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Abstract: Induction motors being robust, 

efficient, low cost and reliable in operation and 

are widely used as electrical drives in 

industries. So, safe operation of induction 

machines is a major problem. Among the 

different mechanical faults experienced by 

induction motor, rotor faults contribute to 5%-

10%. According to location of fault the rotor 

faults can be categorized into cracked bar, End 

ring, bar ring joint, melted bars, air gap 

eccentricity etc... The motor current signature 

analysis (MCSA) is commonly employed for 

detection of these faults due to less cost, 

reliable and non-intrusive in nature. 

Conventional FFT based analysis of MCSA has 

many drawbacks like poor resolution, noise 

problems etc. Therefore, in this paper, the 

MCSA using different wavelet transforms like 

Discrete Wavelet Transforms (DWT), 

Stationary Wavelet Transforms (SWT), and 

Wavelet Packet decomposition (WPD) have 

been proposed and compared. The proposed 

topologies have been tested by experimental 

setup interfacing with MATLAB programming. 
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1. Introduction. 
     Induction motors are popularly used in all types 

of industrial applications owing to their advantages 

like simple construction, high reliability and the 

availability of power converters using efficient 

control strategies, low cost and have an ability to 

work under any discordant working conditions. 

Despite of their high usage, Induction motors have a 

pretty well chance of undergoing the disturbances 

like unwanted stresses, aging while rendering their 

services in industries [1]. These disturbances are due 

to faults experienced by the induction motors.  The 

faults experienced by the machine can be 

categorized into: Bearing faults, Stator faults, Rotor 

faults, Bent Shaft and due to external devices [2-3]. 

According to several survey reports on induction 

motor above 200hp, bearing faults contribute to 

41%, stator faults 37%, Rotor faults 10% and other 

faults 12% [4, 5, 6]. Based on the survey reports of 

EPRI and IEEE in [2], [7], cage fault contribute to 

5%, shaft 2%, core 1% and other 2% of 10% rotor 

faults experienced by motor. Therefore the major 

problems in the rotor faults are related to cage and 

are broadly classified into broken rotor bars and end 

ring faults. These faults are due to thermal, 

electrical, mechanical or environmental stresses 

and/or due to manufacturing defects [8]. Moreover, 

the broken rotor fault occurs by thermal stress, hot 

spots or fatigue stresses during transient operations 

such as startup, especially in huge motors [6, 9]. A 

Rotor broken bar can significantly changes torque 

and turn out to be dangerous to the safety and 

consistent operation in huge motors. The end ring 

rotor fault is related to air gap eccentricity. This fault 

is related to a range of mechanical problems in 

induction motor such as load unbalance or shaft 

misalignment [2, 10]. To avoid sudden shut down of 

the machine, preventive measures should be taken in 

order to protect motors from these rotor faults. To do 

so early detection of motor faults is highly desirable 

which requires online condition monitoring of the 

induction motor. It provides useful information 

continuously to the operator, maintainer and 

designer regarding healthiness of the system. By 

early detection of the faults any potential dangerous 

situated can be avoided. The study of behavior of an 

induction motor under unwanted stress or abnormal 

conditions has always been a challenge [11]. 

      There are many condition monitoring techniques 

like Vibration monitoring, thermal monitoring, 

acoustic emission monitoring are available to protect 

the induction motor [12]. Even though thermal and 

vibration monitoring have been utilized for decades 

most of the recent researches has been directed 

towards Electrical monitoring of the motor with 



 

 

emphasis the stator current of the motor [12]. All 

such techniques require specialized tools or 

expensive sensors. Hence current monitoring 

techniques, which are not in need of special 

expensive tools, are most used in industrial 

applications.  

     The paper is organized as; Section II reviews the 

motor current signature Analysis (MCSA) for 

Induction motor. Section III reviews various wavelet 

techniques used for fault diagnosis. Section IV 

presents the hardware setup. Section V is presented 

with the analysis and results. Paper is concluded in 

Section VI. 
 

2. Motor Current Signature Analysis (MCSA). 

     Motor Current Signature Analysis (MCSA) is the 

most popularly used for detecting induction motor 

faults. In the MCSA, current frequency spectrum is 

analyzed and obtained focusing to find out specified 

frequency components which indicates an incipient 

fault or a possible degradation in the machine 

condition. As stated, these frequencies are related to 

well-known machine faults. Therefore, after the 

stator current has been processed, it is possible in 

inferring the machine condition. The other important 

feature of this method is that the current can be 

sampled while the machine is under operating 

condition. Therefore, the detection and diagnosis of 

the fault can be made online without disconnecting 

the machine from the mains. 

     MCSA is one of the best popularly used methods 

because of the reasons as follows: it is non-invasive, 

economical due to no additional sensors required, 

reliable and easy to access [13]. It is clear that 

MCSA uses the stator current to identify fault 

characteristic frequency components. It can easily 

detect faults like: broken rotor bars, air gap 

eccentricity, bearings, short circuit turns, etc. [10, 

14]. The frequency spectrum of stator current can be 

obtained by Spectral Analysis. Spectral analysis is 

the given name to describe methods that transform 

time signals into the frequency domain. Although 

the broken rotor bars of a squirrel-cage induction 

machine initially do not cause the failure of the 

motor, they can have serious secondary effects. The 

breakings or cracks of a rotor bar can easily extended 

to the nearby or closer bars [10]. This type of fault 

slowly progresses in time and can easily be detected 

by using MCSA monitoring technique. The fault 

frequencies developed by broken rotor bar faults is 

given by [1, 15, 16, 17].  
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     Where n is the speed of the induction motor, s is 

the slip of the induction motor. The backward 

rotating magnetic field speed produced by the rotor 

due to broken bars and with respect to the rotor is  
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     After simplifying Eq (5)     
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     From Eq (1) & (6) 
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     Where k= 1, 2, 3 …  

     From the Eq (8), it is observed that, the fault 

frequencies are very nearer to the fundamental 

especially at less value of k. Therefore, it is 

necessary to use a high resolution spectral analysis to 

separate the fault frequencies from the fundamental 

component. Conventional FFT have few drawbacks 

like poor resolution, spectral leakage, unable to 

provide time –frequency relation etc. In order to 

overcome the resolution problems in FFT, zoom 

FFT (ZFFT) [18],[19] and MUSIC algorithms [20] 

have been proposed but have implementation 

problems due to high acquisition time and 

computational complexity. On the other hand, the 

spectral leakage in FFT is removed using window 

functions. To avoid spectral leakage and get time 

frequency resolution short time Fourier transform 

(STFT)[21] and Wigner-Ville distribution 

(WVD)[22], [23] are used. But these methods are 

difficult due to fixed window size in STFT and cross 

terms in WVD. In contrast to these, the variable size 

window based spectral analysis using Wavelet 

Transform (WT) has proposed [24]-[26]. Therefore, 

in this paper, wavelet transform based spectral 



 

analysis of stator current is proposed to detect 

broken rotor faults. The complete description of 

wavelet analysis is presented in the following 

section. 
3. Wavelet Analysis. 

     In order to overcome this serious problem of 

detection of fault at no load condition, the existence 

of the wavelet transforms came into picture. Wavelet 

transforms are used for the easy detection of the 

faults in the induction motor. As mentioned in the 

earlier subsections, the wavelet transforms have an 

advantage of variable window size. Three different 

wavelet transforms decomposition techniques are 

used. They are Discrete Wavelet Transforms (DWT), 

Stationary Wavelet Transforms (SWT), and Wavelet 

Packet Decomposition (WPD).  

     In the DWT decomposition, the stator current is 

decomposed into sufficient levels using following 

expressions. [27]                                                         
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     From the decomposition procedure of DWT, the 

decomposed signal is down sampled by 2 units in 

each stage. Therefore, after each decomposition level 

the length of the signal may become half. This 

decomposition will continue up to the required level. 

The decomposition level j can be obtained using 

following equation 
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     Where sr is slip and f is the fundamental 

component. After computing the jth level 

coefficients, fault estimation criteria can be done. 

     In this paper, daubechies of order 8 (db8) is 

chosen as mother wavelet.  In this DWT method, the 

coefficients are classified into two types 

approximation coefficient and detailed coefficient. 

The low frequency components are known as 

approximated coefficients and high frequency 

components are called as detailed coefficients. In the 

first level decomposition, the DWT has one 

approximated coefficients (ca1) and one detailed 

coefficients (cd1), where as in the next level of 

decomposition the approximated coefficient is again 

decomposed into approximated coefficients (ca2) 

and detailed coefficients (cd2) in the second level. In 

the similar way, at jth level decomposition one 

approximated coefficients (caj) and j number of 

detailed coefficients (cd1-cdj) will be available for 

analysis. But the DWT decomposition is time variant 

decomposition and has redundancy of coefficients 

due to down sampling. 

     The Stationary Wavelet Transform (SWT) is a 

time invariant transform and is similar to Discrete 

Wavelet Transform (DWT) but the process of down-

sampling is suppressed. SWT is also known as 

decimated wavelet transform, Invariant Wavelet 

transform as the name itself reveals that it provides 

linear and time invariant transformations [28]. SWT 

is known for its good resolution and identification of 

fault. Similar to DWT, SWT also having caj and 

cd1-cdj coefficients at jth level decomposition but the 

length of each coefficient is same.  

     Wavelet Packet Decomposition (WPD) is another 

decomposition tool, which gives higher resolution 

compared to DWT and SWT. The decomposition 

process is similar to DWT including down sampling, 

but both approximated and detailed coefficients are 

decomposed. They form bases which retain many of 

them orthogonally, smoothness, and localization 

properties of their mother wavelets. The algorithm of 

discrete wavelet packet transform is executed by 

two-channel filter banks having a half-band low pass 

filter and half band high pass filter pair. The study of 

a signal is processed by decomposing the signal in to 

a low pass and high pass filter continuously. In 

DWT, each level is calculated by passing the 

previous approximation coefficients through a high 

and low pass filters based on their ranking, the signal 

which is to be programmed is successively split into 

high and low frequency modules. The number of 

progressions are usually limited by the desired level 

of frequency resolution and obtained computational 

power. The frequency order of the wavelet packet 

coefficients are quite in binary. 

     In this present work, j is taken as 8 and in each 

decomposition the stator current is decomposed into 

8 levels. Therefore, in DWT & SWT cd1-cd8 and 

ca8 will be available, where as in WPD 28 number of 

coefficients are available in 8th level decomposition 

and is difficult to analyze. Therefore the first 9 

coefficients (c1-c9) are taken for analysis purpose.   
Table 1 

Rotor Fault Frequencies 

 Speed Slip Frequencies (Hz) 
K=1 

1486 0.009 

49.069 50.933 
K=2 48.134 51.866 

K=3 47.201 52.799 



 

 

4. Experimental Setup. 

     A 3-phase induction motor of 1 HP, 1.4A, 1500 

rpm, 415V, 50Hz is taken to test the proposed 

methodology practically. The experimental setup is 

shown in the Fig.1. The rotors with healthy and 

faulty conditions are shown in Fig.2 & 3 

respectively. 

     A healthy and faulty stator current is obtained by 

running the motor under no-load conditions. The 

stator current is extracted by DAQ connected 

through a current sensor to a laptop. The above 

figure shows the healthy and faulty current signature 

of the stator. The faulty stator current can be 

achieved by creating a hole or getting rotor bar 

broken. This method will create huge vibrations in 

the machine when it is subjected to the operation. 
5.  Results & Discussion  
     The frequencies domain analysis is carried out for 

the current signal with and without faults. The 

spectral analysis is done by using Wavelet 

transforms as mentioned. The below results are 

obtained by conducting different wavelet transforms 

on the above obtained healthy signal and as well as 

the faulty signal by using MATLAB code with 

respect to the Wavelet techniques. The different 

wavelet transforms involves DWT, SWT and WPD 

transforms. The results corresponding wavelet 

analysis are presented here: 

 

 
  
Fig. 1. Experimental setup for rotor fault detection 

     

      

     It is clear that from the reconstructive coefficients 

from the above figures (Fig (5) to Fig (10)) are 

unable to detect the existence of the fault. Here 

requires some other parameters for identification of 

the fault. Among many statistical parameters 

Standard deviation has been chosen. The standard 

deviation ratios are taken at decomposition levels in 

each wavelet transform technique for both healthy 

and faulty stator current signals is done. Finally 

standard deviation ratios of faulty by healthy in each 

level of decomposition are taken and compared 

among all the three wavelet transforms like Discrete 

Wavelet Transform technique, Stationary Wavelet 

Transform technique and Wavelet packet 

Decomposition Transform technique. The tables 

which are below reflects the comparison among 

these three techniques are given below in order to 

analyze which transforms gives the best outcome in 

order to detect the severity of the fault. 

 

 
Fig. 2. Rotor under healthy signal 

 
  
Fig. 3. Rotor under faulty signal 
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 Fig. 4. Subplot of healthy and faulty stator current 

obtained due to the healthy rotor and one rotor 
broken bar respectively 

 The above table (1) shows the fault variations 
clearly from fifth to eighth level of decompositions. 
It reflects that the fault frequencies which are 
calculated in the above table will fall in this levels so 
the variation is detectable at these levels. 

     The above table (2) shows that fifth to eighth 

levels of the decomposition and the severity of the 

fault can be shown when the variation of the fault is 

quite above the value 1. It reflects that the fault 

frequencies which are calculated in the above table 

will fall in this levels so the variation is detectable at 

these levels.  

     The above table (2) shows variation in one to two 

levels of the decomposition and the severity of the 

fault can be shown when the variation of the fault is 

quite above the value 1. 

     When the full length current signal x which is of 

10,000 length it is decomposed with the help of 

mother wavelet daubechies into 8 levels because the 

calculated fault frequencies will be surly fallen there. 

For the DWT analysis the fault frequencies are fallen 

at one fault frequency 49.067 at 8th level 1st node and 

the other frequency 50.933 at 8th level 2nd node 

respectively. It reflects that the fault frequencies 

which are calculated in the above table will fall in 

this levels so the variation is detectable at these 

levels. .This analysis is clear enough in showing at 

one two levels of decomposition. Therefore, for 

severe fault frequencies WPD will give better 

performance compared to DWT and will give good 

indication for the fault. 
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Fig. 5. DWT analysis is carried out for current signal 

under healthy conditions 
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Fig. 6. DWT analysis is carried out for current signal 

under fault conditions 
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Fig. 7. SWT analysis is carried out for current signal 

under healthy conditions 

0 2000 4000 6000 8000 10000
-2

0

2
Original Signal

0 2000 4000 6000 8000 10000
-10

0

10
ca8

0 2000 4000 6000 8000 10000
-0.5

0

0.5
cd1

0 2000 4000 6000 8000 10000
-0.5

0

0.5
cd2

0 2000 4000 6000 8000 10000
-0.5

0

0.5
cd3

0 2000 4000 6000 8000 10000
-0.5

0

0.5
cd4

0 2000 4000 6000 8000 10000
-1

0

1
cd5

0 2000 4000 6000 8000 10000
-5

0

5
cd6

0 2000 4000 6000 8000 10000
-10

0

10
cd7

0 2000 4000 6000 8000 10000
-10

0

10
cd8

 
Fig. 8. SWT analysis is carried out for current signal 

under fault conditions 
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Fig. 9. WPD analysis is carried out for current signal 

under healthy conditions 
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Fig. 10. WPD analysis is carried out for current signal 

under faulty conditions 
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Fig.11. Standard deviations of faulty by healthy for 

DWT analysis 
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Fig.12. Standard deviations of faulty by healthy for 

SWT analysis 
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Fig.13. Standard deviations of faulty by healthy for 

WPD analysis 

 

 

 
 

Fig.14. Signal decomposition into 8 levels using WPD 

 
5. Conclusion 

     This paper contributes the detection of the 

broken rotor bar faults in induction motor based on 

current signature analysis. The effect of rotor broken 

bar is analyzed. Moreover, the broken rotor bar is 

created and tested with current signature analysis 

using DWT, SWT and WPD in detecting broken 

rotor bar faults. With comparing the result it is 

observed that for early stage faults the WPD will 

give good fault indication when compared to DWT. 

The fault frequencies with severe impact can be 

easily identified by WPD compared to DWT. 

Furthermore, this paper proposed one relative 

statistical parameter i.e. Standard deviations in order 

to indicate the fault severity. The MSCA technique 

is best method for identifying the faults severity is 

proven. Among the MCSA, wavelet transforms 

played a key role in identifying the fault in this 

application. Moreover among all the proposed three 

Wavelet transform techniques like Discrete Wavelet 

transforms, Stationary Wavelet transforms and 

Wavelet packet decomposition transforms, Wavelet 

packet decomposition transforms clearly shown the 

severity of the fault in this application of the paper. 

So, this paper also states that the proposed three 

techniques are good enough for the detection and 

diagnosis of the fault, but the intensity of the 

transform techniques for detecting and diagnosing 

are varied according to the applications.  
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