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Abstract: In this paper novel self-computational emotional 
learning based intelligent controller is proposed for battery 
charging control in Plug in Hybrid Electric Vehicle 
(PHEV).  PHEV plays a significant role in world’s vehicle 
market for its reduced fuel consumption and less emission of 
gasoline. The large capacity of a battery in PHEV reduces 
fuel consumption, but it is an unexpected load in a 
residential power system. It may cause a Voltage drop in a 
power system in case of uncoordinated charging of many 
PHEVs at a time. A high power bidirectional DC-DC 
converter is introduced in PHEV to charge the battery when 
the motor in PHEV acts as a generator.  Effective of 
charging of battery reduces the load to the grid which is 
proposed by novel SCELIC controller in this paper.  
Effectiveness of the proposed system is simulated using 
Matlab and compared to the Adaptive neuro-fuzzy 
controller based charging system. This paper proposes a 
method to reduce load demand on the distribution grid. 
 
Key words: Plug in Hybrid Electric Vehicles (PHEV), 
ANFIS, SCELIC, Bidirectional converter, Battery Energy 
Storage System. 
 
1. Introduction. 
 The transportation sector is a major consumer of 
fossil fuel and emanates a high amount of pollution [1]. 
A recommended solution for this crisis necessitates 
motivating the higher use of electrified vehicles. 
Electrified vehicles are categorized as Electric vehicle, 
Hybrid electric vehicle and Plug in Hybrid electric 
vehicle. PHEVs have the additional ability to store 
energy from the electricity grid, using large capacity 
batteries. The energy stored can drive the vehicle on 
short trips, by this means it reduces vehicle’s 
dependency on petroleum and potentially CO2 
emissions. The major aspect with the PHEV is an 
abridged discharge of CO2 [2]. The discharge rate of 
CO2 by different types of vehicles per annum is shown 
in figure 1. The utilization of PHEV lessen increasing 
Green House Gas discharges from 2010 to 2050 can 
vary from 3.4 to 10.3 billion metric tons. The main 
feature with the PHEV is a reduced discharge of CO2 
[2].  
 PHEVs offer the potential to lessen both gasoline 
utilization and related emissions. Compared to a HEV 
battery of PHEV is larger and more powerful motor is 
used in PHEV [3]. PHEVs are charged by either 
plugging into electric outlets [4] or by means of on-

board electricity generation. Charging of PHEV 
increases the load on the distribution grid [5]. 
 

 
Fig. 1. Emission of CO2 by vehicles per annum. 

 
 Unplanned charging of PHEVs in grid causes a 
voltage drop which reduces the quality of power in a 
grid. Since battery of PHEV is larger power 
consumption is high so in order to maintain power 
quality and reduces energy consumed from the grid 
efficient charging of a battery is discussed in this paper. 
 The power use can be downplayed when the battery is 
turned on using some other sources instead of from the 
grid. In the period of regenerative braking or when the 
motor runs above the rated speed the motor works as a 
generator. This ability can be used to charge the battery 
in PHEV. For this dual active bridge is proposed in this 
paper. The dual active bridge is a bidirectional, 
controllable, dc-dc converter that has high power 
abilities consists of a high frequency transformer, eight 
switching devices, dc-link capacitors, and energy 
transfer inductor. By reason of the symmetry of this 
converter, with indistinguishable primary and 
secondary bridges, it is competent of bidirectional 
power flow control and the cause why it is chosen for 
PHEV. Modeling of dual active bridge bidirectional 
converter is analyzed by F. Krismer in 2010 [6].  
Chenhao Nan; Ayyanar, R Analyzed PWM control 
technique for DAB in solid state transformer 
applications [7].   
 Various Design schemes and Techniques to Improve 
the Performance of a Dual Active Bridge with Phase-
Shift Control is analyzed by Rodriguez, A et al., in 
2015 [8]. High-Efficiency Dual-Active-Bridge DC/DC 
Converters is discussed with its switching losses by 



 

 

Ortiz, G.et.al by 2013 [9].  This paper uses this DAB 
converter to supply power from battery to motor and 
motor to the battery.  
Battery energy storage system supports the 
performance of PHEV. Charging time of the battery is 
a significant factor in energy storage system. Charging 
controller plays a crucial role in BESS. ANFIS is an 
intelligent controller applied to various control 
applications.  
 ANFIS is applied as charging controller to improve 
charging performance. An emotional learning 
algorithm is an artificial intelligence control technique 
mimics human brain introduced by Lucas in 2004 [10]. 
An emotional controller is analyzed for various 
applications such as drives, heat exchangers, etc.  In 
this paper novel Self-Computational Emotional 
Learning based Intelligent Controller (SCELIC) is 
proposed as charging controller. Performance SCELIC 
is compared with the ANFIS based charging controller. 
  
2. DAB in PHEV 
 The bi-directional converter is introduced between 
the battery and motor. DAB consists of two converters 
both can act as a rectifier and an inverter. In case of 
battery act as a source the converter 1 act as an inverter 
and converter2 act as a rectifier. In case of battery 
charging, the converter 1 act as a rectifier and 
converter2 act as an inverter.   
 
2.1 Basic Principle of Operation of DAB Converter 
 The DAB converter shown in figure 2 consists of an 
isolation transformer connects two full-bridge 
converters and a coupling inductor L, which may be 
provided partly or entirely by the transformer leakage 
inductance. 

  
Fig. 2. Schematic of the DAB DC-DC converter. 

 
The topology is shown in Fig. 2, where 𝑉𝑖𝑛 and 𝑉𝑜𝑢𝑡 
are the dc-link voltages, L is the coupling inductor, 
M1-2, N1-2, X1-2, Y1-2, are the controllable 
semiconductor switches. The low-voltage (LV) motor 
is connected to the full bridge on the right hand side 
and the HV DCs bus is connected to a full bridge on 
the left hand side of figure 2.  
 Each converter consists of two arms with two 
switching devices per arm, which are controlled with 

opposite square-wave pulses. In the dual active bridge, 
Power flow can be controlled by phase-shifting the 
pulses of one bridge as regards the other. This method 
of control, called phase shift modulation (PSM), 
controls power flow amid the two dc busses such that 
the lagging bridge receives power from the leading 
bridge [11]. Thus, bidirectional power flow is allowed 
via a small, lightweight High Frequency transformer 
and inductor combination, and power flows from the 
bridge generating the leading square-wave.  
 For high power operation even though diverse 
modes of operation of the DAB converter have been 
discussed recently [12-14], the square-wave mode is 
apparently the best Operating mode. This is due to 
imposing quasi-square-wave on the primary and 
secondary voltage of the transformer results in 
trapezoidal, triangular, and sinusoidal waveforms of 
inductor current in the DAB converter AC link. These 
modes are advantageous in extending the low-power 
operating range of the converter [13].  Although these 
styles tend to thin out the switching losses, the potential 
loss is important due to zero voltage periods in the 
quasi-square-wave, which cuts down the effective 
power transfer at high-power stages.   
 
3. Battery Energy Storage System 
 BESS is a significant part of PHEV. In this paper, 
the Pb-acid battery is proposed for energy storage 
system. Charging and discharging are the two modes of 
operation of the battery.  Modes are desired by the path 
of current flow into or from the battery. In the 
modeling of battery, the following parameters were 
applied [15]. SOC varies linearly with Vocb (open-
circuit battery voltage). 
SOC (%) is the available charge. 
SOCi is the initial state of charge, 
 SOCm is the uttermost state of complaint. 
Ns is the number of cells in series. 
 
As the terminal voltage of the battery is given by 
  Vbat=Veq+Ibat Req                      (1) 
 In (1) Vbat and Ibat are battery voltage and current, 
Req is the equivalent resistance of the battery.  Veq and 
Req both depend on the mode of battery operation and 
have different equations. Battery current; Ibat is positive 
when the battery is in charge (ch) mode and negative 
when it is in the discharge (dch) mode.  
In charge mode, Req and Veq are written as [16], 
 

 

 

In discharging mode Req and Veq are written as, 
 

 



 

 

 

 
4.  Effective Battery Charging Controller 
 Effective utilization of power and efficiency of the 
battery are decided by the charging time of a battery. In 
this paper, SCELIC controller is proposed for effectual 
charging. The efficacy of proposed charging method is 
analyzed by means of the ANFIS controller.  
 
4.1 ANFIS based Battery Charging Controller 
 The fuzzy rules are based on human knowledge and 
consequently for the same performance of the scheme 
rules will vary from person to person. Still, the major 
dilemma of FLC is the lack of design practice. The 
choice of suitable membership functions and choosing 
the exact rule base needy on the condition is 
understood with the aid of an ANFIS controller and it 
is proposed to generate a triggering pulse of DAB 
bidirectional converter. The ability to learn fuzzy logic 
is based on an expert's thinking is the solution offered 
by neural networks. SOC error is fed as input. Basic 
diagram of ANFIS controller is shown in Figure 3.  

  
 

Fig.3 Basic diagram of ANFIS controller. 
 
ANFIS is a Takagi-Sugeno model based fuzzy 
inference system. This model utilizes specific output 
and input information set to create fuzzy inference 
system. At first, for learning of ANFIS, a training data 
set that consists of the required output/input data pairs 
of objective systems to be designed is significant. The 
design factors essential for ANFIS training are training 
data sets, data pairs, checking data sets and fuzzy 
inference system. To commence ANFIS training, a 
number of epochs are selected. The learning results are 
confirmed subsequent to performing all 25 steps which 
depend on numerous rules. The considered ANFIS has 
two inputs such as, the error and change in error of 
SOC whereas the output is the reference for PWM, it is 
given to control DAB. In this analysis membership 
functions of the triangular shape is used. 
The fuzzy neural network consists of a five-layer 
function using feedforward method. ANFIS is a 
Takagi-Sugeno model based fuzzy inference system 
and this method designed with two inputs and output 
data set to make fuzzy inference system. To begin the 

ANFIS learning primary training information that holds 
the mandatory output/input data pairs of objective 
methods to be modeled is necessary. The quantity of 
data pairs, checking data sets, training data sets, fuzzy 
inference systems for training, several epochs to be 
chosen to begin the training, learning results to be 
established after mentioning the step size is made 
through the design factors for any ANFIS controller 
[17]. 
 It is a five-layer feed forward fuzzy neural network. 
Every layer has its separate importance. Layer 1 (Input 
Layer): Input layer corresponds to input that is a 
variable of a controller, which is a SOC error and its 
variation ratio denoted as x1, x2. This layer gives the 
input values xi to the subsequent layer, where i = 1 to n 
Layer 2 (Fuzzification Layer): this layer consists of 
membership functions that observe the weights of 
every membership functions (MFs). It obtains the input 
from the 1st layer and functions as MFs to depict the 
fuzzy sets of the input variables. Additionally, it 
performs the membership values which specify the 
degree to which the input value Xi be in the correct 
place to the fuzzy set, which operates as the inputs to 
the subsequent layer.  
 Layer 3 (Rule layer): every node (every neuron) in 
this layer performs the prerequisite consequent of the 
fuzzy rules, i.e., it calculates all rule activation, the 
number of fuzzy rules and the number of layers being 
must be equal. Every node of these layers computes the 
weights which are normalized.  
Layer 4 (Defuzzification Layer): It gives the output 
values “y” obtained from the implication of rules. 
Connections among the Layer 3 &Layer 4 are weighted 
by the fuzzy singletons that correspond to an additional 
set of parameters for the fuzzy neuro network. Layer 5 
(Output Layer): It sums up all the inputs coming from 
the layer 4 and transforms the fuzzy classification 
results into a crisp value.  
 
4.1.1 Analysis of the Battery charging controller 
with designed ANFIS controller 

  
Fig. 4. ANFIS controller Simulink model. 

 
 Figure 4 shows ANFIS controller simulink model 
and Figure 5 shows the training result of ANFIS 
controller. The battery charging controller is controlled 
using ANFIS controller. Membership function factors 
of ANFIS have been tuned with the help neuro-
adaptive learning methods. ANFIS controller processes 
error e and change in error of SOC to decide the pulse 
width of DAB in PHEV. The choice of the appropriate 
rule base depending upon the condition is attained by 
means of an ANFIS controller. The factor of ANFIS 



 

 

controller is resolved by a training procedure that 
desires three data, such as two input data (SOC error e 
and change in error ec) and an output data which is the 
PWM signal to the DAB in PHEV. Once the network 
is trained, an ANN can be functioned with fresh data 
and inferences can be produced.  

 
Fig. 5.Training result by ANFIS controller. 

 By replicating this procedure numerous times the 
network is trained. The aspire of training is to attain an 
optimum solution depends on concert measurements. 
The optimum result attained subsequent to the training 
shows that the minimization in SOC error and specifies 
that the act of the ANFIS controller is improved and 
easy to execute. 

1.223 1.2235 1.224 1.2245 1.225 1.2255 1.226 1.2265 1.227
0

0.2

0.4

0.6

0.8

1

TIME(S)

S
T

A
T

U
S

 O
F

 P
U

L
S

E

 

 

ANFIS

 
Fig. 6. Triggering pulses from ANFIS controller. 

 
Pulses produced by ANFIS controller for battery 
charging controller is shown in figure 6.  
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Fig. 7. SOC by the effect of ANFIS based charging 

controller. 
 

Increasing SOC by the effect of ANFIS based charging 
controller with initial SOC of 30% is shown in figure 
7. Figure 7 is the effect of pulses as in figure 6 
produced by the ANFIS based charging controller. 

 

4.2 SCELIC based battery charging Controller 
 To find out the duty ratio of the battery charging 
controller, self-computational emotional learning based 
intelligent controller is proposed in this paper. It 
mimics the limbic system of a human brain. In the 
mammalian brain a segment which is mostly 
accountable for the emotional developments is limbic 
system [18]. In the cerebral cortex the limbic system is 
located and consists of subsequent major components, 
such as sensory cortex, thalamus, amygdala, 
orbitofrontal cortex, hippocampus and hypothalamus.  
 The initial step of efficient training of the method 
emerges in amygdale.  It is a tiny almond-structured 
situated in the sub-cortical zone. It is located in the 
mode of communicating with each and every other 
sensory cortical areas contained by the limbic system. 
  In general, sensory inputs (Si) utter the current 
situation in which the system is dealing with. In 
SCELIC sensory input is ANFIS controller which 
decides the duty ratio initially which is further 
processed by the following procedure. In a 
conventional emotional controller sensory input is a 
non-intelligent controller. 
                   Ath = max(Si)                (6) 
 In the model, there is one node A for every sensory 
input. The maximum stimuli signals are straightly 
received by means of the path from the thalamus for 
Ath node in the amygdala. This path is stated as a 
thalamic connection. Thalamic input is not anticipated 
into the orbitofrontal part and that cannot be inhibited 
through itself. The output of every node A is estimated 
depends on the multiplication of pre-defined plastic 
connection weight V into the analogous input.  
  Ai = Si Vi                  (7) 
 In the orbitofrontal cortex, every node O is like A 
nodes, and the output is intended by relating 
connection weight (Vi) into the input signal. The 
connection weight is adjusted proportionally to the 
deviation amid the commencement of A nodes and the 
reinforcement signal (emotional signal) Rew. The term 
Rew is a stable used to regulate the speed of learning. 
The deviation amongst the reinforcement signal and 
commencement of the A nodes concludes the revising 
of the connection weight which at last directs to the 
learning procedure in the amygdala. The rate of 
learning is mentioned by the term α 

         (8) 

  
 The variation in the connection weights is only 
incrementing. This is the major motive for the design 
since one time it learns an emotional response; it has to 
be everlasting and cannot be unlearned. The O nodes 
act proportionally, by means of a connection weight W 
working to the input signal to develop an output. 

              Oi = Si Wi                                   (9) 



 

In an orbitofrontal cortex ith value is Oi, in the sensory 
input ith value is Si, and in the connection weight ith 

value is Wi. ∆Wi is measured as, 

                                   (10) 

   Orbitofrontal cortex learning rate constant is β. The 
node E simply adds the outputs of the nodes A and then 
subtracts the inhibitory outputs from the nodes O. The 
consequence is the output of the model. The nodes A 
give outputs proportional to their contribution to the 
prediction of the Rew reward, while the nodes O inhibit 
the output of E as necessary. The node E' is the sum of 
outputs of A except Ath and then subtracted from the 
inhibitory outputs of the nodes O. In (8), the term max 
articulates the weight (Vi) that cannot be minimized. 
The conspicuous evidence for the advantage of this 
model is that one time the reaction learned by 
amygdala, it is to be maintained forever. It states that 
the amygdala cannot disregard the emotional 
evaluation. Normally, orbitofrontal cortex brings the 
exception of improper reaction. The orbitofrontal 
cortex learning rule is computed depends on the 
assessment among the expected and received 
reinforcement signal and reduces the model output if 
there is a variance. 
E=  (including Ath)            (11) 

=  (excluding Ath)            (12)       

Revising the adaptive weights in orbitofrontal cortex is 
nearly analogous to the rule of the amygdala. The 
distinctive point is that for following the improper 
response from the amygdala, the orbitofrontal weights 
must be altered. The A nodes make their outputs 
proportionally to their role in estimating the stress or 
reward, while the O nodes avert the output of E if 
mandatory. The model output D is the variation 
amongst the output of amygdala and orbitofrontal 
nodes. Model output D decides the charging time of a 
battery. To produce triggering pulses, high frequency 
saw tooth wave is compared with the output of the 
SCELIC controller.   Pulses produced by SCELIC 
controller for battery charging controller is shown in 
figure 8. 
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Fig. 8. Triggering pulses from SCELIC. 

 
Increasing SOC by the effect of SCELIC based 
charging controller with initial SOC of 30% is shown 
in figure 9.  
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Fig. 9.  SOC by the effect of SCELIC based charging 

controller. 

Figure 9 is the effect of pulses as in figure 8 produced by 

the SCELIC based charging controller. 

 

5.  Simulation Results and Discussion 
    The bidirectional converter runs the motor supplies 
from the battery. Meantime, it charges the battery when 
motor acts as a generator.  Entire simulation is 
analyzed using MATLAB/Simulink. The Charging 
controller decides the efficiency of charging and 
effectively utilizes the energy generated in the short 
period from the motor.  
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Fig. 10. Assessment of pulses of ANFIS controller and 

SCELIC. 

The assessment of pulses of ANFIS controller and 
SCELIC is pictured in figure 10. Figure 11 shows the 
SOC response of batteries with the help of ANFIS and 
SCELIC based charging controller. 
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Fig. 11. Assessment of the SOC of batteries using ANFIS 

and SCELIC. 

 

   From the figure 10, it is clear that the charging 
controller pulse width produced by SCELIC is 
improved compared to the ANFIS controller. It results 
that SCELIC based charging controller charges the 
battery quickly than ANFIS controller as shown in 
Figure 11.   

 



 

 

6.   Conclusion 

    In this paper novel SCELIC controller is proposed as 
charging controller in the battery of PHEV.  Energy 
consumed by PHEV is decided by the charging of 
battery which decides the efficiency and performance 
of PHEV. A high power, the bidirectional DC-DC 
converter is introduced in PHEV to charge the battery 
when the motor in PHEV acts as a generator. This 
method of charging reduces power consumption from 
the grid and reduces problems associated with sudden 
load demand (PHEV charging) in a grid. In this paper 
novel SCELIC controller is proposed to reduce 
charging time which improves the performance of 
charging and reduces energy consumed from the grid.  
Artificial intelligent ANFIS controller is analyzed as 
charging controller and it is compared with proposed 
SCELIC. From Matlab simulation comparative analysis 
it is validated that proposed SCELIC controller 
improves charging performance compare to ANFIS 
which efficiently consumes the power from the motor 
for its battery in PHEV and decreases load demand on 
the Distribution grid.  
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