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Abstract: In this paper, an observer based on Fuzzy Neural 
Network (FNN) is combined with sliding mode to design an 
adaptive robust controller without chattering problems for 
the two-links robot with unknown dynamics and external 
disturbances. The adaptive fuzzy logic and neural network 
approaches are used to approximate the unknown models of 
the MIMO robot system. The observer design is based on 
the resulting improved model. Moreover the auxiliary 
sliding mode control term is included in the control law to 
attenuate respectively the FNN approximation errors and 
the external disturbances. The stability of the system is 
provided by the Lyapunov approach. The simulation results 
demonstrate the efficiency and robustness of the proposed 
control scheme 
 
Key words: Nonlinear observer, Sliding mode control, 
Fuzzy logic, Neural network, Robot manipulators.   
 
1. Introduction 

Thanks to their use in diversified scientific and 
technological domains, robots are considered among 
the vital topics to many researchers [1, 5, 8, 11, 15]. 
The design of robust control for robot manipulators 
remains the most challenging task in the area of control 
systems. Therefore, a robot manipulator is a complex 
nonlinear system, whose dynamic parameters are 
difficult to obtain precisely. In fact, it is almost 
impossible to obtain exact dynamic models; the system 
is described by a nominal model with large unknown 
dynamics, which would add more challenges to the 
control of robots. To overcome this problem, several 
methods have been proposed, including adaptive 
control [11, 13, 15], sliding mode control(SMC) [1, 2, 
3, 6, 12], intelligent control [4, 8, 9, 13], etc.  Sliding 
mode control has been proved to be successful in the 
control of nonlinear system. The main advantage of 
using sliding mode control is its strong robustness with 
respect to system uncertainties and external 
disturbances. However, in the presence of large 
uncertainties, the SMC suffers from the known 
chattering problem which is caused by the high gain 
and high speed switching control [1, 2, 10]. In order 
to alleviate the chattering phenomena, the fuzzy logic 
[4, 7, 9, 11, 16] and the neural network [8,14, 15] are 
used to approximate the unknown dynamics of the 
system. 

In this paper, a combined adaptive fuzzy neural 
network and sliding mode controller are proposed for a 

two links robot with unknown dynamics and 
disturbances. The fuzzy-logic is used to estimate the 
unknown dynamics of the two-links robot model [11], 
so that the system uncertainties can be reduced which 
leads to a lower switching gain to be used. The neural 
network will also be used to estimate the model part [8, 
15] in which it is difficult to apply the fuzzy logic, 
especially during the elaboration of the fuzzy 
membership functions. In fact, the Neural Network 
(NN) has an inherent learning ability and can 
approximate a nonlinear continuous function to 
arbitrary accuracy. To obtain the approximation of the 
model part, the network weights are adjusted during the 
online implementation by using the gradient descent 
method (GD). The proposed control consists of the so-
called equivalent control added to the robust control 
term. The fuzzy neural network estimation terms are 
incorporated in the equivalent control component, 
enabling the robust component to be used with a small 
gain which is responsible of compensating only the 
fuzzy neural network errors estimation.  

The Adaptive Fuzzy Neural Network Sliding Mode 
Controller (AFNNSMC) mentioned above has been 
developed using the full state. However, in this study, 
the velocity and acceleration are unavailable for 
measurement, so, a non linear observer is designed 
based on fuzzy neural network. The control parameters 
are updated online by the adaptive laws with stability 
and convergence analysis using the Lyapunov approach 
for achieving specified tracking performance. 

The rest of the paper is organized as follows: In 
section 2, the model of robot manipulator is presented. 
The proposed observer-based Fuzzy neural network 
sliding mode controller is shown in section 3. The 
simulation results are demonstrated in section 4. A 
conclusion is conveyed in section 5.   
  
2. The model of the two-link robot 

The nominal model of the two-link robot is [5]: 
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Where qqq ,,  are vectors that represent respectively the 

output position, velocity and acceleration.  is the 

torque vector actuating the links, i is the current vector 

input applied to the servo motors. J, B and E are 

diagonal matrices representing the thermodynamic 

parameters and dependent on the temperature and the 

initial conditions. 
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With:  Tqqq 21  the output positions, 21 ,ll : the 

lengths, 21 ,mm : the masses and 21 ,II  the inertias 

respectively of the first and second segment of the pate. 
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In state space, the system model can be presented as 

follows: 
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Where:     TuuUi 21      

 Txxq 41 ,  Txxq 52 ,  Txxq 63 , 

 Txxxxxxx 654321  
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3. Fuzzy neural network siding mode control 

design 

The strategy of control is based on the fuzzy 

system, the neural network, the sliding mode control 

and the Lyapunov approach to ensure stability, 

tracking and consistent performance. The proposed 

observer based on Fuzzy-logic and Neural Network 

has been used to estimate the full state variable of the 

system. 

3.1  Sliding mode control 

The control problem is to determine the control 

law u  to force the state )(tq in order to track 

asymptotically the desired trajectory )(tqd  .  

The tracking error of the system is defined as:  

dqqe                                                                        (3)  

With   Tddd xxq 41      

The relative degree of the system described by 

Equation (2) is r = 3. 

Then, the sliding surface in the space of the error 

state can be defined as:   
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  ,  are diagonal matrices defined as follows : 
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Where 
  ,

   must satisfy the following Hurwitz 

polynomial.  

The sliding variable derivative is: 
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To guarantee the existence of sliding mode on a 

switching surface, the condition given below has to 

be satisfied [1]: 
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The standard sliding mode control law that satisfies Eq. 

(6) can be given by: 
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Where  (.) sign  is the sign function, given by: 
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To eliminate the chattering effect caused by the 

discontinuous control law, we replace (s) sign  

with (s) sat  as follows: 
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Where  
(.) sat

 is the saturation function given by: 
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With   is the boundary layer thickness. 

k  is a large positive constant due to the large 
uncertainties which can produce the chattering 
phenomena. Thus, to reduce the system uncertainties, 
we will use the T-S fuzzy system to 

approximate  )(xf and the neural network to 

approximate  )(xg , which can reduce the chattering 

phenomena. 
 

3.2 Fuzzy unknown dynamics approximation 

design 

The fuzzy system type T-S is used to approximate 

the system dynamics  )(xf . The basic configuration of 

the T–S system includes a fuzzy rule base, which 

consists of a collection of fuzzy IF THEN rules in the 

following form:   
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x   and)(  is the corresponding value of 

the output fuzzy singleton. The output of the fuzzy 

system with singleton fuzzification produces inferences 

and the defuzzification average centre can be expressed 

as [9]: 
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Where M presents the total number of the fuzzy rules 
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The optimal parameters vectors and the fuzzy 

approximation error are defined as: 








 


 ),(ˆ)(supminarg
l

nf fll

lf
l

xfxfRx
f




  

f l  Belong to the convex compact set which is 

defined as 








 lflf M
fl  /   

3.3  Neural Network design 

 The neural network is often used to approximate 

the unknown nonlinear function  ),( 41 xxg . In this work, 

we consider the architecture of NN with two layers of 

adjustable weights [8] (Fig. 1). 

41 ,xx : are the NN inputs variables, The NN outputs 

variables are: 

),(ˆ
3    ),(ˆ      ),(ˆ 41224112241111 xxgyandxxgyxxgy      (12) 

With   ) ,(ˆ) ,(ˆ 41214112 xxgxxg   

Where:  

  )   (),( 4141
TT

j
T

kk xxWWxxy   4,..,1k  and 4,..,1j        (13) 

(.) denotes the hidden-layer activation function, 
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  T
kkkkk wwwwW  4321 represents the interconnection 

weights between the hidden and the output layers and 

  T
j4j1     ww jW is the interconnection Weights 

between the input and the hidden layers.  

The actual output 
),( 41 xxydk  (desired output, which is 

the difference between the actual and nominal 

functions) is: 
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Where: ),( 41 xxk  is the NN approximation error. 

The gradient descent method (GD) is used to update  
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the network weights during online implementation. 

This method consists in adjusting iteratively the 

weights in the direction opposite to the gradient of E, 

so as to reduce the discrepancy based on:    
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Where 0k  is the usual learning rate. The gradient 

terms 
kjw

E
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 can be derived using the back-propagation 

algorithm [14]. The cost function E is defined as the 

error index and the least square error criterion is often 

chosen as follows:  
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Fig.1. The architecture of a multilayer neural network for 

The prediction of the unknown nonlinear function  )
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g(x
41  

3.4 Fuzzy neural network based-non linear 

observer 

      The control mentioned above in Eq. (7) has been 

developed using the full state. However, in this study, 

the velocity and acceleration are unavailable for 

measurement. So, the fuzzy neural network observer is 

used to estimate the signals )6,5,3,2( ixi . 

The proposed observer is based on [3, 6]. 
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With )ˆ( ˆ~
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22233 xxsignKxx  , 

)ˆ( ˆ~
44455 xxsignKxx  and )ˆ( ˆ~

55566 xxsignKxx    

Where Txxxxxxx ]ˆ,ˆ,ˆ,ˆ,ˆ,ˆ[ˆ 654321  is the estimate of state 

vector Txxxxxxx ],,,,,[ 654321  and )6,..,1( iki  represents the 

observer gain that would be chosen such that the 

observer state x̂ converges in finite time to x . 

The functions 21and ff are approximated by the fuzzy 

logic design proposed in section 3.2 and the functions 

11g , 2112 gg   and 22g are approximated by the neural 

network design proposed in section 3.3. 

Theorem 1. Considering the system described by Eq. 

(2) and the observer defined by Eq. (18) with unknown 

dynamics approximated by the proposed fuzzy neural 

network estimators, for any initial state )0(x , )0(x̂ and 

any bounded input u  there exists a choice of ik  such 

that the observer state x̂  converges in finite time to x . 

Proof: 

Let’s define the observation error dynamics as 

xxeob ˆ -   . The system is assumed to be bounded input 

and bounded state in finite time. Consequently, the 

observation error state is also bounded. Now 

considering the initial state condition such that 

)0(ˆ)0( 11 xx   and )0(ˆ)0( 44 xx   (if not, we begin with the 

second step). 

Step1: 

Using a model system described by Eq. (2) and 

observer defined by Eq. (18), we obtain the dynamic 

error as: 
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using Eq. (19) we have: 
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to zero in finite time 1 . If this condition is maintained 

after 1  we have  0)ˆ(  11121  xxsignkee obob  then 22
~ xx  . 
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to zero in finite time 4 . If this condition is maintained 

after 4  we  have 0)ˆ(  44454  xxsignkee obob  then 55
~ xx  . 

We define 14 as:  ),( 4114  Max , after 14  the observer 

dynamics become: 



































 )ˆ~(         

)~,,,~,,( ),,,,,(

)ˆ(    

0)ˆ(  

 )ˆ~(           

)~,,,~,,( ),,,,,( 

)ˆ(   

0)ˆ(  

666

654321265432126

55565

44454

333

654321165432113

22232

11121

xxsignK

xxxxxxfxxxxxxfe

xxsignkee

xxsignkee

xxsignK

xxxxxxfxxxxxxfe

xxsignkee

xxsignkee

ob

obob

obob

ob

obob

obob













        (20) 

Step 2: 

Consider:  
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  using Eq. (20), we have:  
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observer dynamics become: 
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Step 3: 

Consider:
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Using Eq. (21), we have: ))ˆ(  ( 3333ob3 xxsignkeV   and 
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If  0 3 k , then the observation errors obe2  converge to 

zero in finite time 253   .  

If 0 6 k , then the observation errors obe6  converge to 

zero in finite time 256   . 

3.5 Observer-based fuzzy neural network sliding 

mode control  

The overall architecture of the observer-based fuzzy 

neural network sliding mode control is shown in Fig. 2. 

The proposed adaptive controller is given as: 
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 We assume that: 

1-There exist a positive constant such that:  
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2- The positive constant           21 skksk s is chosen with 

respect to the following   condition: 

)   ( 
1

 
212max1

11
1 s

ugw
gsk                                       (27) 

and 



 

 

)   ( 
1

 
121max2

22
2 s

ugw
gsk                                      (28) 

The adjustable fuzzy parameters of ),ˆ(ˆ xf are tuned 

online using the Lyapunov approach. In order to 

guarantee that the parameters are bounded, we 

introduce the projection algorithm to restrict them in 

the closed set f . 
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1 and 2 are positive constants. 

Theorem 2. Considering that the non linear system 

described by Eq. (2) satisfies the assumptions 1) and 

2). The observer-based fuzzy neural network sliding 

mode control law is chosen as suuu  *ˆ .The closed-loop 

system is stable so that all the signals are bounded and 

tracking performance is achieved. 

Proof: 

Consider the following Lyapunov function:  
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Using Eqs. (22) and (23), the time derivative of 1̂S
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be expressed as: 
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Using Eqs. (11), (25) and (31) into Eq. (33): 
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By substituting Eq. (34) in Eq. (32) and using the 

update laws described by Eq. (29), 
1

V  becomes:  
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Fig.2  Observer-based fuzzy neural network sliding mode 

controller scheme. 

4. Results and Discussion 

     This section presents the simulation results of the 

proposed control strategy compared with the standard 

sliding mode control for a two-links robot manipulator 

described by Eq. (2). 
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with 0t is the initial time and ft is the final time. 

The control objective is to maintain the system in order 

to track the desired angle trajectory: )cos()
3

(1 tx d
  

and  )sin()
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(4 tx d
  

The observer gain 54321  , , , , kkkkk  and 6k respectively 

equal to 1, 0.7, 0.1, 1, 0.7 and 0.1. The switching 

functions coefficients are defined as: 
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To construct the fuzzy logic system ),ˆ(ˆ
lfl xf  ( 2,1l ) as 
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The sampling time is defined as 0.1 ms and the running 

time as 60s.  

The performance of the observer sliding mode control 

is shown in Fig. 3. 

The corresponding control current signals 1u and 2u  are 

given in Fig. 4. 

In Fig. 5 it can be seen that the good tracking 

position performance is obtained with unknown non 

linear dynamics and in the presence of disturbances, 

when compared to the standard sliding mode control. 
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    Fig.3.The Outputs 532 ,, xxx and 6x  with their observer 

states 532 ˆ,ˆ,ˆ xxx and 6x̂ . 
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Fig.4. the controls 1u and 2u using our method compared 

to SMC. 
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Fig.5. Responses of the desired output dx1  (     ), dx4  (     ) 

versus the output 1x  (     ), 4x (     ) with AFNNSMC and 1x  

(     ), 4x (     ) with SMC. 

5. Conclusion  

In this paper, an observer-based indirect adaptive 

Fuzzy Neural Network sliding mode control scheme 

has been developed for the two-links robot 

manipulator. 

The proposed observer based on Fuzzy-logic and 

Neural Network has been used to estimate the full state 

variable of the system, where the Fuzzy-logic and the 

Neural Network have been employed to approximate 

the nonlinear unknown model functions. This provides 

a better description of the plant, and hence leads to a 

lower switching gain to be used despite the presence of 

large uncertainties. Furthermore, the parameters can be 

tuned online by adaptive law based on Lyapunov 

synthesis. The simulation results illustrate a better 

performance of the proposed method to track the 

desired trajectory, compared to the standard sliding 

mode control. 
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