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Abstract—Mixed Integer Non Linear Programming (MINLP) via
the cross-entropy approach for the optimal location and tuning of
Power System Stabilizer (PSS) is presented in this paper.
The considered problem is to maximize the damping ratio of the
global system under a minimum number of PSS and
simultaneously to find out the best candidate machines to be
equipped with PSSs. The damping ratio objective is achieved by
tuning the controllers to shift the lightly damped and undamped
electromechanical modes of all plants to a prescribed zone in the
s-plane. This problem of tuning and location of PSS over a wide
range of system configurations is formulated as a MINLP
problem where the objective is the aggregation of the two
objectives on the damping ratio and on the PSS’s number. The
mixed optimization problem, with a great combinatory aspect, is
solved by an extension of the cross-entropy approach from the
rare event framework.

The performance of this technique for damping the oscillations
in multimachine power systems is confirmed through eigenvalues
analysis over many scenarios. The proposed method is assessed
by a comparative study with a previous approach based on the
genetic algorithms.

Index Terms—Cross-Entropy, Rare event simulation, PSS,
Genetic Algorithms, Damping Controller and Transient Stability.

1. Introduction
Modern power systems are more likely to reach stressed
conditions than they used to because of the increasing
electrical power system demand, and the new deregulated
competitive environment which lead to operate them close to
their limits of stability. Multiple interarea poorly damped
oscillations can then appear more frequently.

In the last decades, PSS have been used by utilities in real
power systems as they have proved to be the most cost-
effective electromechanical damping control [2][3][4] and
increasing the damping of oscillation modes by adequately
tuning power system stabilizers (PSSs) has been the topic of
many works. Generally the design of the PSS parameters was
based on a single machine infinite bus (SIMB) power system
model, considering the concepts of synchronizing and
damping torque coefficients [1]. However, this procedure

considered that the PSS parameters were chosen to ensure the
damping performance of local modes only and the
simultaneous coordination of multiple PSSs for multimachine
power systems was not attempted.

Several modern control techniques can be used to design
different power system stabilizers. However, power systems
companies prefer to choose lead–lag structure due to its
simplicity and reliability in real power systems
implementation. The simultaneous tuning of this type of
stabilizers in order to increase their damping performance is
very attractive.

Because of its complexity, this simultaneously tuning of
PSS has been investigated by heuristic methods and many PSS
tuning methods using genetic algorithms (GA) were presented
in [9][10][11][12]. These methods investigated the use of GA
in order to simultaneously tune the parameters of PSS with
values that stabilize multimachine power system over a wide
range of scenarios. For example, in [9][10] simultaneous
tuning of PSS for the 16-machines and 68-bus power system
model was performed in different scenarios The objective
function used for GA optimization was then to maximize the
sum of eigenvalues damping and the maximum of the
minimum eigenvalues dampings for all scenarios. In [12] a
multiobjective optimization technique using GA with a lead
lag PSS to set eigenvalues in the left-half side is described. All
these papers demonstrated great advantages of using GA for
robust PSS tuning. However they consider systems with fixed
locations of PSS and different placement of PSSs makes the
oscillation behaviors quite different at different scenarios. The
PSS design procedure is then a sequence of selection of
locations for example by the speed participation factors [17]
and tuning in order to achieve optimal stabilization
performance leading to a great number of optimal tuning.

A tempting solution is then to solve the problem of
localization of PSS and their tuning simultaneously. This
problem is a mixed integer (combinatory) non linear
programming problem (MINLP) where the discrete variables
are the candidate machines to be equipped with PSS, and the
continuous variables are their gains. So, it is very hard to
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elaborate a ’customized algorithms’ which exploits the
particular structure of the objective function as cutting planes
[5] or branch-and-bound [6] for solving it. Several heuristic
methods have been proposed such as genetic algorithms, tabu
search, ant colony, and particular swarm to solve it, (see for
example [7][8]). So, in [7][13], the authors tried to overcome
the above problems by using minimum phase control method,
fixing both damping ration and damping factor and
minimizing the number of PSS introducing for each machine a
control bit ( : PSS installed, : PSS not installed) to find out
the location of PSS. A micro-GA combined with a hierarchical
genetic algorithm (HGA) was used for this optimization and a
good improvement in the damping has been achieved with one
set of PSS parameters but a great simulation time is required.

The cross entropy method (CE) was proposed by
R.Y. Rubinstein [14] for solving rare-event simulation
problems and extended to solving combinatorial problems. It
has been successfully applied in several engineering problem
[15][16] and in this paper an extension of this approach for
solving a MINLP is proposed and applied to solve the problem
of tuning and location of PSS in power systems.

The proposed CE tuning procedure is tested on two power
systems models, the Kundur’s two area model which is an
academic problem. The results are compared with those of the
GA approach, and the nonlinear simulation and the
eigenvalues analysis demonstrate the excellent improvement
of the dynamic oscillations for all the studied scenarios.

2. Problem formulation
The problem of deciding on the location and tuning of the PSS
while maximizing the damping ratio and minimizing the
number of controllers to be installed is a multiobjective (MO)
optimization problem. In the first part we will explain how it
is changed in a single objective mixed optimization problem.
Then we will propose to adapt the CE method to solve this
problem and finally we will explain how the physical problem
with the specific PSS is related to the optimization problem.

a. Problem statement
We propose to aggregate the problem of deciding on the

location and tuning of the PSS while maximizing the damping
ratio and minimizing the number of controllers, as the problem
to find the decision variables that maximize:

(1)

Where characterizes the global damping of the system.
As it will be detailed in the next section this damping is linked
to the eigenvalues of the linearized system for the various
operating conditions.

Of course, the tuning of the aggregation ratio requires a
priori knowledge about the relative importance of the two
objectives (minimum number of PSS under a great global
damping) and will be of great importance for the final result.

Each controller is tuned with one parameter that is its gain.
For simplicity of computations this gain will be considered as

with . The aim of the optimization is
then to compute the optimal values for decision variables that
maximize the problem specified by (1) i.e. the logical
variables that model the location of the PSS and their gain
specified by variables .

The aim of the optimization is then to compute the optimal
values for the decision variables that maximize the problem
specified by (1) i.e. the logical variables that model the
location of the PSS and their gain specified by the variables .

This problem is a very combinatory and complex with an
implicit objective function, which depends on the evaluation
of eigenvalues of a state matrix. It is then very difficult to
solve using conventional methods as continuity of objective
function cannot be established and Hessian cannot be
obtained. We then propose to solve it using CE approach
adapted to combinatory and continuous variables.

b. The Cross entropy method

In this section CE method in the rare-event simulation
framework is recalled. Then, we explain how we adapt this
method for solving Mixed Integer Non Linear Programming
(MINLP) problems and finally, we present an algorithm for
problems whose search spaces are dimensional mixed
spaces (i.e. where, is the number of the
continuous variables, and m is the number of binary variables).

The CE method [14] is a method to evaluate the probability
that a rare event occurs. Let be a random variable taking its
values in some space with a probability density function
(pdf) and a real value function on . The problem is
to evaluate where is a given threshold.
An estimator of this probability is given by (2) where

is the indicator function1 of the event and is
the number of samples.

(2)

If the probability to estimate is very low, this estimator
requires a great number of samples. For example, in order to
estimate with a relative error , a number of
samples , is required. The basic idea of CE is
to introduce an importance sampling pdf to reduce the
required number of samples. The new estimator given by (3)
where the samples are drawn from the density g(·) can then be
used.

(3)

1 The function I(logical expression) is defined by I(logical expression) if
logical expression is true and 0 otherwise.



Obviously the best estimator would be based on the ideal
importance sampling pdf given by (4) the variance of which is
0 as l is constant but that can’t be used as is unknown and is
to estimate.

(4)

The main idea of the CE method for rare event simulation is
to find inside an, a priori, given set of pdfs defined on ,
the element such that its distance with the ’ideal’
sampling distribution is minimal.

A particularly convenient measure of distance between two
pdfs and on is the Kullback-Leibler distance,
which is also termed the cross-entropy between and .
The Kullback-Leibler distance, which is not a “distance “in
the formal sense since it is, for example, not symmetric, is
defined as follows:

(5)

The CE method reduces the problem of finding an
appropriate importance sampling pdf to the following
optimization problem:

(6)

One can show through simple mathematical derivations that
solving (6) is equivalent to solve (7) which does not explicitly
depend on l anymore.

(7)

Using a given importance sampling with a pdf
it is possible to get an estimation of the solution of (7) by
solving its stochastic counterpart (8) where the set of samples

is drawn according to and
is the , between and

.
(8)

Under specific assumptions on , and it is possible
to analytically solve (8). For example, when

is the set of dimensional
exponential-Bernoulli distributions with independent
components specified by (9):

(9)

where is the vector of parameters and the
component of , and also belongs to this set, the parameters
of the solution of (8) are given by (10).

(10)

Of course the solution of (8) is a better estimation of the
solution of (7) when the number of samples such as

is high. It is then necessary to adopt an iterative
approach to compute the pdf to favor the occurrence of the
desired event. If is very low it is even necessary to introduce
an iteration that increases the value of .

This approach evaluates the probability that the function
is greater than or equal to a given value by drawing

samples with a pdf that evolves in such a way that the number
of event increases i.e. such as the value of is great. It is
then attractive to use the approach to evaluate the maximal
value of the function.

Let us consider the single objective optimization problem
(MINLP) specified by (11) where and

is a real value objective function. The basic idea of CE
for SO optimization is to use a stochastic approach based on
importance sampling in order to get a good evaluation of .

(11)

Starting from an a priori pdf to draw samples the method
iteratively computes series of pdf that increase the probability
to draw samples near the global optimal solution. With respect
to the previous problem the main difference is that the event
that is used to iteratively compute the pdf is not given by the
problem but has to be chosen. Generally this is done by
choosing a given number ( is the size of the elite) and
considering that the relevant event is that the samples belong
to the better samples according to the objective function

. At each step the new pdf is computed according to (12),
where Elite is the set of the best samples. When

, and dimensional distributions
with independents components specified by (9) are chosen the
parameters of the solution of (12) are given by a formula,
adapted from (10) by fitting the indicator functions.

(12)



Input: A performance function : ,
two parameters: the size of the samples and the quantile
for the Elite selection, and the total number of the variables
( ).
Output: An element .
1. Set equal to 1 and to for , (the

logical components vector ut. Set equal to
the largest integer inferior or equal to . If

set equal to .
2. Set equal to an empty set and to an empty vector.
3. Draw independently elements according to the composite
pmf and set them in .

4. For every element , compute and add this value
at the end of the vector .
5. Order the vector in decreasing order and set

.
6. If stopping condition is realised, then return

and stop. Otherwise, go to 7.

7. Set for

and . Go to 2.
Fig. 1. A cross-entropy method for mixed integer (combinatory) nonlinear

programming.

From the considerations of the previous section, it is possible
to determine the algorithm in Fig. 1. This algorithm aims at
computing the pdf parameter, which will be used to sort the
best solution. The step 1 is an initialization step that uses some
parameters of the algorithm to initialize the pdf (the logical
parameters are set to 0.5), the size of the Elite set and the size
of the problem. Steps 2 to step 7 correspond to the iterative
change of the pdf in order to favour the drawing of elements
of the optimal solution. They are based on a direct application
of the CE principles as explained above.

C. Damping factor computation
In order to compute the new pdf at each step according to (12)
it is necessary to compute for each sample the value of the
criterion (1) for all samples in order to select the members of
the elite set. To evaluate this criterion the difficult part is to
compute the damping ratio F as the system is nonlinear and its
dynamics specified by:

(13)
where x is a vector of the state variables, and u is the vector of
the damping controller outputs signals.

In order to evaluate this ratio we will consider a set of
operating conditions at equilibrium points of (13) and use the
linearized model of (13) around these equilibrium positions
[17].

Fig. 2. Closed-loop setup

The set of linearized systems are then considered as controlled
by a given configuration of controllers (Fig.2) thus defining a
set of linear close-loop systems. For each of these systems, it
is possible to compute the eigenvalues and then their damping.

Let  be a eigenvalue (mode) of one of the
linear closed loop systems. Then, the damping coefficient ( )
of this eigenvalue is defined by:

(14)

Then it is possible to characterize the damping of the global
nonlinear systems as:

(15)

Where is the set of the damping coefficients of the
eigenvalues for the operating condition and is the total
number of operating conditions under consideration.

D. Damping control structure
In this paper, we will consider that the generators are

equipped with IEEE-type-ST1 excitations and PSSs.

Fig. 3. IEEE-type-ST1 excitation system with lead-lag CPSS.

As shown in Fig. 3 the behavior of this structure is
characterized by:

(16)

where and are the gain and time constant of the
excitation system and is the reference voltage. Moreover
a conventional lead-lag PSS is installed in the feedback loop
to generate a stabilizing signal .

A lead/lag structure with a washout stage is assumed for
each controller and the following equation then defines its
transfer function:

(20)

The time constant in the washout stage is considered as a
constant parameter classically equal to s. The parameters



, , and are chosen in order that the phase lead
provided by lead-lag parameters of the PSS should
compensate as well as possible the phase lag between the
exciter voltage reference and the generator electric power
output. If the PSS exactly compensates this phase, it produces
a torque on the generator shaft in antiphase to the generator
speed, so, it acts as an ideal damper [3] [17]. In our
experiments these parameters were tuned according to [17].

Then the parameters to be determined by the optimization
method are the gains of the controllers and their location.

3. Cases studies
In order to asses our tuning location method we have used two
cases. In each of these studies the generator was represented
by a sixth-order model.

a. Two area power system
The two-area power system is an academic test problem, it is
elaborates to investigate the behaviors of electromechanical
oscillations in power systems [2]. The basic topology is
depicted in Fig. 4. The system contains eleven buses and two
areas, connected by a weak tie between bus and .Two loads
are applied to the system at bus and . Two shunt capacitors
are also connected to bus and as shown in the figure. The
fundamental frequency of the system is Hz. All generators
are equipped with simple exciters and have the same
parameters. Two operating conditions with MW of power
flowing from area to area were analyzed:

operation condition: Two lines between bus and
operation condition: One line between bus and

Fig. 4. Single line diagram of the two area power system

The linear analysis of this system around of the above
operation points (Fig. 5) show that the system is highly
stressed [10], there are two eigenvalues with positive real part.

The maximal value of PSS’s gains ( ) is equal to . In
order to solve the problem described by equations (1), the
Power System Toolbox (Cherry software) is used to build the
linearized power system models and the Control System
Toolbox for the construction of the closed loop MIMO
system. In (1) the aggregation coefficient is set equal to .
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Fig. 5. Linear analysis (with CE and GA)
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TABLE I
CONVERGENCE OF THE DISTRIBUTION PARAMETERS VECTOR

t v(1) v(2) v(3) v(4)
v(5) v(5) v(7) v(8)

0 0.0100000 0.0100000 0.0100000 0.0100000 # #
½ ½ ½ ½

1 0.0002569 0.0048733 0.0027618 0.0020516 -
2.91605 7.08394

0.48 0 0.52 1

2 0.0009277 0.0042278 0.0225485 0.0009253 -
2.91252 7.08747

1 0 0 1

3 0.0000787 0.0016263 0.0149081 0.0002498 -
2.90665 7.09335

1 0 0 1

4 0.0000007 0.0099340 0.0072095 0.0000854 -
2.90560 7.09439

1 0 0 1

5 0.0000226 0.0108531 0.0040472 0.0000015 -
2.90525 7.09474

1 0 0 1

6 0.0000005 0.0001111 0.0020224 0.0000001 -
2.90518 7.09481

1 0 0 1

7 0.0000002 0.0129845 0.0121039 0.0000003 -
2.90518 7.09481

1 0 0 1

8 0.0000000 0.0000348 0.0103413 0.0000000 -
2.90518 7.09481

1 0 0 1

9 0.0000000 0.0042214 0.0046053 0.0000000 -
2.90518 7.09481

1 0 0 1

10 0.0000000 0.0092598 0.0056280 0.0000000 -
2.90518 7.09481

1 0 0 1

The optimization was performed with the size sample equal to
, and the quantile ratio equal to . The distributions

parameters are given in Table I (these outcomes are verified
by ten runs), which confirms that the solution is stable after
the sixth iteration. The best solutions sorted accordingly to
these parameters are given in Table II:

The PSSs should be installed on generators and , which
is the same result if we use the speed components of the
participation factor associated with the unstable interarea



mode (the mode with the frequency
_Hz) ([10]).

The plot of the eigenvalues obtained from the two linearized
model with the controller included is given in Fig. 5. It can be
observed that the system is stable and sufficiently damped
with all modes placed inside the % damping wedge-shape
sector.

TABLE II
PSS PARAMETERS WITH GA AND CE METHODS

No.
With GA With CE

G1 10 10 10 0.05 0.015 0.08 0.01
G2 no PSS no PSS 10 0.05 0.015 0.08 0.01
G3 no PSS no PSS 10 0.05 0.015 0.08 0.01
G4 10 10 10 0.05 0.015 0.08 0.01

-2.90518 -2.90518
2 2
7.09481 7.09481

Time to reach 99%
of the final value 178.85 s 85.97 s

Iteration  to reach
99% of the final
value

31 6

The optimized parameter can be also tested trough the non
linear simulation. A three phase fault is applied on line
at s, while power ( MW) is flowing from area to area
. Then the near end of the line is opened at s.

Finally, the line is completely removed at s. Fig. 6 shows
the responses of the relative angles of this system; it can be
observed that the system is well damped and stabilized in less
than s.
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The hierarchical genetic algorithm developed in [7], with all
GA parameters taken from [8], has been used to asses these
results. The generation evolution can be viewed in Fig. 7. The
convergence of the GA is reached in less than generations

which corresponds to s. However, with the cross
entropy approach the solution is reached in less than
iterations that corresponds to s (the simulation is
performed with MATLAB (c) under Pentium GHz Go
Ram). The execution time of the CE approach is half the GA
method one
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Fig. 7. Fitness – generation (two area power system)

4. Conclusion
In this paper, a new approach for solving the problem of

tuning and location of the minimum numbers of PSSs using
the cross entropy approach is presented. The main objective
was to ensure a significant improvement of dynamical
oscillations achieved by a minimum number of PSSs installed
and tuned optimally.

The procedure was tested for the two area power systems
over several scenarios. The obtained results show that the use
of this simulation based method can find the optimal locations
and the minimum controller's parameters faster than the
hierarchical genetic algorithms.

Also, an original extension of the cross-entropy approach to
resolve the mixed integer non linear programming was
proposed. This new algorithm is suggested to be tested in
other power systems applications where the ’customized
algorithms’ for the mixed integer nonlinear programming are
hard to be developed.
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