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Abstract: In this paper, an observer based on Fuzzy Neural
Network (FNN) is combined with sliding mode to design an
adaptive robust controller without chattering problems for
the two-links robot with unknown dynamics and external
disturbances. The adaptive fuzzy logic and neural network
approaches are used to approximate the unknown models of
the MIMO robot system. The observer design is based on
the resulting improved model. Moreover the auxiliary
sliding mode control term is included in the control law to
attenuate respectively the FNN approximation errors and
the external disturbances. The stability of the system is
provided by the Lyapunov approach. The simulation results
demonstrate the efficiency and robustness of the proposed
control scheme
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Fuzzy logic, Neural network, Robot manipulators.

1. Introduction

Thanks to their use in diversified scientific and
technological domains, robots are considered among
the vital topics to many researchers [1, 5, 8, 11, 15].
The design of robust control for robot manipulators
remains the most challenging task in the area of control
systems. Therefore, a robot manipulator is a complex
nonlinear system, whose dynamic parameters are
difficult to obtain precisely. In fact, it is almost
impossible to obtain exact dynamic models; the system
is described by a nominal model with large unknown
dynamics, which would add more challenges to the
control of robots. To overcome this problem, several
methods have been proposed, including adaptive
control [11, 13, 15], sliding mode control(SMC) [1, 2,
3, 6, 12], intelligent control [4, 8, 9, 13], etc. Sliding
mode control has been proved to be successful in the
control of nonlinear system. The main advantage of
using sliding mode control is its strong robustness with
respect to system uncertainties and external
disturbances. However, in the presence of large
uncertainties, the SMC suffers from the known
chattering problem which is caused by the high gain
and high speed switching control [1, 2, 10]. In order
to alleviate the chattering phenomena, the fuzzy logic
[4,7,9, 11, 16] and the neural network [8,14, 15] are
used to approximate the unknown dynamics of the
system.

In this paper, a combined adaptive fuzzy neural
network and sliding mode controller are proposed for a

two links robot with unknown dynamics and
disturbances. The fuzzy-logic is used to estimate the
unknown dynamics of the two-links robot model [11],
so that the system uncertainties can be reduced which
leads to a lower switching gain to be used. The neural
network will also be used to estimate the model part [8,
15] in which it is difficult to apply the fuzzy logic,
especially during the elaboration of the fuzzy
membership functions. In fact, the Neural Network
(NN) has an inherent learning ability and can
approximate a nonlinear continuous function to
arbitrary accuracy. To obtain the approximation of the
model part, the network weights are adjusted during the
online implementation by using the gradient descent
method (GD). The proposed control consists of the so-
called equivalent control added to the robust control
term. The fuzzy neural network estimation terms are
incorporated in the equivalent control component,
enabling the robust component to be used with a small
gain which is responsible of compensating only the
fuzzy neural network errors estimation.

The Adaptive Fuzzy Neural Network Sliding Mode
Controller (AFNNSMC) mentioned above has been
developed using the full state. However, in this study,
the velocity and acceleration are unavailable for
measurement, so, a non linear observer is designed
based on fuzzy neural network. The control parameters
are updated online by the adaptive laws with stability
and convergence analysis using the Lyapunov approach
for achieving specified tracking performance.

The rest of the paper is organized as follows: In
section 2, the model of robot manipulator is presented.
The proposed observer-based Fuzzy neural network
sliding mode controller is shown in section 3. The
simulation results are demonstrated in section 4. A
conclusion is conveyed in section 5.

2. The model of the two-link robot
The nominal model of the two-link robot is [5]:

M (a)G+C(a,d)d+G(q)=
1)
r=Ji-Br—Eq



Where q,4,( are vectors that represent respectively the

output position, velocity and acceleration. zis the
torque vector actuating the links, i is the current vector
input applied to the servo motors. J, B and E are
diagonal matrices representing the thermodynamic
parameters and dependent on the temperature and the
initial conditions.

Mll MlZ
“Mm{MﬂMn
symmetric and positive definite
where: My =li+l,+4mplf +4mphl, cos(ay)

Mo =l,+2m;kl>cos(q2),

Mz=l, and Ma=I,+2m;l;l,cos(q,)

With: g=[a. -] the output positions, 1.l the
lengths, m;,m,: the masses and 1,1, the inertias
respectively of the first and second segment of the pate.

}: is an inertia matrix that is

C C
C@@a)= "~ |: Represents the centrifugal forces
CZl C22

where:
Cu=-2mglil2G2sin(qs)
Cro=—2malil; (4:+G2)sin(qz)
Czu=2m;l:l,qssin(gz)

Cx,=0

G(q) is The coriolis matrix given as:
G (@)= mzg|zSin(q1+c-12)+mlg|lsin(ql)
m,gl.sin(g:+9z)

In state space, the system model can be presented as
follows:

X1=X2

X2=X3

Xs=f1 (>_()+911 (X1,Xa )U1+Q12 (X1,X4 )U2

X4=Xs (2)
X5 =Xs

Xe="T2 (>_<)+g 21 (X1 ,X4)U1 +022 (X1 X4 )Uz

Where: i=U=[u; u,[
qz[Xl ) ]T , qZ[Xz Xs ]T , q=[X3 Xe ]T )

X=[X1 Xo X3 X4 Xs XG]T

F=[f(x) 0]
Z_M_l{[M+C+BMT][x3 Xe | + ]}

[c+Bc+E][x. %] +[G+BG

and
-1 011n (X1,Xa) 9120 (X1,X4)
M~ (X1,X4)I=0 (X1,Xs)=
(X1,X4)I=0g (X,X4) (gzm(th) 9o (0. %e)

3. Fuzzy neural network siding mode control

design

The strategy of control is based on the fuzzy
system, the neural network, the sliding mode control
and the Lyapunov approach to ensure stability,
tracking and consistent performance. The proposed
observer based on Fuzzy-logic and Neural Network
has been used to estimate the full state variable of the
system.

3.1 Sliding mode control

The control problem is to determine the control
law u to force the state q(t)in order to track
asymptotically the desired trajectory gq (t) .
The tracking error of the system is defined as:
e=0-0q 3)
With Qg Z[de Xag ]T

The relative degree of the system described by
Equation (2) isr=3.

Then, the sliding surface in the space of the error
state can be defined as:

S=6+ae+ e (4)

a, B are diagonal matrices defined as follows :

a 0 0
0 ap 0 F2
Where %7 must satisfy the following Hurwitz
polynomial.

The sliding variable derivative is:

S'=f+gu—():(3dJ+aé+ﬂé )

Xed
To guarantee the existence of sliding mode on a

switching surface, the condition given below has to
be satisfied [1]:



$7S<0 (6)
The standard sliding mode control law that satisfies Eq.
(6) can be given by:

X6d

u=g"(x) (-f(z)+(x3d J—aé'—ﬂé—kSign(S)) @

Where sign(.) is the sign function, given by:

1 if S>0
sign(S)=40 if S=0
-1 if S<0 (8)

To eliminate the chattering effect caused by the
discontinuous control law, we replace sign (s)

with sat () as follows:

Xgd

u=g~"(x) (-f(Z)+(X3d j—aé—ﬂé—k sat (S)) 9)

Where S& () is the saturation function given by:
sls sifs|<o

sat(s) = (10)
sign(s) otherwise

With J is the boundary layer thickness.

k is a large positive constant due to the large
uncertainties which can produce the chattering
phenomena. Thus, to reduce the system uncertainties,
we will use the T-S fuzzy system to

approximate f(x) and the neural network to

approximate g(x) , which can reduce the chattering
phenomena.

3.2 Fuzzy unknown dynamics approximation
design

The fuzzy system type T-S is used to approximate
the system dynamics f (x) . The basic configuration of

the T-S system includes a fuzzy rule base, which
consists of a collection of fuzzy IF THEN rules in the
following form:

RI:if x;isAJ and...and x,is Al then f,is@) where:
i=L...M: 1=12.
Aij

Are fuzzy variables characterized by membership
functions Hy (x)and &y is the corresponding value of

the output fuzzy singleton. The output of the fuzzy
system with singleton fuzzification produces inferences

and the defuzzification average centre can be expressed
as [9]:

N GHINICH)

fi(x0, )= =0",&" (%) (12)
k Zl}ﬂzl(npzlﬂAij (%)) !

Where M presents the total number of the fuzzy rules

and 0 =[0] .07 oo g1 1" is adjustable.

1=1,2i=L,...n

EM A" (%),5" (X)....&40" (O] is the vector of the
fuzzy basis functions.

&=y 0[S a0 1212,

The optimal parameters vectors and the fuzzy
approximation error are defined as:

fL9-fixe,)|)

% -
0% =argmin| supycRn
: Qf|eng a

61, Belong to the convex compact set which is

94 ‘SM'}

3.3 Neural Network design
The neural network is often used to approximate

the unknown nonlinear function g(x,X) . In this work,
we consider the architecture of NN with two layers of
adjustable weights [8] (Fig. 1).

X1,X4: are the NN inputs variables, The NN outputs
variables are:

defined as Q+ ={Q¢, ol

Y1=Qu(X1.X4) YZZle (X1,X4) and Y3:Q22 (X1,X4) (12)
With le (Xl, Xa )=Q21 (Xl. X4)

Where:

YO X)W oW [ x]') k=L..4 and j=1..4  (13)

o(.) denotes the hidden-layer activation function,
which is sigmoid function given by:

leg (5)=ﬁ§ (14)

Wi=[Wa Wie Wis  Wia] T represents the interconnection
weights between the hidden and the output layers and
W;=[wj; wj.]Tis the interconnection Weights
between the input and the hidden layers.

The actual output Y% (:%4) (desired output, which is
the difference between the actual and nominal
functions) is:

Yok (X1,Xa)=Yk (X1,Xa )+&x (X1,Xa)

Where: &y (x1,x4) IS the NN approximation error.
The gradient descent method (GD) is used to update

(15)



the network weights during online implementation.
This method consists in adjusting iteratively the
weights in the direction opposite to the gradient of E,
so as to reduce the discrepancy based on:
OW,; oE
=T~ — (16)
ot W,
Where >0 s the usual learning rate. The gradient
oE
ki
algorithm [14]. The cost function E is defined as the
error index and the least square error criterion is often
chosen as follows:

4
Loe?

T2

terms can be derived using the back-propagation

E (17)

Hidden
Fig.1. The architecture of a multilayer neural network for
The prediction of the unknown nonlinear function g(x;x ;)

3.4 Fuzzy neural network based-non linear
observer
The control mentioned above in Eq. (7) has been
developed using the full state. However, in this study,
the velocity and acceleration are unavailable for
measurement. So, the fuzzy neural network observer is
used to estimate the signals x; (i=2,3,5,6) .

The proposed observer is based on [3, 6].

R1=%2+ k1sign (Xu—%1)
=Xz + kzsign (5(2 —)22)

-
N

3=f1(X1,;(~25(~3,X45(~5 ,ie)+911(X1,X4)U1
+012 (X1,X4)U2+ K3Sign (23—)’23)

P

(18)

Ra=Rs+ kasign (Xs—Xa4)

Rs =% + Kssign (Xs—Xs)

>;(6=f2 (X1,X2,X3,X4,X5,X6 )+ 21 (X1,X4 U1
+g22 (X1, X4 )z + Kgsign (Xe —Xe )

With Xp=Re+Kisign (xu—%1) , Xs=Re+KzSign (xe—%z) ,
Xs=Rs+Kusign (xs—%s) aNd Xs=%6+Kssign (xs—%s)

AAAAAA

VECtOr x=[x,,X2,%s,%4s,%,%]" and ki(i=L..6) represents the
observer gain that would be chosen such that the
observer state % converges in finite time tox.

The functions f;and f,are approximated by the fuzzy
logic design proposed in section 3.2 and the functions
gu, Oi2=0gx and g,, are approximated by the neural
network design proposed in section 3.3.

Theorem 1. Considering the system described by Eq.
(2) and the observer defined by Eq. (18) with unknown
dynamics approximated by the proposed fuzzy neural
network estimators, for any initial state x(0), %(0) and
any bounded inputu there exists a choice of ki such
that the observer state & converges in finite time tox.
Proof:

Let’s define the observation error dynamics as
en=X-X. The system is assumed to be bounded input
and bounded state in finite time. Consequently, the
observation error state is also bounded. Now
considering the initial state condition such that
% (0)=%(0) and x4(0)=%4(0) (if not, we begin with the
second step).

Stepl:

Using a model system described by Eqg. (2) and
observer defined by Eq. (18), we obtain the dynamic
error as:

€1ob =€20b — K1sign (x1—X1)

€20b =€30b — k2sign (X2 -%2)

€30b = f1(x1,X2,X3,X4,%5,X6) — f1(X1,X2 ,X3,X4 X5 ,X6)
— K3sign (X3-%3)

€40b =e50b —K4sign (x4-X4)

é50b=e6ob — k5sign (X5-%5)

€60b="T2(X1,X2,X3.X4.X5,X6 )~ 2 (X1,X2,X3.X4 X5 X6)
~Kgsign (X6 —Xg)

(19)




. ezlb 62411
Consider: Vi=—= and V,=—2

using Eq. (19) we have:
vl: C1oh (920b_ leign (Xl—)A(l))

and V=4 (50— KaSign (Xa—%s))
If ki>[ex|  then the observation errorseq, converge

to zero in finite time z, . If this condition is maintained
after r; we have égp=ex— kisign (x—%)=0 then x,=X,.

If ki >Jesew| _ then the observation errorsess converge
to zero in finite time z, . If this condition is maintained
after z, we have € =ese—KaSign (xs—%4)=0 then xs=Xs .
We definer,as: rs=Max(z1,74), after z,, the observer
dynamics become:

B100 =€20b — K1SigN (X —%)=0

€200 =€30b — K25IgN (X2—X2)

€aob= f1(X1,X2,X3,Xa,X5,Xs) — F1 (X1,X2 X3,X4,Xs ,)76)
— K3sign (Xs—Xs)

€40b =500 — K4SigN (Xa—X4)=0

B500 =€60b — K5SigN (Xs—Xs)

€oob= T2 (X1,X2,X3,X4,X5,X6 )— fZ(Xl,XZXS,X%XSXG)
—Kesign (Xs—Xs)

(20)

Step 2:
EZSOb

2

2 2 2
€100 €7 20b € 40b

Consider: V,= > + and Vs=

using Eq. (20), we have:

Vo =E05 (30— K2SigN (Xa—%2)) AN V= esap (500 — KsSign (Xs—Ks )
If ke >|93ob|max , then the observation errorse,q converge
to zero in finite timer,>n,. If the conditions on
ki, k. are maintained after r, , we have éq4=0and
200 =L30n— K2SigN (X2—X2)=0 then Xs=Xs.

If ks >|eeob|max, then the observation errorses, converge
to zero in finite timers>ris. If the conditions on

K, ks are maintained after s we have €;,=0 and
€500 =Cg0b— kssign (x5—>25):0 then Xe =i5 .

We define 75 as: rx=Max(rz,rs), after 7 the

observer dynamics become:

€100 =0

€20b =€300 — K2SigN (X2—X2)=0
€300 = — K3Sign (Xs—X3)

€400 =0

€50b =€60b — KsSigN (Xs—Xs5)=0
Es0b =—KSign (Xe—Xs)

(21)

Step 3:

2 2 2
€710b €7200 €730b

2 2 2
i € € €
Consider:V;= 5 + + 4ob sob €760

2 2
USing Eq (21), we have: V3=egob (— kgsign (X3—)A(3)) and

and V=

V=500 (— KsSign (X6 —%s))

If ks;>0, then the observation errorse,, converge to
zero in finite time r3>755 .

If ks >0, then the observation errorsess, converge to
zero in finite time z6>75.

3.50bserver-based fuzzy neural network sliding
mode control

The overall architecture of the observer-based fuzzy

neural network sliding mode control is shown in Fig. 2.

The proposed adaptive controller is given as:

u=t"+us (22)

with 0 =6*® f (26) +()§3d ]—aé ) (23)
Xed

and US=[U51 Usz]= [_ksl Sat(sl(;()) ks Sat(SZ ()A())] (24)

The selection of left the minimum approximation
error as follow:

wi =f (R0 f(%6)
A CHCEAR HCEMIE
R URCEAR NCEA Y

W =W¢ +W, +W 1=1,2.
O T TR ]

We assume that:
1-There exist a positive constant such that:

(25)

‘Wf < Wf
| Imax

<Wg

W,
91

v, (26)

< Wfl
max

<Wg

W,
92

< W 1=1,2.

Imax
2- The positive constant kg=[ks

w
I

ks ] is chosen with
respect to the following condition:

k (27)

S1™

z gi (Wlmax+|912||u52|)
1

and



k (WZmax+ |921| |usl|) (28)

s
2 |9

The adjustable fuzzy parameters of f (%,0) are tuned

online using the Lyapunov approach. In order to
guarantee that the parameters are bounded, we
introduce the projection algorithm to restrict them in
the closed set Q.

—}’1815 f1 ()A() if (‘gfl ‘< Ml or (‘Hfl ‘:M1 and }/1515“ ()2)>0
Hfl g-frl § "
2

)

otherwise

f] -nSiE" (R) + S

~7252¢ "2 (X) if (61, [< M or (61, [=M and 72S,¢ ™ (%)>0

01,07, 6"
o

yiand y, are positive constants.

fo ] =S8 (R) 47252 otherwise (30)

Theorem 2. Considering that the non linear system
described by Eq. (2) satisfies the assumptions 1) and
2). The observer-based fuzzy neural network sliding
mode control law is chosen as u=G"+us . The closed-loop
system is stable so that all the signals are bounded and
tracking performance is achieved.

Proof:

Consider the following Lyapunov function:

v-igz, LgT ®, with & =9, -6, (31)
12t 2y, foh 111

coax 1 o1

V=SS +=d' @ (32)
1 T171 7, fl fl

Si=Xs — Xaa + 1161 + P11y
Si=F1(X)+011 (K, Ka )Ui+g12 (K, Ka Uz — Kaa + 1161 + Pra€y

Using Egs. (22) and (23), the time derivative of S1 may
be expressed as:

Si=f1 ()~ Fu(RO)H(Grr (%o, %)~ 011 (R, Ra))U 1G22 (e, Ra) @
—@12()21,>A(4))Ui{2 + 911()21,)A(4)U31+g12()A(i,)A(4)Usz

Using Egs. (11), (25) and (31) into Eq. (33):
S1=Wi 0 1 ,E ™ (R)HWogy +Wopy + 1 (%1, Re Ut +012 (R K )Us2 (34)
By substituting Eq. (34) in Eq. (32) and using the
update laws described by Eq. (29), \/'1 becomes:
V1=é1(Wf1+Wg11 +Wygp, +012 ()21,24)Usz) +é1 911(21,24)U51
Using Egs. (24), (25) and g1 (%,%,)>0, we obtain \/'1 as:
Vid

él (Wlmax+|912 ()A(l,)A(4 )||Usz|) - él 911()21,)24)k515&1t(é1) (35)

Consider the following Lyapunov function:

v-tgz, 1 g7 @
227 2y, f, b
.o A i I
V=SS +—d' &
2 2% 2 7, f2 f2
. * N % A
with ©, =0, -0, and S;=Xg — Xea + a2€, + B26)
2 2 2
by applying the same previous steps, we obtain:

Vs #‘éz“(WZmax*'|921()21,)24 )||Us1|) -, 02 (il,XA)kSZSat(éz) (36)

For any &>0, if S;>&and sat(§| )=sign(§.), applying

Egs. (27), (28) on Egs. (35) and (36) gives V,<0 and

V,<0.

However, in asmall & -vicinity of the origin (boundary

layer), sat(sﬂ)zé is continuous and the system
|

trajectories are confined to boundary layer of the
sliding manifold §,=0.  1=1,2

Neural

(e}

Network

Fuzz A
y Equivalent| Ue i

2links |9 5 alé
s\ o Coserver [L940
> Be
Control '\‘ Robot
u

f
1 +
Sliding

dd .dd .dd Surfacel

f

Fig.2 Observer-based fuzzy neural network sliding mode
controller scheme.

Logic

4. Results and Discussion

This section presents the simulation results of the
proposed control strategy compared with the standard
sliding mode control for a two-links robot manipulator
described by Eq. (2).

where 80 O g g5 O
ere —010 an —05

The considered uncertain parameters are the load
variations considered as: m,=0.6+0.06*randn (to,t+)

m,=0.4+0.04*randn (to,t+)
100+10*rand (to,t¢) 0
and J=
0 100+10*rand (to,t¢)



with {yis the initial time and t; is the final time.
The control objective is to maintain the system in order
to track the desired angle trajectory: X :(%)cos(t)

and  Xug :(%)sin(t)
The observer gain ki, kz, ks, ks, ks and ks respectively
equal to 1, 0.7, 0.1, 1, 0.7 and 0.1. The switching

functions coefficients are defined as:
an=14, a»=9, ﬂ11=6 and ﬂ22=16

To construct the fuzzy logic system fi (X61) (1=4,2) as
given in Eqg. (11). We select the membership functions
for xi (i=L2,3,4,5,6) from the following fuzzy sets:
pa (Rp)=exp( (i —cn)/(2*sig))*);

12 J=exp( (& )I(2#siQ))*);

1 13(%i J=exp( (& —cp)/(2+sig))*);

with: cp=1,cn=-1 and sig=4. (i=1,23456)

The sampling time is defined as 0.1 ms and the running
time as 60s.

The performance of the observer sliding mode control
is shown in Fig. 3.

The corresponding control current signals u; and u, are
given in Fig. 4.

In Fig. 5 it can be seen that the good tracking

position performance is obtained with unknown non
linear dynamics and in the presence of disturbances,
when compared to the standard sliding mode control.

T
—x I}

— x2obgerved — x3observed

Co o v o k= ro oo
Co o v o k= ro oo

— %

2 — xdobeerved 4 K ofserved

¥
I
APV 2

r r : : r 4 r r r : :
0 10 20 30 40 50 60 0 10 20 30 40 50 60
timels) timels)

Fig.3.The Outputs Xz,X3,Xsand Xs with their observer
states X2,X3,%Xs and Xs .

Control UL obained by SMC
Control UL obtained by AFNNSMC

Control U2 obained by SMIC
Control U2 obtained by AFNNSMC

Fig.4. the controls Uy and U using our method compared
to SMC.

output X1 obtained by SMC
output desired X1
output X1 obtained by AFNNSMC

— output X4 obtained by SMC
output desired X4
2r — output X4 abtained by AFNNSMC

0 10 20 30 40 50 60
time(s)

Fig.5. Responses of the desired output Xia (—), Xaa (—)
versus the output X (—), Xa ) with AFNNSMC and X
(--9, X4 €--) with SMC.

5. Conclusion

In this paper, an observer-based indirect adaptive
Fuzzy Neural Network sliding mode control scheme
has been developed for the two-links robot
manipulator.

The proposed observer based on Fuzzy-logic and
Neural Network has been used to estimate the full state
variable of the system, where the Fuzzy-logic and the
Neural Network have been employed to approximate
the nonlinear unknown model functions. This provides
a better description of the plant, and hence leads to a
lower switching gain to be used despite the presence of
large uncertainties. Furthermore, the parameters can be
tuned online by adaptive law based on Lyapunov
synthesis. The simulation results illustrate a better
performance of the proposed method to track the
desired trajectory, compared to the standard sliding
mode control.
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