. In addition, most faults arising in 

motors are often linked to bearing faults. 

The result of many studies show that bearing 

problems account for over 40% of all 

machine failures [3]. The several faults and 

its percentage are shown in the Figure 1.1. 

 
Figure 1.1 Faults in Induction Motor 



1.2 Necessity of a Monitoring System 

Machine condition monitoring is gaining 

importance in industry because of the need 

to increase reliability and to decrease the 

possibility of production loss due to machine 

breakdown. By comparing the signals of a 

machine running in normal and faulty 

conditions, detection of faults like mass 

unbalance, rotor rub, shaft misalignment, 

gear failures, and bearing defects is possible. 

These signals can also be used to detect the 

incipient failures of the machine 

components, through the online monitoring 

system, reducing the possibility of 

catastrophic damage and the downtime. 

Although often the visual inspection of the 

frequency domain features of the measured 

signals is adequate to identify the faults, 

there is a need for a reliable, fast, and 

automated procedure of diagnostics. 

Artificial intelligence techniques like Neural 

Fuzzy techniques can be implemented in the 

system for automated detection and 

diagnosis of machine conditions [5]. 
 

1.3 Bearing Structural Defects  

Rolling element bearings generally consist 

of two rings, an inner and an outer race, 

between which a set of balls or rollers rotate 

in raceways. Under normal operating 

conditions of balanced load and good 

alignment, fatigue failure begins with small 

fissures, located between the surface of the 

raceway and the rolling elements, which 

gradually propagate to the surface 

generating detectable vibrations and 

increasing noise levels. Continued stress 

causes fragments of the material to break 

loose, producing a localized fatigue 

phenomenon known as flaking or spalling. 

Once started, the affected area expands 

rapidly contaminating the lubricant and 

causing localized overloading over the entire 

circumference of the raceway. Eventually, 

the failure results in rough running of the 

bearing. While this is the normal mode of 

failure in rolling element bearings, there are 

many other conditions which reduce the 

time to bearing failure. These external 

sources include contamination, corrosion, 

improper lubrication, and improper 

installation [8], [9]. 

Contamination and corrosion frequently 

accelerate bearing failure because of the 

harsh environments present in most 

industrial settings. Dirt and other foreign 

matter that is commonly present often 

contaminate the bearing lubrication.  

 
Figure1.2 Misalignment of the Bearing 

(a) Misalignment (out-of-line),  

(b) Shaft deflection, 

(c) Crooked or tilted outer race,  

(d) Crooked or tilted inner race. 

Bearing corrosion is produced by the 

presence of water, acids, deteriorated 

lubrication and even perspiration from 

careless handling during installations. 

Improper lubrication includes both under- 

and over-lubrication. In either case, the 

rolling elements are not allowed to rotate on 

the designed oil film causing increased 

levels of heating. The excessive heating 

causes the grease to break down, which 

reduces its ability to lubricate the bearing 

elements and accelerates the failure process. 

Installation problems are often caused by 



improperly forcing the bearing onto the shaft 

or in the housing. This produces physical 

damage in the form of brinelling or false 

brinelling of the raceways which leads to 

premature failure. Misalignment of the 

bearing, which occurs in the four ways 

depicted in Figure 1.2, is also a common 

result of defective bearing installation. The 

most common of these is caused by tilted 

races. Brinelling is the formation of 

indentations in the raceways as a result of 

deformation caused by static overloading.  
 

II. BEARING FAULT DETECTION 
 

2.1. Problem Definition  

The relationship of the bearing vibration to 

the stator current spectrum can be 

determined by remembering that any air-gap 

eccentricity produces anomalies in the air-

gap flux density. In the case of a dynamic 

eccentricity that varies with rotor position, 

the oscillation in the air-gap length causes 

variations in the air-gap flux density. This 

variation affects the inductance of the 

machine producing stator current harmonics. 

Since ball bearings support the rotor, any 

bearing defect produces a radial motion 

between the rotor and the stator of the 

machine. The cause of air-gap eccentricity, 

these variations generate harmonic stator 

currents at predictable frequencies, related to 

the vibration and electrical supply 

frequencies by   

 …… (2.1) 

Where m = 1, 2, 3, . , etc and fv is one of the 

characteristic vibration frequencies.  

The characteristic frequency of bearing 

failure (bearing pass frequency) is the 

inverse number of the time between 

occurrences of bearing impulses. This 

frequency can be calculated by the aid of 

known bearing geometry and rotational 

speed. The dimensions of a bearing are 

given in the Figure2.1. An outer race defect 

causes impulse when ball or roller passes the 

defected area of race. The theoretical 

frequency is thus 

 …… (2.2) 

where N is the number of balls or rollers, fr 

is the rotational speed of rotor, d is the 

diameter of thzall, D is the pitch diameter, α 

is a contact angle of rolling element. The 

ball pass frequency of defect on inner race is     

 …… (2.3) 

The ball spin frequency is, 

 …… (2.4) 

and the cage fault frequency is, 

 …… (2.5) 

The frequencies of equations (2.3), (2.4), 

and (2.5) are valid for ideal bearing. 

 
Figure 2.1 Dimensions of a Ball Bearing 

In practice, the roller elements not only 

rotate on races but also slide. This can be 

taken into account by multiplying the 

theoretical frequencies with a sliding factor 

‘α’ that usually takes value between 0.8 and 

1.0. Very often in literature and in practice 

the above equations are replaced by 



approximate equations. For example, for 

outer race defect 

 …… (2.6) 

and for inner race defect 

 …… (2.7) 

The simplified equations are used for two 

reasons, the geometry of the bearing is often 

not known and the actual condition 

monitoring device can calculate easily the 

frequencies of Equations (2.6) and (2.7) for 

couple of possible numbers of rolling 

elements [9]. 

2.2 Fault Detection Scheme 

The purpose of the monitoring system is to 

measure the induction motor stator current 

and to analyze these data determining the 

vibration frequencies on the bearing. The 

stator current is sensed in any one of the 

three phases of the induction motor and its 

equivalent voltage signal is given to the 

sound cord of a PC.  The analog signal 

Captured through the sound cord and it 

converts the sampled signal whose 

frequency is 11.025 kHz, to the frequency 

domain using Fast Fourier transform (FFT) 

algorithm. The current spectrum is generated 

by the FFT algorithm with 131072 points 

and includes only the magnitude information 

in decibels for each frequency component. 

The magnitude corresponding to the fault 

frequencies are extracted and it is given to 

the fault detection algorithm which is 

implemented using neural network. 

Condition of the bearing will be given as a 

result of that neural network module. Using 

the FFT analyzer the spectral values 

obtained and the required side band at 

( 0,

*

isbng fmff  ) value is measured. The 

single phase stator current monitoring 

scheme is shown in the Figure 2.2. 

 
Figure 2.2 Single-Phase Stator Current 

Monitoring Scheme 

2.3 Experimental Setup for Data 

Acquisition 

To illustrate the fault detection scheme a 1 

HP, six-pole induction motor is used .The 

rating of motor is given in Table 2.1. Figure 

2.3 shows the experimental setup and for 

data acquisition. The bearings of the 

induction motor are single row, deep groove 

ball bearings, type 6204Z (Shaft end) and 

6203Z (Fan end). Each bearing has 8 balls. 

Experiments were conducted on 5 bearings: 

two of these are undamaged (healthy), while 

three bearings were drilled through the outer 

race and inner race with holes of diameters 

2mm and 3mm as illustrated in Figure 2.4. 

Table 2.1 Rated parameters of the 

machine under test 

Type Three Phase Induction Motor 

Power 1 HP 

Voltage 415 V 

Frequency 50 Hz 

Current 1.8 A 

Speed 960 rpm 

Pole  6 



 

Figure 2.3 Testing Equipment & 

Experimental Setup  

 
Figure 2.4 Bearings Drilled With Holes 

Experimentation has been conducted by 

using faulty bearings. Bearing fault is 

created by drilling holes of various diameter 

(say 2mm or 3mm) in the race- ways both 

inner and outer which is similar to bearing 

faults 

Two bearings of 6204Z and one bearing of 

6203Z type were damaged and taken for 

experimental. While these are not realistic 

bearing failures, the artificial bearing faults 

produce characteristic fault frequencies and 

the type of fault is determined by the current 

spectra.  

2.4 Motor Current Signature Analysis 

(MCSA) 

From the bearing data sheet, the outside 

diameter of a 6204Z bearing is 47mm and 

inside diameter is 20 mm. Assuming that the 

inner and the outer races have the same 

thickness gives the pitch diameter as equal 

to 34.15mm (D = 34.15mm). The bearing 

has eight balls (N = 8) with approximate 

diameters of 7.85mm (d = 7.85mm). 

Assuming a contact angle θ = 0◦ and motor 

operation at a rated shaft speed of 960rpm, 

the characteristic race frequencies of the 

shaft-end bearing are calculated using 

equation 2.2 and 2.3  as fo = 73.93 Hz and fi 

= 118.07 Hz for the test motor. 

The results show that for a bearing which 

was damaged from the outer raceway and 

inner races with holes, the characteristic 

frequencies could be seen in the current 

spectrum.   

The current spectra of the test motor are 

shown in figures (figure 2.5 to figure 2.7). 

The frequency components in the current 

spectra of the motor with defective bearing 

at shaft end are |fe + 1 · fo| = 123.93, |fe + 2 

· fo| = 197.86, |fe+3 ·fo| = 271.79 and |fe+4 

·fo| = 345.72 Hz frequencies. It is shown 

that these components are visible only in the 

plots of the defective bearing. 

Current measurements for the damaged 

bearings were repeated under loaded 

operation of the induction machine. The 

current harmonics predicted for rated speed 

operation can still be found in the current 

spectrum. This indicates that, regardless of 

the load level of the machine, the bearing 

components are still detectable in the current 

spectrum. It is important to note that the 

frequency components produced by the 

bearing defect are relatively small when 

compared to the rest of the current spectrum. 

The largest components present in the 

current spectra occur at multiples of the 

supply frequency and are caused by 

saturation, winding distribution and supply 

voltage. 

2.5 Experimental Results 

The current spectrum of healthy and faulty 

machine is shown in Figures (Figure 2.5 to 

Figure 2.7). 



 
Figure 2.5 Current Spectrum for Healthy 

Machine  

 
Figure 2.6 Current Spectrums for Faulty 

Machine with Shaft End  

 
Figure 2.7 Current Spectrums for Faulty 

Machine Fan End  

A comparative study has been made with the 

current spectrum of motor with healthy 

bearing and with a faulty one in both shaft 

end and fan end of the test motor, which is 

shown in Figures (Figure 2.5 to Figure 2.7). 

Also the data at different characteristic 

frequencies are shown in the Table 2.2 & 

2.3.  

Table 2.2 Experimental Results of the 

Defective Shaft End Bearing 

Characteristic 

Frequencies 

Outer Race 

fo = 73.43 

Inner Race 

fi =118.067 

M (harmonic 

order) 
1 2 3 1 2 3 

Frequency (Hz) 

At  f (bng) 
11

8.3 

19

2.4 

26

9.4 

163

.06 

276

.13 

41

4.2

0 

Harmonic  

amplitude              

for faulty 

machine in (dB) 

-

28.

68 

-

27.

45 

-

34.

66 

-

36.

19 

-

34.

46 

-

35.

68 

Harmonic  

amplitude              

for healthy 

machine in (dB) 

-

37.

25 

-

36.

48 

-

47.

83 

-

41.

08 

-

43.

40 

-

52.

02 

 

Table 2.3 Experimental Results of the 

Defective Fan End Bearing 

Characteristic 

Frequencies 

Outer Race 

fo = 73.43 

Inner Race 

fi =118.067 

M (harmonic 

order) 
1 2 3 1 2 3 

Frequency 

(Hz) 

At  f (bng) 

12

1.

1 

19

4.

22 

26

2.

33 

16

9.

89 

27

5.

79 

40

0.

69 

Harmonic  

amplitude              

for faulty 

machine in 

(dB) 

-

34

.5

7 

-

28

.0

4 

-

40

.1

7 

-

38

.3

9 

-

35

.8

9 

-

44

.8

5 

Harmonic  

amplitude              

for healthy 

machine in 

(dB) 

-

37

.7

9 

-

36

.1

9 

-

44

.8

5 

-

40

.3

3 

-

43

.4

2 

-

46

.1

1 

 

III. STRUCTURE OF BP NETWORK FOR 

FAULT DETECTION 

An artificial neural network is composed of 

neurons with a deterministic activation 

function.  The neural network is trained by 

adjusting the numerical value of the weights 

will contain the non-linearity of the desired 

mapping, so that difficulties in the 



mathematical modeling can be avoided. The 

BP training algorithm is used to adjust the 

numerical values of the weights and the 

internal threshold of each neuron. The 

network is trained by, initially selecting 

small random weights and internal threshold 

and then presenting all training data. 

Weights and thresholds are adjusted after 

every training example is presented to the 

network; until the weight converges or the 

error is reduced to acceptable value. Figure 

3.1 shows the structure of BP Network for 

Fault Detection [13], [14]. 

 
Figure 3.1 Structure of BP Network for 

Fault Detection 

3.1 Simulation Results 

Table 3.1 shows that input and output of the 

BP network. 

Table 3.1 BP Network Input and Output  

Speed 

(RPM) 

Harmonic 

Amplitude 

(dB) 

Target 

860 -45 0 

880 -65 0.5 

920 -75 1 

950 -85 1 

Average error                       1.57 
 

Feed forward neural networks with two 

layers are used. The network consists of two 

input neuron, five hidden neurons and one 

output neuron. BP algorithm is used for 

training. The activation function in the first 

layer is log–sigmoid, and the output layer 

transfer function is tan-sigmoid function is 

the output layer. The training function used 

is trainlm. Figure 3.2 shows the performance 

characteristics of the BP network. 

 
Figure 3.2 Epoch Vs Error 

Characteristics 
 

IV. CONCLUSION  

The bearing fault detection methods for 

three phase induction motor have been 

implemented using neural network. The 

technique is based on monitoring the current 

spectrum and speed .The current spectrum 

value and speed are taken as the inputs for 

neural fault detector .The performance of 

neural network fault detection is in terms of 

percentage of error. From the simulation 

results, it is inferred that the neural network 

diagnosis gives the reduced percentage error 

.Hence neural network based fault diagnosis 

is the effective method for fault detection. 

The fault detection scheme has been 

implemented in real time. The experimental 

results were presented.       
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