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Abstract: In this work, a new multi-band spectral 

subtraction based noise reduction algorithm is proposed 

for cochlear implants (CI). The enhanced speech signal is 

estimated on each stimulation channel. For performance 

evaluation, some objective speech assessment tests 

relying on Perceptual Evaluation of Speech Quality 

(PESQ) score and speech Itakura-Saito (IS) distortion 

measurement were performed to choose the best noise 

estimation algorithm. In order to evaluate the speech 

intelligibility, subjective listening tests were assessed 

with 50 normal hearing listeners using a specific CI 

simulator and three cochlear implantees. Experimental 

results, obtained using French Lafon database corrupted 

by an additive babble noise and speech-shaped noise at 

different Signal-to-Noise Ratios (SNR), showed that 

proposed multi-band spectral subtraction algorithm 

produces significant improvements to speech recognition 

compared to the subjects’ daily strategy. 
 
 
Key words: cochlear implants , multi-band spectral 
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1. Introduction 

 

Since the introduction of CI in the 1970s, 
implant users’ speech perception in quiet has 
improved to the stage where many previously 
deaf patients can converse confidently over the 
telephone. These improvements have been 
largely produced by two major developments:  
the introduction of multichannel implants, and 
improvements in speech-processing strategies 
(Wilson et al. 1991). One major remaining 
challenge is to improve speech perception in 
noisy situations, where even the most 
successful CI users experience great difficulty. 
Although many cochlear implant (CI) users are 
capable of high degrees of speech 
understanding in quiet listening conditions, 

speech recognition falls sharply in the presence 
of background noise or competing speakers 
(Kiefer et al., 1997; Müller-Deile et al., 1995; 
Fetterman and Domico, 2002).  
To reduce the effects of background noise, 
some single-microphone noise-reduction 
algorithms originally developed for normal 
hearing persons have been applied to CI speech 
processing (Yang and Fu, 2005; Loizou et al., 
2005; Loizou, 2006; Van Hoesel and Clark, 
1995; Wouters and Vanden Berghe, 2001; 
Müller-Deile et al., 1995). These algorithms 
were able to somewhat improve CI users’ 
performance in noisy listening conditions. In 
general, single-microphone noise reduction 
algorithms are more desirable and cosmetically 
more appealing than the algorithms based on 
multiple-microphone inputs. A few single-
microphone noise-reduction strategies (Weiss, 
1993; Yang and Fu, 2005) have been proposed 
for cochlear implants, some of which were 
implemented on old cochlear implant 
processors based on feature extraction 
strategies (F0/F1/F2 and MPEAK strategies) 
and some of which were implemented on the 
latest processors. (Weiss, 1993) demonstrated 
that pre-processing the signal with a standard 
noise reduction algorithm could reduce the 
errors in formant extraction. The latest speech 
processors, however, are not based on feature 
extraction strategies but are based on vocoder-
type strategies. Yang and Fu 2005 (Yang and 
Fu, 2005) evaluated a spectral-subtractive 
algorithm using the latest implant processors. 
Significant benefits in sentence recognition 
were observed for all subjects with the spectral 
subtractive algorithm, particularly for speech 
embedded in speech-shaped noise.  
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The preprocessing approach to noise reduction, 
however, has three main drawbacks. Firstly, 
preprocessing algorithms sometimes introduce 
unwanted distortion in the signal. Secondly, 
some algorithms like subspace algorithms and 
Wiener filter, are computationally complex and 
subsequently power hungry and do not integrate 
well with existing CI strategies. Finally, it is not 
easy to optimize the operation of a particular 
algorithm to individual users. Ideally, noise 
reduction algorithms should be easy to 
implement and be integrated into existing 
coding strategies.  
Hu et al., (2007) proposed a noise reduction 
algorithm for cochlear implants that applies 
attenuation to the noisy envelopes inversely 
proportional to the estimated signal-to-noise 
ratio (SNR) in each channel. This algorithm 
could be easy integrated in existing coding 
strategies. The performance of the proposed 
noise reduction algorithm is evaluated with nine 
Clarion CII cochlear implant patients using 
IEEE sentences embedded in multi-talker 
babble and speech-shaped noise at 0–10 dB 
SNR. Results indicate that the the sigmoidal-
shaped weighting function produces significant 
improvements to speech recognition compared 
to the subjects’ daily strategy. Much of the 
success of the proposed noise reduction 
algorithm is attributed to the improved temporal 
envelope contrast. 
Kasturi et Loizou (2007), proposed an acoustic-
to-electric mapping function for cochlear 
implant users in noisy environments based on s-
shaped mapping function. The proposed 
algorithm was expansive for low input levels up 
to a knee point level and compressive 
thereafter. The knee point of the mapping 
functions changed dynamically and was set 
proportional to the estimated noise floor level. 
The performance of the mapping function was 
evaluated on a sentence recognition task using 
IEEE sentences embedded in 5 to 10 dB SNR 
multi-talker babble and in 5 dB SNR speech 
shaped noise. Nine postlingually deafened 
cochlear implant users participated in the study. 
Significantly higher performance was achieved 
with the s-shaped mapping functions than the 
conventional log mapping function used by 
cochlear implant users in their daily strategy, in 
both multi-talker and continuous speech shaped 
conditions, especially when the s-shaped 
mapping function was optimized to individual 
cochlear implant users.  

In brief, only a few studies were conducted to 
develop a new speech processing strategy for 
cochlear implant integrating a noise reduction 
algorithm. In this paper, we propose a simple 
noise reduction algorithm that can be easily 
integrated in existing strategies used in 
commercially available devices, especially 
Digisonic SP CI manufactured by Neurelec. 
The current paper is outlined as follows. 
Section 2 provides theoretical overview of the 
proposed speech enhancement system for 
cochlear implant. Firstly, we propose a 
comparative study of different noise reduction 
algorithms based on Minimum Statistics (MS) 
approach. Best performance’s algorithm will be 
then used for enhanced speech spectrum 
estimation. Section 3 evaluates the 
experimental results and gives an overall 
discussion of all obtained results. Section 4 
concludes the paper 
 

2.   Noise reduction Algorithm 

The proposed cochlear implant coding 

strategy, integrating the noise reduction 

algorithm, is illustrated in figure 2. Generally, 

the digital signal processor function for a 

cochlear prosthesis primarily consists in 

dividing an input speech signal into a number 

of frequency bands in order to extract the input 

signal energy in each band corresponding to 

each implanted electrode. This goal could be 

achieved by computing the Short Time 

Frequency Transform of the input signal 

(STFT), grouping frequency bins into different 

channels, and then summing up the power of 

adjacent frequency bins falling in a channel to 

obtain the signal energy in that channel. When 

input speech signal is affected by external 

noise, a noise reduction algorithm is needed, 

and the signal energy in each channel is 

computed from enhanced speech signal. The 

proposed coding strategy contains then the 

following major parts: 

- Computing the STFT of the input signal and 

grouping frequency bins into different channels 

- Noise power spectrum estimation, 

- Enhanced speech signal estimation and 

energy computing. 

 

 



 

2.1. Noise power spectrum estimation 

The noise estimator is, a very important 

component of the overall speech enhancement 

system, especially if the algorithm should be 

capable of handling non-stationary noise. In 

fact the noise estimator has a major impact on 

the overall quality of the speech enhancement. 

The simplest approach is to estimate and update 

the noise spectrum during the silent (e.g., 

during pauses) segments of the signal using a 

voice-activity detection (VAD) algorithm (e.g., 

Sohn et al., 1999). Although, such an approach 

might work satisfactorily in stationary noise 

(e.g., white noise), it will not work well in more 

realistic environments (e.g., in a restaurant) 

where the spectral characteristics of the noise 

might be changing constantly. Hence there is a 

need to update the noise spectrum continuously 

over time and this can be done using noise-

estimation algorithms. A useful noise 

estimation approach, known as the MS, is to 

track the minima values of a smoothed power 

estimate of the noisy signal, and multiply the 

result by a factor that compensates the bias 

(Martin , 1994). Martin (Martin , 2001) 

proposed a method for estimating the noise 

spectrum based on tracking the minimum of the 

noisy speech over a finite window. A different 

non-linear rule is used Farsi, 2010 for tracking 

the minimum of the noisy speech by 

continuously averaging past spectral values. As 

the minimum is typically smaller than the 

mean, unbiased estimates of noise spectrum 

were computed by introducing a bias factor 

based on the statistics of the minimum 

estimates. While for some cases exact 

expressions for the bias are available, 

approximations are required in general. Martin 

(Martin, 2006) present approximations which 

allow an efficient computation and 

compensation of the bias. Doblinger (1995) 

updated the noise estimate by continuously 

tracking the minimum of the noisy speech in 

each frequency bin. Rangachari et al., (2006) 

introduced a noise-estimation algorithm (which 

updates the noise estimate faster than the above 

methods and also avoids overestimation of the 

noise level. The noise estimate was updated in 

each frame based on voice-activity detection. If 

speech was absent in a specific frame, the noise 

estimate was updated with a constant 

smoothing factor. The speech-presence decision 

made in each speech frame was based on the 

ratio of noisy speech spectrum to its local 

minimum. Rangachari et al., (2006) proposed 

an improved noise estimation algorithm which 

updates the noise estimate in each frame using a 

time–frequency dependent smoothing factor 

computed based on the speech-presence 

probability. 

In this paragraph, we present a comparative 

study of four noise reduction algorithms 

proposed by Farsi (Farsi, 2010), Martin 

(Martin, 2006), Doblinger (Doblinger, 1995) 

and Rangachari (Rangachari, 2006).   

The performances of the previously considered 

noise power spectrum estimation are evaluated 

with only one interfering babble noise source at 

different SNR levels varying from 0 to 15dB 

with 5dB step. The two following objective 

measurements are considered for performance 

assessment: 

– Perceptual Evaluation of Speech Quality 

(PESQ) score which ranges from 0.5 (for the 

worst case) to 4.5 (for the best case) according 

to the ITU-T Recommendation P. 862 standard 

(P.862., 2001). 

– Itakura-Saito (IS) distance which is based on 

the similarity or difference between the all-pole 

model of the clean and the enhanced speech 

signals (Quackenbush et al., 1988). 

 

Results are shown in Fig.1a and Fig.1b 

respectively indicating the mean PESQ score 

and IS distance for different MS based noise 

spectrum estimation algorithms. 



 

 

  

(a) 

 
    (b) 

Fig. 1. A comparative study of MS based 

noise spectrum estimation algorithm for 

different SNR levels: (a) Mean IS values (b) 

Mean PESQ scores 

 

It is clear from both figures that best 

performances are noted, for different SNR 

levels, when Farsi algorithm is considered for 

noise power spectrum estimation. In fact, low 

IS distance, indicating better performances, are 

observed for Farsi and Martin algorithms with a 

little superiority for Farsi algorithm at 0dB 

SNR level. On the other hand, highest PESQ 

scores are obtained for different SNR levels 

when Farsi algorithm is considered for noise 

spectrum estimation.   

 

2.2. Enhanced speech signal estimation 

and energy computing 

The given signal bandwidth ranged from 300 to 

6055 Hz. Then, several ways of allocating the 

filters in the frequency domain were 

considered. An approximate analytical 

expression for describing the conversion from 

linear frequency f (in Hz), into the critical band 

unit b (in barks) is given by the following 

equation (Tranmüller, 1990) which was used in 

the current study: 
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where f is the frequency bin index. 

In CI, many coding strategies exist, but, with 

few exceptions, they are all variants of the 

Continuous Interleaving Sampling (CIS) or 

Advanced Combination Encoder (ACE) 

methods (Cooper et al., 2006). They split the 

input speech signal into short time-segments 

(frames) and use a filter bank to yield a M-band 

spectral representation. Next, ‘N’ bands (N<M 

for ACE, N=M for CIS) having the largest 

amplitude are selected and compressed, in order 

to match the narrow dynamic range of electrical 

hearing stimulation. In the current study, the 

ACE strategy was adopted with M=20 and 

N=8. Practically, the considered frequency 

range was divided into ‘M’ bands. This 

frequency range spanned from 3 to 20 barks; 

the spacing step was 0.85 bark (table.1) 

Sampling rate was fixed at 16 kHz. The picked 

up speech signal could be expressed in temporal 

domain as below: 

)()()( ldlsly      (1) 

Where s(l), d(l), and y(l) represent 

respectively speech signal, noise signal, and 

noisy speech signal. l is the discrete-time-

index. The noisy speech signal, y(l), was 

divided into overlapping frames by the 

application of a window function and 

analysed using the Short-Time Fast Fourier 

Transform (STFFT) classically given by:  
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where λ is the time frame index, U is the frame 

length in time and w is the analysis window 

(Hanning window) of size L given by 

equation.3. 
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The spectrum bands were then grouped 

according to the filter widths. The bandwidths 

of the filters were the frequency range leading 

to the simulated electrical stimulation. The 

window length (frame) was set to L=128 

samples, corresponding to 64 spectrum bins. 

This value is a good compromise between 

spectral resolution and time resolution. The 

FFT bins were then combined to provide the 

required number of analysis channels and table 

1 indicates the number of the FFT bins assigned 

to each analysis channel and the characteristics 

of the frequency channels. 

Table 1: FFT bins attributed to the frequency 

channels and their corresponding frequencies 

in Hz 

Frequency 

Channels 

‘m’ 

Number 

of 

bins 

Nm 

Starting 

bin 

nstartm 

Center 

frequencies 

fcenter 

(Hz) 

Cutoff 

frequencies 

bm-em (Hz) 

1 1 3 375 300-387 

2 1 4 438 387-480 

3 1 4 500 480-581 

4 1 5 625 581-690 

5 1 6 750 690-810 

6 1 7 875 810-944 

7 1 8 1000 944-1093 

8 2 9 1187 1093-1259 

9 1 11 1375 1259-1445 

10 2 12 1562 1445-1655 

11 2 14 1812 1655-1891 

12 2 16 2062 1891-2158 

13 2 18 2312 2158-2459 

14 3 20 2625 2459-2801 

15 3 23 3000 2801-3188 

16 4 26 3437 3188-3626 

17 3 30 3875 3626-4123 

18 5 33 4375 4123-4688 

19 5 38 5000 4688-5328 

20 11 43 5687 5328-6055 

  

Since Boll’s original work (Boll, 1979), many 

different variations of the spectral subtraction 

have been proposed (Berouti et al., 1979; 

Virag, 1999; Soon et al., 2000; He and Zweig, 

1999). Most, if not all, implementations of the 

spectral subtraction approach are variants of 

the approach proposed by Berouti et.al. 

(Berouti et al., 1979). In this implementation, 

the estimate of the clean speech spectrum is 

obtained as: 

     222
ˆ.ˆ (f)DαY(f)(f)S   (8) 

Since the noise spectrum cannot be directly 

obtained, an estimate 
)ˆ (fDm is calculated using 

an appropriate noise estimation algorithm. The 

over-subtraction factor α is frequency 

dependent and computed as a function of the 

segmental SNR (SSNR). The over-subtraction 

method assumes that the noise affects the 

speech spectrum uniformly and the over-

subtraction factor subtracts an overestimate of 

the noise over the whole spectrum. However, 

with real-world noise (in real environments), 

the noise spectrum is not uniform for all 

frequencies. In order to reduce the speech 

distortion and the musical noise caused by large 

values of α, its value is adapted from frame to 

frame. The basic idea is to take into account the 

fact that the subtraction process must depend on 

the SSNR of the frame in order to apply less 

subtraction with high SSNR and vice versa. 

That’s why; a multi-band spectral subtraction 

approach was proposed in Kamath et al, (2002) 

and adopted by Udrea et al. (2008). In multi-

band spectral subtraction approach, the noisy 

spectrum is divided into L non-overlapping 

bands, and spectral subtraction is performed 

independently in each frequency band.  

In our work, multi-band spectral subtraction 

algorithm is integrated into adopted CI coding 

strategy. Thus, the estimate of the clean speech 

spectrum in the m-th band is given by equation 

(10). 

      mmmmmm efb(f)Dδα(f)Y=(f)S 
222

ˆˆ
 

(10) 

Where bm and em are the beginning and ending 

frequencies bins of the m-th frequency band, 

αm is the over-subtraction factor of the m-th 

band and δ is a tweaking factor that can be 

individually set for each frequency band to 

customize the noise removal properties. The 

band specific over-subtraction factor αm is a 



 

 

function of the SSNRm of the m-th frequency 

band which is calculated as: 
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Where Ym (f) is the spectrum of the noisy 

speech and 
(f)Dm

ˆ
is the estimated power 

spectrum of the noise signal in the m-th 

frequency band. According to the SSNRmvalue 

calculated in equation (11), the over-subtraction 

factor αm is given by equation (12). 
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Where α0=4 is the desired value at 0dB SSNR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While the use of the over-subtraction factor αm 

provides a degree of control over the noise 

subtraction level in each band, the use of 

multiple frequency bands and the use of the δ 

weights provide an additional degree of control 

within each band, since most of the speech 

energy is present in the lower frequencies, 

smaller δ values were used for the low 

frequency bands in order to minimize speech 

distortion. The values of δ were empirically 

determined and set to following values (Udrea 

et al., 2008). 
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Factors, αm and δ could be adjusted for each 

band for different speech conditions to get 

better speech quality. The negative values in the 

enhanced spectrum in equation (14) were 

floored to the noisy spectrum as: 

 

       

  















otherwise(f)Dβ

(f)Dβ>(f)Sif(f)S=(f)S

m

mmmm

2

2222

ˆ.

ˆ.ˆˆˆ

 

(14) 

Where the spectral floor parameter was set to 

β= .002. 
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Fig. 2. Block diagram of the proposed noise reduction algorithm integrated into ACE coding strat 



 

The processed enhanced signals are then 

processed using the following power estimation 

equation: 

 

Where E(m) is the power of the considered 

band.  

The output of this analysis is a vector of power 

values for each frame of data. According to the 

ACE strategy and for each frame, only the first 

‘N’ channels presenting the most important 

power levels are used. The other channels were 

set to zero.   

In order to investigate the behavior of the above 

described speech enhancement algorithm in the 

case of cochlear implant, vocoder stimulations 

were used. However, it was shown by many 

(e.g. (Whitmal et al., 2007)) that these 

simulations provide results consistent with the 

outcome of cochlear implants and that vocoded 

speech signals could be presented to normal 

hearing listeners in the absence of confounding 

factors associated with cochlear implants. 

To reconstruct the acoustic signal, for each 

frequency band ‘m’, a Hanning window ‘w(l)’ 

was weighted by its related power value ‘E(m)’ 

to get the envelope signal, Env(m,l), according 

to Equation (6).  

 LlMmlwmElmEnv :1,:1),().(),(  (6) 

To prevent sharp variations, a further low pass  

filtering (cut off at 150 Hz) was applied on the 

envelope (smoothing). Then, a white noise was 

shaped to fill each frequency band (3rd order 

Butterworth filter) having the same band-pass 

as the selected frequency band. For each 

frequency band, the speech signal was 

synthesized by the multiplication of the filtered 

narrow band noise signal by the corresponding 

smoothed envelop. Finally, all signals coming 

from the different channels were summed up 

and the signal power of the processed speech 

signal was normalised so that the speech was 

reproduced at the same sound 

pressure level as measured when the original 

speech was recorded (70 dB). Figure 3 present 

the envelop signal on channel 3 for clean 

signal, noisy signal, enhanced signal using both 

sigmoidal and proposed approaches.  
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Fig. 3: temporal variation of clean, noisy and 

enhanced signals 

 
3. Performance evaluations 

In this experiment, we investigate the potential 

benefits of processing the noisy speech signal 

with the proposed speech enhancement 

algorithm. Therefore, to assess the performance 

of the aforementioned noise reduction 

algorithm, comprehensive phoneme’s 

recognition tests were conducted with 

simulated CI users. 

3.1. Phonetic material 

The used phonetic material was the 

French Lafon set which contains twenty lists 

composed of 17 three-phoneme words 

pronounced by a single male talker. This is the 

most commonly used speech stimuli for 

intelligibility assessment in French. Sound level 

was calibrated to 70 dB SPL. All these lists 

were recorded in the anechoic room of the ORL 

department of the Edouard-Herriot Hospital of 

Lyon-France with an additional babble noise 

and then speech-shaped noise. The Signal to 

Noise Ratio (SNR) was varied from -3dB to 

6dB in 3 dB steps.  
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Figure 4. Experimental setup (Anechoic 

room) LS3=speech signal, LS2, LS4 =noise 

signal, LS1, LS5 and LS6 were not used 

 

The experimental setup is presented in 

figure 4. A CD player (PHILIPS-CD723) was 

connected to an audiometer (MADSEN-Orbiter 

922) for intensity level adjustment. The target 

speech signal was always placed directly in 

front of the listener (an artificial head) at 0° 

azimuth (LS3 position). Clean speech signal is 

corrupted by multi-talker babble and speech-

shaped noise. Two interfering noise sources 

were placed asymmetrically either across both 

hemifields (-60° and 60° corresponding 

respectively to LS2 and LS4 positions).  

 

3.2. Subjects 

Performance evaluation of the proposed 

speech enhancement algorithms was done with 

a population of fifty normal hearing subjects; 

their audiogram was tested in the ORL 

department prior to the experiment. The age of 

the normal hearing subjects ranged from 18 to 

32 years. All participants were native speakers 

of French. CI subjects are fitted with the 

binaural Digisonic SP multichannel implant 

device manufactured by Neurelec Corporation 

(France) and their biographical data are 

indicated in Table 3. All participants were 

native French speaking subjects. Listening 

sessions took place in the Cochlear Implant 

Room of the Edouard-Herriot Hospital. 

Subjects’ hearing is checked prior to the 

experiment. Tests with all the subjects were 

done in Cochlear Implant Room of Edouard-

Herriot Hospital of Lyon These tests were 

approved by the Lyon Hospitals Ethical 

Committee.  

Table 2: Biographical data of recruited CI 

implantees 

 Subject 1 Subject 2 Subject 3 

Age 

(years) 
38 52 45 

Gender F M M 

Past 

surgery 

(years) 

5 5 5` 

 

3.3. Listening session conditions 

After listening to each sentence, 

subjects were instructed to repeat what they 

heard. Before each situation, subjects were 

given a practice session containing ten random 

words processed according to that situation. 

None of the sentences used in test was used in 

the practice. No score was calculated for these 

practice sets. To minimize any order effect in 

the experience such as learning or fatigue, all 

conditions were randomized among subjects. 

Different sets of sentences were used in each 

condition. A sequential test order, starting with 

sentences processed in quiet and in noise from 

the highest SNR level (6dB) and to the lowest 

SNR level (-3dB) was employed. We took this 

sequential approach in order to give the 

subjects some time to adapt to the listening in 

noisy conditions. At the end of each listening 

session, the responses of each individual were 

collected, stored and scored off-line with the 

number of correctly identified phonemes. All 

phonemes were scored. The percentage of 

correctly repeated phonemes was then 

calculated (out of two Lafon’s lists, 
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corresponding to 102 phonemes). Experiments 

were performed using a PC equipped with a 

conexant AC-link audio soundcard. To evaluate 

subjectively the proposed speech enhancement 

algorithm, three methods were considered:  

 - Noisy speech signal (non-processed 

signal) considered as a reference condition. 

 - Enhanced speech signal using the 

proposed speech enhancement algorithm.  

 - Enhanced speech signal using 

sigmoidal-shaped function proposed by Hu et 

al. (Hu et al., 2005). 

All these experiments were conducted using 

speech babble and then speech shaped noise as 

interfering signals. Interfering noise signals are 

coming from three noise sources placed 

asymmetrically either across both hemifields (-

60°, 60°, and 90° correspond respectively to 

LS2, LS4 and LS5 positions). Each subject 

listened to a total of 48 lists (three speech 

enhancement algorithms at two different noise 

types at 4 SNR levels). These lists were played 

on the CD player in a random order. For each 

situation, the subjects listened unilaterally to 

the sentences using a closed professional 

‘Sennheiser’ HD250 linear headphones at a 

comfortable level calibrated to 70 dB SPL. All 

the situations were tested with the same 

subjects for the different SNRs. The speech 

stimuli were processed offline with MATLAB 

software. 

 

 

3.4. Results 

To determine the impact of speech 

enhancement algorithms on speech 

intelligibility with cochlear implant, the theory 

of linear mixed-effects model (Bates, 2007) was 

considered. We used the lmer program of the 

lme4 package in the R environment (R 

Development Core Team, 2007). Intelligibility 

scores for this experiment were derived from 

the percentage of correctly repeated phonemes 

per situation.  

The effects were studied through a mixed 

ANOVA analysis with the following 

parameters: 

- Repeated measure (the same subjects 

under went all the situations) 

- Dependant variable: the recognition rate 

in percent (score) 

- Three factors:  

 Speech enhancement algorithm  (Noisy, 

proposed algorithm, sigmoidal-

shaped function) 

 Interfering noise type (speech babble or 

speech shaped noise) 

 Noise level (6 to -3 dB with 3 dB step, 

this last factor was taken as 

random; the first two factors were 

fixed). 

3.4.1. Results with normal hearing subjects 

Figure.5 shows the mean score as a function of 

speech enhancement algorithm at four SNR 

levels (6dB, 3dB, 0dB,        -3dB) in the 

presence of two interfering noise type. Figure.5 

(a) and Figure.5 (b) gives the mean score when 

a speech shaped noise and babble noise are 

considered respectively. First, second and third 

fourth line of figure.6 gives the mean score at 

6dB, 3dB, 0dB, -3dB SNR levels respectively. 

A group of four values is presented at each 

SNR level and at each interfering noise type. 

The first value indicates the mean percent score 

obtained with vocoded noisy speech signal. 

Second and third bars indicated the mean 

percent score obtained with enhanced speech 

signal processed using sigmoidal-shaped 

function and proposed MBSS speech 

enhancement algorithms respectively and then 

processed by cochlear implant simulator. 
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Figure 5. Recognition score (mean ± standard 

error) with noisy, speech sigmoidal shaped 

function and MBSS enhancement algorithms in 

the presence of  (a) speech shaped noise  (b) 

babble noise 

 

It is clear from figure.5 that better performances 

are obtained when proposed MBSS speech 

enhancement algorithm is considered. A 

decrease in performance is noted when the SNR 

is decreased and particularly in the presence of 

interfering babble noise. Statistical analysis 

results indicate a main effects of the speech 

enhancement algorithm (Chi2[2]=690, 

p<0.001), of the SNR (Chi2[3]=14086, 

p<0.001) and of the interfering noise type 

(Chi2[1]=502, p<0.001). Furthermore, there 

were a significant interaction between the 

speech enhancement algorithm and the SNR 

(Chi2[6]=322, p<0.001),  a significant 

interaction between the speech enhancement 

algorithm and the interfering noise type 

(Chi2[2]=19, p<0.001) and between interfering 

noise type and the SNR (Chi2[3]=142, 

p<0.001). 

Post-hoc comparisons were run to assess 

significant differences in scores between the 

scores obtained with considered speech 

enhancement algorithms. That’s why we used 

the ‘glht’ function from ‘multcomp’ package of 

R to take a fitted response model and a matrix 

defining the hypotheses of interest to perform 

the multiple comparisons. Statistics results 

shown that phoneme recognition scores were 

significantly better with sigmoidal-shaped 

function and proposed MBSS speech 

enhancement algorithms when SNR levels are 

respectively fixed at 6dB (p<0.001) and 0dB 

(p=0.025), but there isn’t a significant 

improvement when the proposed MBSS speech 

enhancement algorithm is considered, 

compared to sigmoidal-shaped function 

(p=0.9). The mean recognition scores achieved 

with both considered speech enhancement 

algorithms are significantly improved (p < 

0.001) and significant higher performances are 

noted when the proposed MBSS speech 

enhancement is considered (p < 0.001) at 3dB 

SNR level. No significant improvement was 

seen at -3dB with both considered speech 

enhancement algorithms (p=0.95). 

In the presence of speech shaped as an 

interfering noise, with proposed MBSS speech 

enhancement algorithm is considered, phoneme 

recognition score are significantly higher than 

those obtained with sigmoidal shaped function 

at 3dB SNR level (p < 0.001), but no significant 

improvement is observed at 6dB, 0dB and -3dB 

SNR levels (p >0.5). With clean speech signal 

embedded in 6dB, 3dB and -3dB SNR babble, a 

significant improvement in phoneme 

recognition score is observed (p < 0.001),   but 

no significant improvement is noted at -3dB 

SNR level (p=0.6). 

 

3.4.2. Results with CI implantees 

Experimental results obtained with three CI 

implantees are presented in this section. Figure. 

6a and Figure. 6b show the individual subject 

scores obtained with different considered 

speech enhancement algorithms when speech 

shaped noise and babble noise are respectively 

considered. Statistical tests indicate a main 

significant effect of the speech enhancement 

algorithm (Chi2[2] = 69, p < 0.001), of the SNR 

(Chi2[3] = 232, p < 0.001) and of interfering 

noise type (Chi2[1] = 14, p < 0.001). However, 

there is no significant interaction between the 

speech enhancement algorithm and the SNR 

(Chi2[6] = 10, p = 0.11) and between the 

speech enhancement algorithm and the 

interfering noise type (Chi2[2] = 1.5, p = 0.5). 
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Figure 6.Phoneme’s recognition scores with 

deafened CI subjects for different Speech 

enhancement algorithms at all SNRs. 

 

 

 

 

 

 

 

 



 

 

4. Discussion 

In this paper, we proposed a new speech 

processing strategy for cochlear implant 

integrating a noise reduction algorithm. Multi 

band spectral subtraction based proposed 

speech enhancement algorithm can be easily 

integrated in existing strategies used in 

commercially available devices.  The above 

analysis clearly indicates that the proposed 

sigmoidal-shaped function provided significant 

benefits to CI users in nearly all conditions. We 

believe that much of the success of the 

proposed noise reduction algorithm can be 

attributed to the improved temporal envelope 

contrast. 

As a first experimental study, performance of 

speech enhancement algorithms was tested with 

normal hearing subject using a CI simulator.  

When speech shaped was considered as an 

interfering noise, the mean improvement 

observed was 16% with sigmoidal-shaped 

function speech enhancement algorithm and by 

21% with proposed multi-band speech 

enhancement algorithm. In the conditions 

where babble noise were present, we noted a 

mean improvement of 5% with sigmoidal-

shaped function speech enhancement algorithm 

and 11% improvement with proposed multi-

band speech enhancement algorithm.  

Next, the same experiment was performed with 

three CI implantees. When the multi-band 

speech enhancement algorithm was applied, we 

observed a benefit in term of recognition score 

from 14% when speech babble is considered to 

around 19% in the presence of speech shaped 

noise. This improvement in performance was a 

bit smaller for the case of the sigmoidal-shaped 

function and the improvement in term of 

recognition score are variable from 7% when 

speech shaped noise were present to around 9% 

in the presence of speech babble. 

The percentage point improvement is also 

variable as a function of the SNR level. In fact, 

at 6dB, 3dB, 0 dB and -3dB SNR levels, we 

noted an improvement of 13%, 12%, 15% and 

2% respectively when sigmoidal-shaped 

function speech enhancement algorithm is 

considered. When the proposed multi-band 

speech enhancement algorithm is considered, 

we noted an improvement of 18%, 14, 20% and 

11% at 6dB, 3dB 0 dB and -3dB SNR levels 

respectively. Overall, our algorithm compares 

favorably against other single-microphone 

methods proposed for cochlear implants (e.g., 

Yang and Fu, 2005; Loizou et al. 2005). A 

larger improvement in performance was 

obtained with our proposed method in the 

presence of babble noise compared to the 

improvement reported by the other 

preprocessing method. Other advantages of the 

proposed method include the lack of 

algorithmic delay associated with preprocessing 

techniques, low computational complexity, and 

ease of integration in existing CI strategies. 

This behavior was confirmed with the CI 

implantees. In fact, an average improvement in 

recognition score of 9%, 11%, 7% and 3% was 

respectively observed at 6dB, 3dB, 0dB and -

3dB when sigmoidal-shaped function was 

considered. Better performance was obtained 

when multi-band speech enhancement 

algorithm was considered and the average 

improvement in recognition score are 

respectively 19%, 21%, 18% and 3% at 6dB, 

3dB and 0dB and -3dB. 
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