
1

Abstract—Speed is the challenging issue for any electronic

component. Memory access time is dependent on speed of the

microprocessor. Access time is more in the off-chip memory

than on-chip memory. In order to increase the speed, cache

memory compression technique is found by microprocessor

system designers, as it increases the cache capacity and off-

chip bandwidth. Performance of the processor, power

consumption and area were assumed in previous work on

cache compression. A lossless cache compression algorithm is

proposed and designed for high performance processor. This

technique allows Parallel compression of multiple words

using dictionary mode. Compression ratio is not degraded in

the performance.

Key Terms: Cache memory Compression, data compression,

Parallel compression of multiple words.

I. INTRODUCTION

Semiconductor technology rapidly develops and micro

architectural developments continue to increase which results

in performance gap between processors and memory. Moore’s

law states that for every two years processor technology

doubles in performance and speed.

Modern processors use L1 and L2 as two levels in cache

memories to reduce latency and bandwidth. [3]Cache memory

compression has been proposed to improve system

performance, since effective capacity can be increased by

compressing data stored in on-chip caches which reduces

cache misses.

When the processor technology increases, speed increases

faster because on-chip cache memory hierarchies can store

more data in megabyte size. Off-chip memory speed is

considerably low compared to processor speed. When the

multiprocessor is utilized by system design, it requires more

access to memory. Cache compression is used to reduce off-

chip communication speed with the processor[5].

The Challenges of Cache memory Compression are:

1. Compression and decompression should be very fast.

2. The hardware should occupy less area and should not

increase power consumption.

3. The algorithm should compress even small blocks without

losses and should maintain good compression ratio.

Compression ratio refers to the ratio between the sizes of

the compressed data over uncompressed data.

4. Effective System wide compression ratio must be

considered.

Cache compression is one way to improve the effectiveness

of cache memories. To reduce latency and bandwidth, cache

memories have long been used.

II. RELATED WORK AND CONTRIBUTIONS

i) The X-Match algorithm:

This algorithm is mainly based on dictionary entries where in

current data is matched with the dictionary entries. 4 byte wide

words are entered in the dictionary and many types of matches

are possible. The word which do not match with the dictionary

are sent separately. X-Match procedure is referred by partial

match concept.

The dictionary uses Move to Front (MTF) strategy. The move

to front strategy is used to maintain linked list with no

duplicate data. When new data is read, MTF is inserted in

front of the list. When a duplicate data is read, this data is

deleted and inserted again in the beginning.

Though X-Match algorithm is appropriate for compressing

main memory, hardware has very large block size which is

difficult for compressing the cache lines.

ii) Frequent pattern Compression (FPC)

FPC is used to compress cache line by storing frequently

appearing word patterns[4]. Cache line is splitted into 32 bit

word for compression. Each 32-bit word is encoded as a 3-bit

prefix.

 If the word matches with any of the patterns given in Table 1,

then each word in the cache line is encoded into a compressed

format. If the word does not match with any of these patterns,

then it is stored in its original 32-bit format i.e. the whole

word is stored with the prefix ‘111’. [11]Cache line

compression takes place between L1 and L2 cache during data

write in L2 from L1. Decompression takes place when the data

is retrieved from L2 to L1.

AN EFFICIENT ALGORITHM FOR A CACHE COMPRESSION AND

DECOMPRESSION TO IMPROVE SYSTEM MEMORY PERFORMANCE

K.Janaki1, P.Vijayakumar2

1Assistant Professor, Department of ECE, Prathyusha Engineering College, Thiruvallur-600025, India.

kr.janaki@gmail.com
2Professor, Department of EEE, Karpagam College of Engineering, Coimbatore-641032, India.

vijay.pvk72@gmail.com

2

Table 1.
Prefix Encoded Pattern Size of data(bits)

000 Zero run 3

001 4-bit with sign 4

010 8-bits with sign 8

011 Half word with sign 16

100 Half word padded Half word(non zero)

101 Two half words with sign 16

110 Repeating bytes 8

111 Uncompressed Original word

Compression can be done easily compared to decompression

since prefixes for all words are in series. Prefix is used to find

word length of encoded pattern.

Hardware implementation is not possible and so its exact

performance, power consumption and area are unknown.

iii) Restrictive compression technique

Cache access latency is more focused in this technique and

considerably reduced results in increase in the L1 data cache

capacity[11]. All words narrow [AWN] is the technique used

in this process. Cache block is compared only if all the words

in the cache are of narrow width. The AWN technique can be

extended by leaving some extra space for a few upper half

words in a cache block. In the AWN technique, Least

Recently Used policy acts as a replacement policy. In the

cache block the byte offset of each word depends on the size

of the words that present before it. So to read a word from the

block, it will need to recalculate the byte offset. The drawback

of this technique is to reduce the cache access latency.

iv) IBM’s Memory Compression

IBM’s Memory Expansion Technology[19] is used for real

time main memory compression which effectively double the

main memory capacity. Initially it was implemented in the

Pinnacle Chip which is single chip memory controller. Data in

main memory is compressed using Lempel-Ziv sequential

algorithm[2]. This algorithm works by dividing the input data

block into sub blocks. The drawback of this algorithm is, it is

shown to have negligible performance penalty compared to

memory and its contents.

III. GENERAL CACHE COMPRESSION ARCHITECTURE

Lossy versus lossless compression:

A compression algorithm is lossless if the decompressed data

is identical with the original. Respectively, a compression

method is lossy if the reconstructed data is only an

approximation of the original one.

Performance criteria:

 Compression efficiency is the principal element of a

compression technique

 The next feature is the speed of the compression and

decompression process.

 Distortion is the major parameter of data compression.

Basics in data compression:

Data compression is mainly consisting of two main factors,

coding and modeling[18]. Coding is based on the selection of

the code table. The coding is usually considered as the easy

part of the data compression. The modeling of the data for

most lossless compression methods are local in the way they

process the data.

Data representation:

Original data (image) is represented into code pixels and then

converted into compressed image data.

Compression ratio considered: Uncompressed data size /

compressed data size.

Table 2:
Data (image)size Recommended Compression ratio

1 kB – 700 kB

700 kB – 5.5. MB
5.5 MB – 9.5 MB

9.5MB – 14.5 MB

>14.5 MB

4:1

9:1
16:1

25:1

36:1

Table 2 represents the recommended compression ratio value

for various size of input image data. The typical value

considered for this work is 16:1.

In this work, private on-chip L2 caches is examined, because

in contrast to a shared L2 cache, the design styles of private

L2 cache remain persistent when the number of processor core

increases. A system architecture where compression used is

shown in Fig. 1. Each processor has L1 and L2 caches[1]. The

L2 cache is divided into two regions: an uncompressed (L2)

and compressed region (L2C).

For every processor, the size of the uncompressed and

compressed region can be determined statically[15]. In most

of the cases, the whole L2 cache is compressed due to capacity

requirements or uncompressed to minimize access latency.

The L1 cache can be used to communicate with the

uncompressed region of the L2 cache, which in turn swaps

data with the compressed region.

Fig 1. System Architecture where cache compression is used

IV. CACHE MEMORY COMPRESSION ALGORITHM

Design Constraints and Challenges

Several design constraints and challenges to the cache

compression[15].

 Cache memory compression requires hardware that can

decompress the data in only a few CPU clock cycles.

 Cache compression algorithm must be lossless.

3

 Block size of the data for cache memory compression is

small when compared to file and main memory

applications.

Proposed Algorithm Overview

C-Pack algorithm is a lossless compression algorithm

particularly for high performance cache compression. Good

compression ratio can be obtained when used to compress data

commonly found in microprocessor L2 caches[7].

This algorithm achieves compression by,

1) For frequently appearing word, it uses statically decided,

compact encodings.

2) For other frequently appearing words, it encodes using

dynamically updated dictionary[6]. The dictionary supports

partial word matching as well as full word matching.
The patterns and coding techniques used by the algorithm are

given in Table-3. The frequently used data is given in pattern

column. ‘z’ denotes 0 byte, ‘m’ denotes a data byte matched

against a dictionary entry, ‘x’ represents an unmatched byte, ‘B’

represents a byte and ‘b’ represents a bit.

Table 3:

The proposed block diagram for cache compression algorithm

is shown in Fig. 2.

Fig 2(a) C-Pack Compression

Two word input is used per cycle. During first iteration, every

word is first compared with specific patterns “zzzz” and

“zzzx”. If there is a match against patterns, then the output is

obtained by combining the relevant code and unmatched

bytes. Else the data can be compared with all dictionary

entries. The compression output is then generated by

combining code, dictionary entry index and unmatched bytes.

Data which doesn’t match with the patterns is moved into the

dictionary.

In decompression, it fetches the compressed words initially

and then extracts the codes to analyze the patterns. If the code

points a pattern match, the original word is retrieved by

combining 0’s and unmatched bytes. Else the decompression

output is obtained by combining bytes from the input word

with bytes from dictionary entries.

Fig 2 (b). C-Pack decompression

Fig 3 shows how the algorithm works for different input data

to produce output.

Fig 3: compression with different inputs

The advantage of this algorithm is an input word is compared

with multiple patterns and with dictionary entries. This can be

permitted for rapid execution with good compression ratio in

hardware implementation. To reduce hardware complexity,

various design parameters such as dictionary replacement

policy and coding scheme can be chosen. In the proposed

implementation, two words are processed in parallel per cycle.

V. SIMULATION OUTPUTS

The Compression and decompression outputs based on the

algorithm implemented are shown below:

Compression Results

The value for A is 1010 and the value for B is 1011. The input

value is 000000AB. The input is compared with “zzzz” and

4

“zzzx” patterns. If there is a match, it looks up the code and

the output is obtained by combining the zeroes (0000), code

(1101), and A and B shown in below Fig 4(a).

Fig. 4 (a) Compression Output for 000000AB

If there is no pattern match as well as no dictionary match,

then the output is obtained by combining the unmatched bytes

(zz), code word(01), and the inputs shown in below Fig. 4 (b)

Fig. 4 (b) Compression Output for BBBB2022

Decompression Results

During decompression the original input word is recovered. If

the extracted code indicates a pattern match, then the original

word is recovered by combining 0’s and is shown in Fig 5(a)

Fig 5(a) Decompression result for (1100)AB

If the code indicates that there is no match with the pattern

but there is match with the dictionary entries then the

original word is recovered by concatenating the zeroes and

unmatched bytes, if any shown in Figure-5(b).

Fig. 5(b).Decompression result for (111000)AA

Compression output if the input data is image:

Final compression output data compression using interpolation

is shown in Fig. 6(a). 2048 is total available slot bits for

compression. 352 bits compressed output for in the input bits.

Group of 9 bits represents compression using left, right and

top shift to compress all data.

Fig. 6(a) Compressed output for image data

Timing analysis for the compressed output data is shown in

Fig 6.(b). The timing parameters are represented here.

Fig. 6(b) Timing analysis

After the design implementation, design summary is verified

and is shown in Fig. 6(c).

Fig. 6(c) Device Utilization Summary

Comparison of Compression ratio

The implemented algorithm is compared with X-Match, FPC,

and MXT for mpeg file for cache compression is shown in

table 3.

Table 3:

Algorithm Compression

ratio(%)
MXT 75.55

FPC 64.55

X-MATCH 57.97

C-PACK 58.47

5

CONCLUSION AND FUTURE WORK

The algorithm simulated and synthesized is used for

compressing and decompressing the data of 64 or more bits.

Without altering the performance, the data are compressed

into the cache in an efficient way. This algorithm produces

good compression ratio. Less area is occupied and thus

memory latency is decreased so that speed of the system

memory performance increases. This algorithm can also be

used for high performance lossless data compression

applications with or without any modifications.

Future work:

The average or system wide compression ratio can be

increased. The algorithm implementation can be lossless. The

hardware implementation can be used for high performance

lossless data compression applications. The input data can be

modeled using statistical linear interpolation and extrapolation

techniques in order to process image or video input.

REFERENCES

[1] Sparsh Mittal, “A Survey of Architectural Techniques For

Improving Cache Power Efficiency”, in Elsevier Sustainable

Computing: Informatics and Systems, 2013.

[2] Se-Jun Kwon, Sang-Hoon Kim, Hyeong-Jun Kim, and Jin-

Soo Kim, “LZ4m: A Fast Compression Algorithm for In-

Memory Data”, in IEEE International Conference on

Consumer Electronics (ICCE), 2017.

[3] Sparsh Mittal, “A survey of Architectural approaches for

data compression in cache and main memory systems”, in

IEEE transactions on parallel and distributed systems, 2016,

pp. 1524-1536.

[4] Yuncheng Guo, Yu Hua, “DFPC-Dynamic Frequent Patten

Compression scheme in NVM based main memory”, in

Design, Automation and Test in Europe Conference, 2018, pp.

1622-1627.

[5]. Esha Choukse, Mattan Erez, “Compress points: An

Evaluation Methodology for Compressed memory systems”,

IEEE Computer Architecture Letters, 2018, pp. 126-129

[6]. David Kaeli, “Dual Dictionary compression for last level

cache”, IEEE international conference on computer design,

2017, pp. 353-360.

[7] E. G. Hallnor and S. K. Reinhardt, “A compressed memory

hierarchy using an indirect index cache,” in Proc. Workshop

Memory PerformanceIssues, 2004, pp. 9–15.

[8] A. R. Alameldeen and D. A. Wood, “Adaptive cache

compression for high-performance processors,” in Proc. Int.

Symp. Computer Architecture, Jun. 2004, pp. 212–223.

[9] J. L. Núñez and S. Jones, “Gbit/s lossless data compression

hardware,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,

vol. 11, no. 3, pp. 499–510, Jun. 2003.

[10] A. Alameldeen and D. A. Wood, “Frequent pattern

compression: A significance-based compression scheme for

12 caches,” Dept. Comp. Scie. , Univ. Wisconsin-Madison,

Tech. Rep. 1500, Apr. 2004.

[11] P. Pujara and A. Aggarwal, “Restrictive compression

techniques to increase level 1 cache capacity,” in Proc. Int.

Conf. Computer Design, Oct. 2005, pp. 327–333.

[12] L. Yang, H. Lekatsas, and R. P. Dick, “High-performance

operating system controlled memory compression,” in Proc.

Design AutomationConf., Jul. 2006, pp. 701–704.

[13] J.-S. Lee et al., “Design and evaluation of a selective

compressed memory system,” in Proc. Int. Conf. Computer

Design, Oct. 1999, pp. 184–191.

[14] N. S. Kim, T. Austin, and T. Mudge, “Low-energy data

cache using sign compression and cache line bisection,”

presented at theWorkshop on Memory Performance Issues,

May 2002.

[15] K. S. Yim, J. Kim, and K. Koh, “Performance analysis of

on-chip cache and main memory compression systems for

high-end parallel computers,” in Proc. Int. Conf. Parallel

Distributed Processing TechniquesAppl., Jun. 2004, pp. 469–

475.

[16] N. R. Mahapatraet al., “A limit study on the potential of

compression for improving memory system performance,

power consumption, and cost,” J. Instruction-Level

Parallelism, vol. 7, pp. 1–37, Jul. 2005.

[17]. A study material on Data Compression, Google study.

[18] David Salomon, “A Guide to Data Compression

Methods”, Springer 2001, Chapters 1-2.

[19] R. B. Tremaine, et al., “Pinnacle: IBM MXT in a memory

controller chip,” in Proc. Int. Symp. Microarchitecture, Apr.

2001.

[20] K.Janaki, P.Vijayakumar, “Proposed Cache Compression

Algorithm for Microprocessors to Improve System Memory

Performance”, in International Journal of Applied Engineering

Research, 2015, pp.1001-1007.

[21] K.Janaki, P.Vijayakumar, “A Novel approach for a high

performance lossless cache Compression algorithm”, in ARPN

Journal of Engineering and Applied Sciences, 2015, Vol 10,

No 7.

[22] K.Janaki, P.Vijayakumar, “Adaptive Lossless Cache

Compression Algorithm”, in Special Issue on IEEE Sponsored

International Conference on Intelligent Systems and Control

(ISCO’15), Vol No II.

