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Abstract: Transparent electrodes based on conductive 
transparent oxides (TCO) are increasingly invading the 
photovoltaic (PV) field because of their unique ability to 
reconcile high transparency with good electrical 
conductivity. The TCO market is dominated by the Indium 
oxide doped with Tin (ITO) with a resistivity of 30-80 Ω/sq 
and a transmittance of 90 % in the visible range. Yet, its 
cost is rising due to the high indium content, is one of the 
reason that encouraging research on alternative materials 
essential for the development of PV technologies. It is in this 
theme that graphene, a material with exceptional 
properties, is tested as a design material for transparent 
electrodes for Si solar cells. In this paper, we optimized 
optically and electronically the graphene-based transparent 
electrodes (G-TE) by proposing a model of simulation based 
on artificial intelligence and specifically artificial neural 
networks (ANN) which is the ANN-model. Therefore, to 
achieve an appropriate characterisation of a behaviour of 
G-TE for the Si solar cells, the ANN-model has been 
performed to simulate and optimise different parameters of 
the G-TE, by controlling graphene layer number, tuning 
graphene work function, and deduce the suitable 
transmittance and resistivity in order to have a complete 
adjustment for these parameters. Our study mentioned that 
a G-TE with three layers of graphene and a work function 
of 4.75 eV leads for a sheet resistance of 50 Ω/sq and 
transmittance of 91.4 %; these results suggest that G-TE is 
a promising candidate in the TCO field. 
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1. INTRODUCTION 

 The cost of photovoltaic technology is mainly 
related to the cost of the materials used and the cost of 
the manufacturing process. One of the most expensive 
materials is that used for the fabrication of the 
transparent electrode. A material commonly used as a 
transparent electrode in PV devices is ITO, which has 
excellent electrical and optical properties and can be 
produced on a large scale [1]. However, the large 
scarcity of indium reserves and a significant increase in 
demand has led to an increase in the price of indium 
[2]. Therefore, exploration of new materials for 
transparent electrode applications is necessary to 
achieve low cost and high efficiency. Potential 
replacement materials include metal grids [3-4], metal 
oxides [5-6], and thin film metals [7-8]. Low sheet 
resistivity and high optical transmittance are the 
fundamental requirements for these electrodes. 

Currently, neither ITO nor the alternative electrodes 
satisfy the industry’s future requirements. 
 Graphene, a two-dimensional material made up of a 
monolayer of carbon atoms oriented in a hexagonal 
network, has attracted a great deal of scientific 
attention since its discovery in 2004 by K.S. Novoselov 
and A.K.Geim [9]. This is due to its exceptional 
properties, such as electronic mobility greater than 
200 000 cm².V-1.s-1 [9] and mechanical properties by 
making a flexible and extremely resistant material [10]. 
Moreover, the high transparency of a graphene 
monolayer, 97.7% [11], makes it possible to envisage it 
as transparent electrodes for solar cells. 
 Experimental studies have been performed to 
optimize the characteristic of the sheet of graphene 
used as solar cells transparent electrodes, for that 
several parameters are studied : layer number of 
graphene, resistivity, transmittance, doping status …; 
the stake is to find the adequate recombination of this 
parameters which gives us better results.  
 In this paper, a theoretical model is presented to 
simulate the performance of G-TE for solar cells using 
artificial intelligence interpreted by the ANN-model. 
Using parameters extracted from experiments, our 
simulation gives consistent results with tested 
performance. Based on our theoretical analysis, two 
practical optimization treatments have been proposed : 
the work function (WF) and layer number (N) of 
graphene should be carefully adjusted and thereafter 
deduce the transmittance (T) and sheet resistance (Rsh) 
of our G-TE. 

2. GRAPHENE AND ITS APPLICATION AS 
TRANSPARENT ELECTRODES IN PV 

A. Graphene physics 

 Graphene is defined as a single layer of carbon 
atoms arranged in a hexagonal lattice. Its atomic 
structure can also be used as a basic building block to 
construct other carbon-based materials: it can be folded 
into fullerenes, rolled up into nanotubes, or stacked 
into graphite. The carbon allotropes (Fig. 1a), from 
zero-dimensional (0D) fullerenes, one-dimensional 
(1D) carbon nanotubes (CNT), to three dimensional 
(3D) graphite and diamond are all bonded by various 
combinations of the four 2s22p2 orbital valence 
electrons of each carbon atom. 



 

Fig. 1. (a) Schematic of carbon atom and carbon allotropes, 

from 0D to 3D; (b) atomic orbitals of graphene 

In 2D graphene, a carbon atom shares electrons with 
three nearest neighbours (Fig. 1b), in the form of three 
sp2 bonds, leaving out-of-plane pz orbitals with one 
electron per atom. The three electrons forming the sp2 
bonds are responsible for the outstanding mechanical 
and thermal properties of graphene. On the other hand, 
the electrons in the pz orbitals can easily hop between 
the neighbouring atoms, since the hopping energy is 
high (~3.0 eV), and thus form the π bands in the 
conduction bands (Ec) and π* bands in the valence 
bands (Ev). These electrons contribute to the 
outstanding electrical properties of graphene. As shown 
in Fig. 2c, EC  and EV meet at the six corners of the first 
Brillouin zone (named as Dirac points) resulting in a 
zero bandgap. Hence, graphene behaves like a semi-
metal [9]. 

Fig. 2. (a) schematic representation of graphite formed with 
staking graphene  and bond length; (b) unit cell, basis of 
graphene ; (c) energy dispersion of graphene, where the 
energy dispersion is linear for low energies near the six 
corners (Dirac points) of the two-dimensional hexagonal 
Brillouin zone. 

B. Graphene preparation and transfer 

Graphene can be fabricated mainly by two techniques:  

Physical technique-which involves: 

§  Micromechanical exfoliation of highly ordered 

pyrolytic graphite (HOPG) [9], with this 

technique we obtain samples of high crystalline 

quality but their dimensions are inadequate to use 

as a transparent electrodes (samples in order of 

micrometer). 

§ Sublimation of silicon from SiC at high 

temperatures [12-13], but the high cost of SiC 

substrates is the major inconvenient to use this 

method for producing G-TE. 

Chemical technique-which involves:  

§ Reduction of graphene oxide [9-14], the electrical 

properties of these films are lower. 

§ Chemical vapor deposition (CVD) on metal 

catalyst substrates [15]. 

 The CVD method produce large- scale and high 

quality of graphene. In this method, usually, Cu foil 

[16] or a Ni layer [15-17] are used as the catalyst, and 

CH4 is used as the carbon source with H2 as the carrier 

gas. The synthesized graphene is usually transferred to 

the device substrate with the help of PMMA 

[poly(methyl methacrylate)]. It is reported that 

graphene synthesized by CVD electrically and optically 

outperforms ITO [18] and thus is promising in serving 

as a transparent conductive film [17-16-15-1]. 

With the growth of graphene on copper, we obtain 
samples of more than 95% monolayer graphene [19]. 
The use of monolayer graphene makes it possible to 
have a better control over the transparency of the 
electrodes produced by stacking several layers of 
graphene. 

Despite the exceptional mechanical properties of 

graphene [10], its thickness of a few atomic layers 

makes it very difficult to transfer its samples (on the 

order of centimeter) without causing rupture to the 

graphene. For this reason, most graphene transfers are 

carried out by adding a mechanical support, and the 

most frequently used material is a polymer, the PMMA 

(poly(methyl methacrylate)), chosen by Reina et al. 

[15] and by Li et al. [16]. The PMMA layer is 

sufficiently resistant mechanically while remaining 

flexible, which ensures good conformity between the 

graphene and the substrate. 

For the step of metal sheet dissolution, different 

chemical solutions are used. A solution of FeCl3 [17-

20] or HCl [15] used for nickel sheet, and a solution of 

Fe (NO3)3 [16-21-22-23-24] used for copper sheet. 

When the metal sheet is completely dissolved, the 
graphene film floating on the surface of the solution is 
then rinsed in deionized water and recovered directly 
on the desired substrate. The samples are then dried. It 
is then possible to remove the mechanical support 
(PMMA), by immersing the samples in acetone [15-16-
21-23-25]. Figure 3 summarise the essential steps for 
transfer process of graphene. 
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Fig. 3. Transfer process of graphene 

C. Choice Graphene/semiconductor schottky junction  

Because of the near-zero band-gap and high 
conductivity characteristics of graphene, the 
graphene/n-type semiconductor heterojunction can be 
taken as a metal/semiconductor Schottky junction 
(assuming the work function difference between the 
graphene and the semiconductor is large enough) [26-
21-27]. Recently, several studies [28-29-30-31-32] 
proposed a photovoltaic model in which highly 
conductive, transparent graphene films is coated on n-
type silicon (n-Si) wafer to form Schottky junction 
[33]. The results of these studies showed that in this 
Schottky solar cell, graphene as energy conversion 
materials not only contributes to charge separation and 
transport, but also functions as transparent electrode. 

 

Fig. 4.  A graphene/semiconductor photovoltaic device 

 The mechanism of such Schottky junction solar cell 

can be understood qualitatively by plotting the energy 

band diagram. Figure 6.a shows the energy diagram of 

a graphene/ n-type semiconductor Schottky junction 

solar cell under illumination. Due to the work function 

difference between the graphene ( ), and 

semiconductor ( ), a built-in potential forms in the 

semiconductor near the interface. Under light 

illumination above the bandgap, the photogenerated 

holes and electrons are separated and driven towards 

the Schottky electrode (graphene film) and 

semiconductor layer, respectively, by the built-in 

electric field. We assume that the junction between 

graphene and semiconductor is an ideal Schottky 

contact, so the built-in potential  equals the work 

function (WF) difference of these two materials: 

……(1) 

Where  is the semiconductor electron affinity, as 

shown in figure 6,  and  are the doping and the 

effective electron state concentration of semiconductor, 

respectively. As graphene is metallic, n-type silicon is 

chosen as the substrate to obtain a comparatively large 

built-in potential. If the graphene WF becomes larger, a 

stronger electric field will be formed on the 

semiconductor side of the junction, hence improving 

the junction's capacity to collect photo-generated 

carriers. The mechanism of tuning the WF of graphene 

is rather straightforward. As shown in figure 6.b, the 

dispersion of mobile π electrons in monolayer graphene 

near the Dirac point in the first Brillouin zone (BZ) is 

in a linear correlation. For intrinsic graphene, the Fermi 

energy is located at the crossing point of the π and π* 

bands, which renders the carrier density at a low level 

at room temperature. However, if the Fermi energy is 

shifted away from the original position (figure 6.c), 

more electrons or holes can be activated to participate 

in the conduction process. Therefore, graphene with 

shifted Fermi energy (i.e., modulated WF) performs 

better in conducting. 

The WF of graphene can be tuned either by an 
applied electric field or by proper chemical doping, as 
summarized in figure 5. For example, AuCl3 doping 
can improve the WF to as high as 5.1 eV. Devices are 
fabricated with various chemical treatments and 
measured their series resistances and built-in potential 
changes, which are plotted as a function of the 
chemical treatment time. The series resistance 
decreases and the built-in potential increases at longer 
chemical treatment time. These changes reflect the 
modified WF.  
 

 

Fig. 5. WF modulation of graphene, including electric field 

effect [34] and chemical doping with Viologen [35], AlOx 

[36], HNO3 [27], SOCl2 [27] and AuCl3 [27]. 

After chemical doping, the transmittance T is almost 
unchangeable, furthermore, the sheet resistance Rsh has 
rapidly decreased after chemical doping [32], and a 
several analysis of the dependence of Rsh on WF 
[37,32], from which it is known that Rsh decreases 
significantly upon a tiny shift of WF from its intrinsic 
state. 
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Fig. 6. (a) The energy band diagram of the graphene and n-Si semiconductor, (b) The energy band diagram of the graphene/n-Si 
Schottky junction before doping graphene, (c) after doping graphene.

3. CHARACTERISATION OF G-TE WITH ANN 

 The ANN is the adequate technology for the resolution 
of estimation and prediction problems. ANN’s methods 
are used to expand the range of potential applications in 
various fields due to the functionality of the black box of 
the neural network [38-39]. 

The objective of this work is to create an ANN model 

who can faithfully reproduce the response of the solar cells 

G-TE. This theoretical model is presented to simulate the 

performance of the G-TE. For this, we must determine 

parameters who have influences on the performance of the 

G-TE, and thereafter we dispatch up theme into input 

parameters and output parameters. Figure 7 shows the 

schematic of the black box of our ANN model.  
 

 
 
 
 
 
 
 
 

Fig. 7. Input and output parameters of the ANN model 

 We have to optimise the transmittance and the sheet 

resistance (hence the conductivity) of our G-TE by control 

the layer number and the work function of graphene. 

Figure 8 shows an example for (Rsh-T) relationship for 

samples of ITO-TE and G-TE. 

 

Fig. 8. Transmittance vs sheet resistance for state-of-the-art 

Graphene & ITO (adapted from [40-18-41-42-1]). 

A. ANN model designing 

 The ANN model of our design process can be 

summarised in these stages [43-44-45]: 

§ Collecting a database characterised by the input 
and output parameters. 

§ Separation of the database into three subsets 
(training base, validation base and test base). 

§ The choice of the architecture of the ANN 
(Selection of inputs, outputs, number of hidden 
layers, number of neurons per layer, the activation 
functions ...). 

§ Training the neural network on the bases of 
Training and validation. 

§ Measurement of neural network performance on 
the test base. 

Our study focuses on the recent research on G-TE and all 
the graphene involved in this highlights are synthesized by 
the CVD method on copper foils [46-47-37-29-30-32]. 

B. Collecting the database 

The database includes the ANN inputs and associated 

outputs, and therefore it determines both network size 

(and hence the simulation time) and performance. For 

our training, we have used different curves, associating 

each value of Layer number (N) and work function (WF) 

of graphene an Rsh or T value of G-TE. Figure 9 shows a 

sample of curves used in our study adapted from [47] 

.  

Fig. 9. Sample of curves used in the database [47]. 

To realize our ANN model the database is composed of 

1390 elements divided into 03 sub-base: 

§ Training base. 

§ Validation base. 

§ Test base. 
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It should be noted here that there are no specific rules 

concerning this separation, however, in general the 

training set must include a significant percentage of the 

given base that can exceed 60%, for validation base it 

represents between 20% and 30% of the database, and 

finally the test base is between 10% and 25% of the 

database, depending on the problem at hand [48]. In our 

work the training base is composed of 834 elements 

(60%), the validation base is composed of 417 elements 

(30%) and the test base is composed of 139 elements 

(10%). It is important to not use any element of the test 

base during the training. This database is available only to 

the final performance measurement. In other words, it is 

used to check if the neural network has a good 

performance on the examples that are not learned before 

(test base). 

C. Choice of the architecture of the ANN 

We can make a classification for an ANN according to 

its architecture, training selected and the activation 

function used. The simplest and most known of ANN and 

most used for approximation and prediction problems is 

the multilayer perceptron (MLP) [43]. It consists of several 

neural layers generally connected in a feed forward 

structure. The calculation of the output is done by 

propagating the calculations from left to right, with a 

supervised training. The activation function used is 

primarily the sigmoïd function [43-44]. To drive the MLP, 

the training algorithm used is usually the algorithm of back 

propagation [43]. According to [49-50-51] an MLP with 

two hidden layer having a sigmoïdal activation function in 

the first layer and a linear function in the output layer, 

allows one to approximate the function studied with 

acceptable accuracy, provided you have enough neurons 

on hidden layers (Figure 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10.  Architecture of the MLP used 

 The structure of our MLP network is mainly 

determined by experiment, since the number of nodes in 

the input layer and the output layer is based on the number 

of input and output parameters, respectively. The case is 

not easy for the number of neurons in the hidden. In fact, 

with a limited number of neurons (too small), the network 

will not be performing on training, and with a number of 

excessive weight, the network may have poor 

generalisation properties (phenomenon of over-

training).The solution to remedy to this problem is to build 

multiple architectures and select the most suitable model 

for our application. We retain the architecture that gives 

the minimum mean square error (MSE).  

 

4. RESULTS AND DISCUSSION 

 Once all training steps are performed, our MLP is 

formed and performance measures compared to 

experimental data is needed to test the reliability of our 

ANN model, for this we cross to the test phase. 

A. Test phase and measuring the performance of the 

ANN model 

 In this phase, it is necessary to carry out tests to 

estimate the quality of the generalisation. Figure 12 shows 

the performance of the ANN model obtained for the 

curves used, the solid lines plot the experimental data and 

the dashed lines present our simulation interpreted by our 

ANN model. The layer number N is an important 

parameter that influences both the transmittance T and the 

sheet resistance Rsh of graphene, and thus determines the 

G-TE performance. Figure 12 (a) and (b) plot the 

transmittance and the sheet resistance of intrinsic graphene 

as a function of layer number, respectively, using the 

experimental values and the theoretical method mentioned 

previously (ANN model). As the layer number increases, 

the sheet resistance decreases dramatically, which 

improves the G-TE performance, but the graphene film 

becomes less transparent, which in turn offsets the gains in 

G-TE performance. Figure 12 (c) shows the analysis of the 

dependence of Rsh on the work function WF, Rsh decreases 

upon a tiny shift of WF from its intrinsic value (4.66eV). 

Figure 12 (d) summarizes the Rsh–T curves of both the 

reported experimental data and our simulation results. The 

comparison between the original database and that 

obtained after training the ANN model indicates that the 

data obtained by the MLP are very close to the 

experimental values and our ANN model expresses 

faithfully the behaviour of the G-TE. 
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Fig. 12. ANN Model Performance for the different training curves 

B. Prediction of G-TE behaviour with the ANN model 

 The performance of our ANN model is tested for inputs 

that has not been confronted by our system when training. 

In this phase the ANN model predict the behaviour of the 

G-TE with different input values. 

 Once the validity of the proposed method for G-TE 

behaviour has been verified, this methodology has been 

used to obtain different curves Rsh(WF) for different N 

values as shown in figure 13(a) and Rsh(T) for different 

WF values as shown in figure 13(b). our calculation are 

presented in dashed lines. The solid lines plot the 

experimental data of graphene.  

 The engineering of work function WF and layer 

number N of graphene plays an important role to affect the 

final device performance. As shown in figure 13 the 

proposed artificial neural networks provide an accurate 

prediction for the curves Rsh(WF) for different N values 

and Rsh(T) for different WF values of the G-TE. Our MLP 

was correctly trained; it tends to give reasonable 

responses. In table1 we selected input values who leads to 

output parameters close to I.T.O’s performance. 

We found that three layers of graphene with a work 

function of 4.75 eV leads to a sheet resistance of 50 Ω/sq 

and transmittance of 91.4 %. 

Table 1 
Input values leads to outputs close to I.T.O parameters 

Input Parameters  Output Parameters 

N WF (eV)  T(T) Rsh (Ω/sq) 
1 4.90  97.1 50 
1 5.10  97.1 16 

2 4.75  94.2 80 

2 4.80  94.2 45 

2 4.90  94.2 18 

2 5.10  94.2 7 

3 4.70  91.4 100 

3 4.75  91.4 50 

3 4.80  91.4 28 

3 4.90  91.4 12 

3 5.10  91.4 4 

4 4.70  88.7 70 

4 4.75  88.7 38 

4 4.80  88.7 20 

4 4.90  88.7 8 

4 5.10  88.7 3 

 The present theoretical study is a clear demonstration of 

the useful combination of the properties of graphene as 

transparent conducting electrodes in Si solar cells, which 

provides high transmittance and good conductivity. 
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Fig. 13. ANN model prediction of G-TE behaviour. 

5. CONCLUSION 

The work presented in this article relates to the G-TE 

modelling with artificial neural networks, which is a very 

useful tool for PV system designers, because modelling 

could be applied before the G-TE fabrication, thus 

providing an appropriate behaviour of the G-TE 

incorporated in Si solar cells. 

The graphene-based thin films were successfully 

applied as transparent electrodes working in Si Schottky 

solar cells. In comparison to similar solar cell devices 

using ITO as electrodes, graphene-based solar cells can 

deliver comparable photovoltaic performance. It is found 

that a good adjusting the two input parameters which are 

layer number and the work function of graphene, reduce 

the sheet resistance and improve the transmittance, which 

in turn improve the G-TE solar cell performance. This 

work indicates that graphene-based electrodes have the 

potential to substitute ITO in a wide range of 

optoelectronic devices.  

The ANN model requires a considerable database to 

ensure good training, it can be deduced that this model 

compromises simplicity, accuracy and flexibility in the 

choice of input and output variables, and it allowed us to 

define the values of WF and N necessary to obtain the 

transmittance and conductivity desired for our G-TE. 

The present theoretical study gives a useful 

combination of the properties of graphene as transparent 

conducting electrodes in Si solar cells, which provides 

high electrical conductivity and high optical transparency. 

The theoretical predictions with the ANN model suggest 

that several cases of input parameters are validated, 

however a compromise between this inputs and the G-TE 

production cost is an important point to study. With the 

projected predictions, the G-TE can be expected to pass 

the industry requirement for the next generation of TCO, 

including application in solar cells.  
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