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Abstract— Harmonics has been present for a long 
time and its presence shapes the performance of a 
power system. Therefore, estimation of harmonics is 
of paramount importance while analysing a power 
system network. Following the inception of 
harmonics, various filters have been devised to 
achieve an optimal control strategy for harmonic 
alleviation. This paper introduces various algorithms 
to analyse harmonics in the power system. The 
objective is to estimate the power system voltage 
magnitude in the presence distortions taking into 
account the noise by employing different estimation 
approaches. We have focused our attention towards 
the study of Least Mean Squares (LMS) based filter, 
Recursive Least squares (RLS) based filter, Kalman 
filter (KF) and Extended Kalman (EKF) filter. For a 
test signal LMS, RLS, KF and EKF based algorithms 
have been analysed and results have been compared. 
The proposed estimation approaches are tested for 
only static signals. 

 

Index Terms— Harmonics Estimation, LMS, RLS, 
Kalman Filter, Extended Kalman Filter. 
 

1. INTRODUCTION 

  Harmonics became a buzzword in the early 1980s, 
making many people reassessed the effectiveness of 
their building's wiring system. Yet, many still view 
the concept as a relatively new occurrence. 
However, harmonics have been there since well 
before the early '80s.The associated problems 
existed in the electrical system way back when 
transistor tubes were first used in the 1930s. Aside 
from grounding, many consider harmonics as one of 
the biggest concerns for the power quality industry 
today. In this chapter, we'll discourse the 
fundamentals of harmonics and the problems it can 
cause in a power system. We define harmonics as 
voltages or currents at frequencies that are multiples 
of the fundamental frequency. In most systems, the 
fundamental frequency is 50 Hz. Therefore, 
harmonic order is 100 Hz, 150 Hz, and 200 Hz and 
so on. We usually specify these orders by their 
harmonic number or multiple of the fundamental 
                                                        

 

frequency. For example, a harmonic with a 
frequency of 150 Hz is known as the third harmonic 
(50x3 = 150). In this case, for each cycle of the 
fundamental waveform, there are three complete 
cycles of the harmonic waveforms. The even 
multiples of the fundamental frequency are called as 
even-order harmonics while the odd multiples are 
called as the odd-order harmonics [1]. 
 

2. LMS METHOD 
 

       The least-mean-square (LMS) algorithm is a 
linear adaptive filtering algorithm that consists of 
two basic processes 1. A filtering process which 
involves (a) computing the output of transversal 
filter produced by a set of tap inputs, and (b) 
generating an estimation error by comparing this 
output to desired response. 2. An adaptive process 
which involves the automatic adjustment of the tap 
weights of the filter in accordance with the 
estimation error.[4] Thus, the combination of these 
two processes working together constitutes a 
feedback loop around the LMS algorithm. First we 
have a transversal filter around which LMS 
algorithm is built: this component is responsible for 
performing the filtering process. Second we have a 
mechanism for performing adaptive control process 
on the tap weights of the transversal filter, hence the 
designation “adaptive weight-control mechanism”. 
The tap inputs u(n), u(n-1), …., u(n-M+1) form the 
elements of M-by-1 tap input vector u(n), M-1 is the 
number of delay elements; these tap inputs span 
multidimensional space denoted by Un. 
Correspondingly, the tap weights ŵ0(n), 
ŵ1(n),…..ŵM-1(n) form the elements of M-by-1 tap 
weight vector ŵ(n). During filtering process the 
desired response is supplied for processing, 
alongside the tap input vector u(n). Given this input 
the transversal filter produces an output ∂(n/Un) 
used an estimate of the desired response d(n). We 
also define the estimation error as the difference 
between e(n) as the difference between the desired 
response and actual filter output. The estimation 
error e(n) and the tap-input vector are applied to the 
control mechanism, the feedback loop around the 
tap weights is thereby closed. A scalar version of 



inner product of estimation error and tap input u(n-
k) is computed for k = 1, 2, 3…..,M-2, M-1. The 
result defines the correction δŵ(n) applied to weight 
ŵ(n) at n+1 iteration. The scaling factor used here is 
denoted by µ. It is called the step-size parameter. 
The LMS algorithm uses the product to u (n-k) e*(k) 
as an estimate of element k in the gradient vector 
∇J(n) that characterizes the method of steepest 
descent. Accordingly the computation of each tap 
weight in the LMS algorithm suffers from gradient 
noise. The LMS algorithm involves feedback in its 
operation, which therefore raises the related issue of 
stability. In this context, a meaningful criterion is to 
require that J(n) ⟶ J(∞) as n⟶∞ where J(n) is the 
mean-squared error produced by the LMS algorithm 
at time n and its final value J(∞) is a constant. For 
LMS algorithm to satisfy this criterion, the step-size 
parameter µ has to satisfy certain conditions related 
to the Eigen structure of the correlation matrix of the 
tap inputs. To develop an estimate of the gradient 
vector ∇J(n), the strategy is to substitute the 
estimates of correlation matrix R and the cross 
correlation vector p 

j(n) = -2p + 2Rw(n)                                      (1.1)                                                                                                                    
The simplest choice of estimators for R and p is to 
use instantaneous estimates that are based on sample 
values of the tap-input vector and desired response, 
as defined by, respectively 
R̂(n) = u(n)uH(n)                                              (1.2)                                                                                                                        
p̂(n) = u(n)d*(n)                                                (1.3)                                                                                                                                      
Correspondingly, the instantaneous estimate of the 
gradient vector is 

ˆ ˆj(n)= -2u(n)d*(n) + 2u(n)uH(n) w(n)         (1.4)                                                                                            
This estimate is biased because the tap weight 
estimator ŵ(n) is a random vector that depends upon 
tap-input vector u(n). Substituting the estimate for 
the gradient vector j(n)  in the steepest descent 
algorithm, we get the recursive relation for updating 
tap-weight vector 
ˆ ˆ ˆw(n+1) = w(n) + u(n)[d*(n) -u (n)w(n)]H   (1.5)                                                                               

The result can be written in the form of three basic 
relations 
Filter output  ˆy(n) = w (n) u(n)H                       (1.6)                                                                                                    
Estimation error e(n) = y(n) -d(n)                     (1.7)                                                                                                 
Tap weight adaptation 
ˆ ˆw(n+1) = w(n) + u(n) e*(n)                          (1.8)                                                                                             

 

 
Figure 1. Signal flow graph of LMS Algorithm 

 
The estimation vector error e(n) is based on the 
current estimate of the tap-weight vector, ŵ(n). The 
second term µu(n)e*(n) on the right hand-side of 
(1.8) represents the correction that is applied to the 
current estimate of the tap-weight vector, ŵ(n). The 
iterative procedure is started with an initial guess 
ŵ(0). The algorithm described by (1.6) to (1.8) is 
the complex form of adaptive least-mean-square 
(LMS) algorithm. At each iteration or time update, it 
also requires the knowledge of most recent values: 
u(n), d(n) and ŵ(n). The LMS algorithm is the 
member of family of stochastic-gradient-
algorithms. When the LMS algorithm operates on 
stochastic inputs, the allowed set of directions along 
which we “step” from one iteration cycle to the next 
is random and cannot therefore be thought of as 
being true gradient directions. The LMS algorithm 
requires only 2M + 1 complex multiplications and 
2M complex additions per iteration, where M is the 
number of tap weights used in the adaptive 
transversal filter. In other words, the computational 
complexity of the LMS algorithm is O(M). 
  
 

3. RLS METHOD 
                                                                                         
An important feature of recursive least squares     
(RLS) algorithm is that it utilizes the information 
contained in the input data, extending back to the 
instant of time when the algorithm is initiated.[4] 
The resulting rate of convergence is therefore 
typically an order of magnitude faster than the 
simple LMS algorithm. This improvement in 
performance is achieved at the expense of large 
increase in computational complexity. In the 
recursive implementations of the method of least 
squares, we start the computation with known initial 
conditions and use the information contained in new 
data samples to update the old estimates. So it is 
found that the length of the observable data is 



variable. Accordingly, we express cost function to 
be minimized as ϐ(n), where n is the length of the 
variable data. Also, we are introducing weighting 
factor into the definition of cost function ϐ(n). We 
thus write 

2

1
(n) = ( , )|e(i)|

n

i
n i 


                                       (1.9)                                                                                                                     

where e(i) is the difference between the desired 
response d(i) and the output y(i) produced by a 
transversal filter whose tap inputs (at time i) equal 
u(i), u(i-1),.…..u(i-M+1). That is, e(i) is defined by 
e(i) = d(i) - y(i)= d(i)-w (n)u(i)H                  (1.10)                                                                                         
Where u(n) is the tap input vector at time n, is 
defined by 
u(n) = [u(i), u(i-1),......,u(i-M+1)]T               (1.11)                                                                                   
Where w(n )is the tap weight vector at time n, is 
defined by 

1w(n) = [w0(n), w1(n),.....w (n)]M                  
(1.12)                                                                                   
The tap weights of the transversal filter remain fixed 
during the observation interval 1 I n   for which 
the cost function (n) defined. 
The weighting factor (݊,݅) in (1.9) has the property 
that 0 < (n,i) 1                                              (1.13) 
Where i= 1,2,……..n. 
A special form of weighting that is commonly used 
is the exponential weighting factor or forgetting 
factor defined by 

(n,i) n i     i= 1,2…n.                                 (1.14)                                                                                                              
 is a positive constant with value close to, but less ߣ
than 1. When λ is 1, we have the ordinary method of 
least squares. The inverse of 1 – λ is a measure of 
the memory of the algorithm. The λ = 1 case, 
corresponds to infinite memory. Thus in the method 
of exponentially weighted least squares, we 
minimize the cost function 

1 2

1
(n) = |e(i)|

n
n

i
  


                                        (1.15)                                                                                                               

The optimum value of the tap weight vector, ŵ(n) 
for which the cost function attains its minimum 
value is defined by the normal equations written in 
matrix form 

ˆ(n)w(n) = z(n)                                               (1.16)                                                                                                                           
The M-by-M correlation matrix (n)  is now 
defined by 

1

1
(n) = u(i)u ( )

n
n H

i
i  


                                   (1.17)                                                                                                          

The M-by-1 cross-correlation vector z(n) between 
the tap inputs of the transversal filter and the desired 
response is defined by 

1 *

1
z(n) = u(i)d ( )

n
n

i
i 


                                    (1.18)                                     

Isolating the term corresponding to i = n from the 
rest of the summation on the right hand side of 
(1.17), we may write 

1

1
(n) = [ u(i)u ( )] ( )u ( )

n
n i H H

i
i u n n    



     (1.19)                              

The recursion for updating the value of correlation 
matrix of the tap inputs 

(n) = (n-1) + u(n)u ( )H n                           (1.20)                                                              
Where (n-1)  the old value of correlation matrix, 
and the matrix product is u(n)u ( )H n  plays the role 
of “correction” term in the updating operation. We 
may use (1.18) to derive the following recursion for 
updating the cross-correlation vector between the 
tap inputs and the desired response 
z(n) = z(n-1) + u(n)d*(n)                            (1.21)                                                                                                   
With the correlation matrix (n)   assumed to be 
positive definite and therefore non-singular, we may 
apply the matrix inversion lemma to the recursive 
equation (1.20). We first make the following 
identifications 
A = (n) , 1B = (n-1) , C = u(n) , D=1 
Applying the matrix inversion lemma, we obtain the 
following recursive equation for the inverse of 
correlation matrix 

1 1 1(n)= ( 1)n        
2 1 1

1 1

( 1) ( ) ( ) ( 1)
1 ( ) ( 1) ( )

H

H

n u n u n n
u n n u n

  
 

  

 

 
 

                (1.22)                                     

For convenience of computation, let 
1P(n) = (n)                                                    (1.23)                                                                             

1

1

( 1) ( )k(n)=
1 ( ) ( 1) ( )H

p n u n
u n p n u n









 

                   (1.24)                                                                                     

1 1( ) ( 1) ( ) ( ) ( 1)Hp n p n k n u n p n         
                                                                          (1.25)                                                                                          
The M-by-M matrix P(n) is referred to as the 
inversion correlation matrix. We have 

1 1( ) [ ( 1) ( ) ( ) ( 1)] ( )Hk n p n k n u n p n u n                                                                                    
(1.26) 

So, we get     k(n) = P(n)u(n)                          (1.27)                                                                                                              
1k(n) = (n)u(n)                                             (1.28)                                                                                                   

The gain vector k(n) is defined as the tap input 
vector u(n) transformed by the inverse of the 
correlation matrix (n)  To develop recursive 
equation for developing the least squares estimate 
ŵ(n) for the tap weight vector we use equation 
(1.21), (1.23) and (1.24) to express the least squares 



estimates ŵ(n) for the tap weight vector at iteration 
at n as follows 

1ŵ(n) = (n) z(n)   
= P(n)z(n-1) + P(n)u(n) d*(n)  
= P(n) z(n)                                                       (1.29)                                                                                                                                             
Substituting (1.25) for P(n) in the first term only in 
the right-hand side of (1.29) we get 
ˆ ˆ ˆw(n) = w(n-1)-k(n)u (n)w(n-1)H  
+ P(n)u(n)d*(n)                                              (1.30)                                              
Using P(n)u(n) equals the gain factor k(n), we get 
the desired recursive equation for updating the tap 
weight vector 
ˆ ˆ ˆw(n) = w(n-1) ( )[d*(n)-u (n)w(n-1)]Hk n  (1.31)                                                                                      
ˆ ˆw(n) = w(n-1) + k(n) *(n)  

Where *(n)  is the priori estimation error defined 
by 

ˆ(n)= d(n) - u (n)w*(n-1)T                            (1.32)                                                                                                             
ˆ= d(n) - w (n-1)u(n)H  

ŵ (n-1)u(n)H  Represents the estimate of the 
desired response d(n), based on the old least squares 
estimate of the tap weight vector that is made at 
time n-1. The a priori estimation error (n)  is 
different from the posteriori estimation error                                                                  

ˆe(n) = d(n) - w (n)u(n)H                                 (1.33)                                                                                                 
 

 
4. KALMAN FILTER 

 
The important feature of the Kalman filtering is the 
recursive processing of the noise measurement data. 
In power system applications, Kalman filter is used 
to estimate voltage and frequency variations. The 
Kalman filtering has also been used for dynamic 
estimation of voltage and current phasors [1]. This 
filtering technique is used to obtain the optimal 
estimate of the power system voltage magnitudes at 
different harmonic levels. The Kalman filter is an 
estimator which is used to  
Estimate the state of a linear dynamic system 
influenced by Gaussian White noise, using 
measurement that are linear functions of the system 
state, but corrupted by additive Gaussian white 
noise. The Kalman Filter allows to estimate the state 
of dynamic systems with certain types of random 
behaviour by using these statistical information. The 
Kalman filter deals with the general problem of 
trying to estimate the state of a discrete-time 
controlled process that is governed by the linear 
stochastic difference equation 

1 1 1X  = Ax + Bu + wk k k k                                (1.34)                                                                                                       

With a measurement mz R  that is 
Z  = Hx  + vk k k                                                (1.35)                                                                                           
The random variables wk and vk represent the 
process and measurement noise and are assumed to 
be independent of each other. They are white noise 
with normal probability distributions. 
p(w) ~ N(0,R)                                                 (1.36)                                 
p(v) ~ N(0,Q)                                                  (1.37)                                                                                           
With each time step or measurement the process 
noise covariance R and measurement noise 
covariance Q matrix may change. But, here we are 
assuming they are constant. The matrix n х n matrix 
A in the difference equation and the n х l matrix B 
refer to the state at the previous time step k-1 to the 
state at the current step k. Here, both A and H are 
assumed to be constant. 
We define x̂ k

  as our a priori state estimate at step k 
given knowledge of the process prior to step k, and 
x̂ k  as our a posteriori state estimate at step k given 
measurement zk. Then, we can write a priori and a 
posteriori estimate errors as 

ˆe k k kx x    And ˆek k kx x   
Then, a priori estimate error covariance is 

[e e ]T
k k kp E                                              (1.38)                                                                                                          

And the a posteriori estimate error covariance is 
[e e ]T

k k kp E                                                 (1.39)                                                                                    
Our goal is to find an equation that computes an a 
posteriori state estimate ˆkx  as a linear combination 

of an a priori estimate ˆkx  and a weighted difference 
between an actual measurement zk and a 
measurement prediction ˆkHx . 

ˆ ˆ ˆ( )k k k kx x K z Hx                                     (1.40)                                

The difference ˆ( )k kz Hx  is called the 
measurement innovation, or the residual. The 
residual reflects the inconsistency between the 
predicted the measurement ˆ kHx  and the actual 
measurement zk. If the residual is zero then, the two 
are in complete concurrence. The n х m matrix K in 
(2.40) is the gain or blending factor that minimizes 
the a posteriori error covariance (2.39). This 
minimization can be achieved by first substituting 
(2.40) into the above definition for ek, substituting it 
into (2.39), performing the mentioned expectations, 
taking the derivative of the trace of the result w.r.t 
K, adjusting that result equal to zero, and then 
solving for K. 
The Kalman gain calculated that minimizes Pk is 
given by 



T
k

k T
k

p H
K

R Hp H






                                       (1.41)                                                                                                        

We can observe that as the measurement error 
covariance approaches zero, the gain K weights the 
residual more heavily. Specifically 

1

0
lim

k
kR

K H 


  

On the other hand, as the a priori estimate error 
covariance approaches zero, the gain K weights the 
residual less heavily. Specifically 

0
lim 0

k
kp

K
 

  

So, we can see that as the measurement error 
covariance R approaches zero, the actual 
measurement zk is trusted more and more, while the 
predicted measurement ˆ kHx  is trusted less and less. 
On the other hand, as the a priori estimate error 
covariance kp  approaches zero the actual 
measurement zk is trusted less and less, while the 
predicted measurement ˆ kHx  is trusted more and 
more. The Kalman filter incorporates a form of 
feedback control by estimating the process state at 
some time and then obtaining the feedback in the 
form of noisy measurements. The Kalman filter 
equations can be divided into two groups: time 
update equations and measurement update 
equations. The time update equations are 
accountable for extrapolating forward (in time) the 
current state and error covariance estimates to obtain 
the a priori estimates for the next time step. The 
measurement update equations are accountable for 
incorporating a new measurement into the a priori 
estimate to obtain an improved a posteriori 
estimate. The time update equations can also be 
considered as predictor equations, while the 
measurement update equations can be considered as 
corrector equations. So, the final estimation 
algorithm acts as a predictor-corrector algorithm for 
solving various numerical problems [3]. 
The time update equations are 

1 1ˆ ˆk k kx Ax Bu 
                                           (1.42)                                                                                                                     

1
T

k kp Ap A Q
                                        (1.43)                                                                                       

The measurement update equations are 
1( )T T

k k kK p H Hp H R                         (1.44)                                                                                           

ˆ ˆ ˆ( )k k k kx x K z Hx                                    (1.45)                                                                                       

( )k k kp I K H p                                        (1.46)                                                                                         
The first step in the measurement update is to 
compute the Kalman gain, Kk. The next step is to 
measure the process to obtain zk, and then to 
generate an a posteriori state estimate by 

incorporating the measurement as in (2.45). The 
final step is to obtain an a posteriori error covariance 
estimate using (2.46). After each time and 
measurement update pair, the process is repeated 
with the previous a posteriori estimates used to 
predict the new a priori estimates. 

 
Figure 2. Kalman filter prediction Estimation Cycle 

 
 
 

5. EXTENDED KALMAN FILTER 
 

 
The Kalman Filter addresses the general problem of 
trying to estimate the state nx R  of a discrete 
time-controlled process that is governed by a linear 
stochastic difference equation. But some of the most 
interesting and successful applications of Kalman 
Filtering have been the ones when the process to be 
estimated and the measurement relationship to the 
process is non-linear. A Kalman Filter that 
linearizes about the current mean and covariance is 
known as an Extended Kalman Filter or EKF. In 
something similar to the Taylor Series, we can 
linearize the estimation around the current estimate 
using the partial derivatives of the process and the 
measurement functions to compute the estimates 
even in the case of non-linear relationships. This is 
done by modifying some of the material presented 
in the Kalman filtering algorithm. Let us consider 
that the process has a state vector nx R  but that 
process is now governed by the non-linear stochastic 
difference equation [3]. 

1 1 1( , , )k k k kx f x u w                                      (1.47)                                                                                                       

With a measurement mz R  that is 
( , )k k kz h x v                                                   (1.48)                                                                                          

Where the random variables ݇ݓ and ݇ݒ again 
represent the process and measurement noise as in 
(1.36) and (1.37). In this case the non-linear 
function f in the difference equation (1.47) relates 
the state at the previous time step k-1 to the current 
time step k. It includes parameters as a driving 



function 1−݇ݑ and the zero mean process noise ݇ݓ. 
The non-linear function h in the measurement 
equation (1.48) refers to the state ݇ݔ to the 
measurement ݇ݖ. 
Actually, one does not know the individual values of 
the noise ݇ݓ and ݇ݒ at each time step. However, one 
can approximate the state and measurement vector 
without considering them 

1 1ˆ( , ,0)k k kx f x u                                          (1.49)                                                                                                   
( ,0)k kz f x                                                    (1.50)                                                                                            

Where kx  is some a posteriori estimate of the state 
(from previous time step k). One of the fundamental 
flaws of EKF is that the distributions (or densities in 
the continuous case) of the random variables remain 
no longer normal after undergoing respective non-
linear transformations. The EKF is simply a specific 
state estimator that only approximates the optimality 
of Bayes’ Rule by linearization. 
To estimate a process with non-linear difference and 
measurement relationships, we begin by writing new 
governing equations that linearize an estimate about 
(1.49) and (1.50) 

1 1 1ˆ( )k k k k kx x A x x Ww                        (1.51)                                                                                         
ˆ( )k k k k kz z H x x Vv                               (1.52)                                                                                           

Where   
 are the actual state and measurement ݇ݖ And ݇ݔ
vectors, 

kx  And kz  are the approximate state and 
measurement vectors form 
ˆkx  Is an a posteriori estimate of the state at step k 

The random variables ݇ݓ and ݇ݒ represent the 
process and measurement noise and A is the 
Jacobian matrix of partial derivatives of f with 
respect to x, that is 

[ ]
[ , ] 1 1

[ ]

ˆ( , ,0)i
i j k k

j

f
A x u

x

                                 (1.53)                                                                                             

W is the Jacobian matrix of partial derivatives of f 
with respect to w, that is ,  

[ ]
[ , ] 1 1

[ ]

ˆ( , ,0)i
i j k k

j

f
W x u

w

    

H is the Jacobian matrix of partial derivatives of h 
with respect to x 

[ ]
[ , ]

[ ]

( ,0)i
i j k

j

h
H x

x



   

V is the Jacobian Matrix of partial derivatives of h 
with respect to v 

[ ]
[ , ]

[ ]

( ,0)i
i j k

j

h
V x

v



   

It is to be noted that for simplicity in the notation we 
don’t use the time step subscript k with the 
Jacobians A, W, H and V even though they are 
different in fact at each time step. 
Now we define a new notation for the prediction 
error, 

Xk k ke x x                                                      (1.54)                                                                                       

zk k ke z z                                                       (1.55)                                                                  
In practice, one does not have access to ݇ݔ in (1.53), 
it is the actual state vector, i.e., the quantity one is 
trying to estimate. On the other hand, one does have 
access to ݇ݖ in (1.54), it is the actual measurement 
that one is trying to estimate ݔ . Using (1.53) and 
(1.54) we can write the governing equations for an 
error process as 

1 1ˆ( )xk k k ke A x x                                                                                                                              

zk xk ke He                                                   (1.56)                                                                                       
Where k  and k  represent new independent 
random variables with zero mean and covariance 
matrices TWQW  and  TVRV  with Q and R as in 
(1.36) and (1.37) respectively. 
It is to be noted that the equations (1.55) and (1.56) 
are linear, and that they closely represent the 
difference and measurement equations (1.34) and 
(1.35) from the Kalman Filter. This motivates us to 
use the actual measurement residual zke  in (1.54) 
and a second (hypothetical) Kalman Filter to 
estimate the prediction error xke  . This estimate, call 
it ˆke , could then be used along with (1.53) to obtain 
a posteriori state estimates for the original non-
linear process as 
ˆ ˆk k kx x e                                                       (1.57)                                                                 

The random variables of (1.55) and (1.56) have 
approximately the following probability 
distributions 

( ) (0, [ ])T
xk xk xkp e N E e e    

( ) (0, , , )T
k kp N W Q W   

( ) (0, )T
k kp N VR V   

Given these approximations and letting the 
predicted value of ݁ ̂݇to be zero, the Kalman filter 
equation used to estimate ˆke  is 
ˆk k zke K e                                                          (1.58)                                                                                  

By substituting (1.58) back into (1.57) and making 
use of (1.54) we see that we do not actually need a 
second (hypothetical) Kalman Filter 
ˆk k k zkx x K e   = ( )k k k kx K z z                  (1.59)                                                                                  

Equation (1.59) can now be used for the 
measurement update in the Extended Kalman Filter, 



with kx  and kz  coming from (1.49) and (1.50) and 
the Kalman gain ݇ܭ coming from (1.44) with the 
appropriate substitution for the measurement error 
covariance. 
 

A. EKF TIME UPDATE EQUATION 
 

1 1ˆ ˆ( , ,0)k k kx f x u 
                                        (1.60)                                                                                                        

1 1 1
T T

k k k k k k kP A P Ax W Q W
                    (1.61)                                                                                        

This basic discrete Kalman Filter the time update 
equations project the state and covariance estimates 
from the previous time step k-1 to the current time 
step k. Also, f in (1.60) comes from (1.49), ݇ܣ and 
ܹ݇ are the process Jacobians at the step k, and ܳ݇ 
is the process noise covariance (1.36) at step k 
 

B. EKF MEASUREMENT UPDATE 
EQUATION 

 
1( )T T T

k k k k k k k k kK P H H P H V R V        (1.62)                                                                                      

ˆ ˆ ˆ( ( ,0))k k k k kx x K z h x                              (1.63)                                                                                               

(1 )k k k kP K H P                                         (1.64)                                                                                    
This measurement update equations correct the state 
and covariance estimates with the measurement݇ݖ. 
Also, h in (1.63) comes from (1.50) ݇ܪ and V are 
the measurement Jacobians at step k, ܴ݇ is the 
measurement noise covariance (1.37) at step k. The 
basic operation of the EKF is same as that of the 
linear discrete Kalman Filter. 
 

 
 

Figure 3. Operation of Extended Kalman Filter 
 
Now, a signal containing N sinusoids has been 
considered as 

1
( )

N

i i k i k
i

X A Sin w t v


           

Where  1,2,.............,k N  
Where ikA , iw  and i  is the amplitude, frequency 
and phase of the ith sinusoid respectively. tk is the 
kth sample of the sampling time and vk is a zero 
mean Gaussian white noise. In this paper, we have 
used this signal having amplitude of 1p.u (for LMS 
& RLS) and 20p.u (for KF) and frequency of 50Hz. 
The process noises are generated using the random 
number generator with the help of Matlab command 
“randn”. The amplitude estimation of the signal 
(where the estimated is the filtered one in case of 
LMS and RLS) has been carried out at different 
harmonic levels starting from fundamental to 5th 
harmonic signal. The simulation results have been 
shown in the subsequent pages which compare 
between the original signal and estimated signal. A 
static test signal corrupted with non-linearities and 
Gaussian noise has been used and the estimation of 
amplitude is done using Extended Kalman filtering 
algorithm. 
 
 
 

6. SIMULATION RESULTS 
 

A. LMS RESULTS 
 

 
 

 
 

Fundamental Amplitude Estimation Using LMS 
 



 
 

 
3RD Harmonic Amplitude Estimation Using LMS 

 
 
 

 
 

 
5TH Harmonic Amplitude Estimation Using LMS 

 
 

 
B. RLS SIMULATION RESULTS 

 

 
 

 
 

Fundamental Amplitude Estimation Using RLS 
 

 
 

 
3RD Harmonic Amplitude Estimation Using RLS 

 



 
 

 
5TH Harmonic Amplitude Estimation Using RLS 

 
 

C. KALMAN FILTER SIMULATION 
RESULTS 

 

 
 

 
Fundamental Amplitude Estimation Using Kalman 

Filter 
 

 
 

 
3RD Harmonic Amplitude Estimation Using Kalman 

Filter 
 

 
 

 
5TH Harmonic Amplitude Estimation Using Kalman 

Filter 
 



D. EXTENDED KALMAN FILTER 
SIMULATION RESULTS 

 

 

 
Extended Kalman Filter Output (amplitude vs. 

Cycles of Prediction and estimation) 

 
Mean Square Error in EKF 

 

7. CONCLUSION 

Harmonic distortion is one of the different aspects 
that affect the power system efficiency. Since the 
harmonic content of the power circuit depends upon 
the load, the presence of a non-linear load and 
electronic converters in the system are the main 
cause of harmonics. Harmonics can be broadly 
divided into two categories: characteristic and non-
characteristic. The production of non-characteristic 
harmonics in the circuit should be avoided as far as 

the technical aspects are concerned. Characteristic 
harmonics are the integral multiples of the 
fundamental frequency and their amplitude is 
directly proportional to the fundamental frequency 
and inversely proportional to the order of the 
harmonic. Since it is essential to filter out those 
harmonics, we require an estimator to estimate the 
parameters of the harmonics. There are various 
methods for the estimation of the parameters. We 
have discussed about the Least Mean Squares 
(LMS), Recursive Least Squares (RLS), Kalman 
Filter(KF) and Extended Kalman Filter (EKF) 
algorithms in this paper. The LMS is the most 
commonly used algorithm used for estimation. It is 
a gradient descent algorithm which adjusts the 
adaptive filter taps changing them by a quantity 
proportional to the instantaneous estimate of the 
gradient of the error surface. The RLS algorithm 
performs an exact minimization of the sum of the 
squares of the desired signal estimation errors at 
each instant. The Kalman Filter is basically a 
recursive estimator and its algorithm is also based 
on the least square error. Since all the algorithms 
produce a noisy estimate of the filter taps, we need a 
low pass filter which would then process this noisy 
signal. The filter bandwidth of this filter should be 
so chosen that it compromises between eliminating 
the noise from the noisy estimate and preserving the 
original signal. This feature is only provided by the 
KF. The RLS algorithm is not capable of doing this 
since its filter bandwidth is fixed. The LMS 
algorithm has this feature but its quantitative values 
are not adequate. But one limitation of KF is that it 
cannot be used for non-linear systems. To work with 
non-linear systems we proposed the Extended 
Kalman Filter (EKF) .In this algorithm we need to 
compute the matrix of partial derivatives (Jacobians) 
in order to linearize the non-linear system about the 
current mean and co-variance. We found out that 
although this filter is able to estimate the parameters 
for non-linear systems significantly, it suffers from 
strategic disadvantage as the computation of 
Jacobians is very difficult. 
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