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Abstract -- This paper presents an efficient approach for solving 
economic load dispatch (ELD) problems with discontinue cost 
functions using bacteria foraging algorithm. The bacterial 
foraging optimization (BFO) algorithm mimics how bacteria 
forage over a landscape of nutrients to perform parallel non-
gradient optimization [1]. In this article, the author provides a 
tutorial on BFO, including an overview of the biology of bacterial 
foraging that models this process. The applications of BFO are 
presented. The performance of algorithms are investigated on 
ELD problem of various population size with the power demand 
constraint, generating limits and the prohibited operating zone  
also added with the fuel cost function. This leads the non-smooth 
and complexity having cost curves where conventional gradient-
based methods are inapplicable.

Keywords: Foraging, Swarming, Tumbling, Economic dispatch, 
Prohibited operating zone.

I   INTRODUCTION

Power system is the one of the complex network in the 
world. There are many problems are associated with this such 
as load forecasting, Unit commitment (UC), Economic load 
dispatch (ELD), etc. the above problems are solved by using 
various conventional method and Deterministic method,. 
Where Economic Load Dispatch   is an important optimization 
task in power system operation for allocating generation 
among the committed units [6] such as the constraints imposed 
are satisfied and the energy requirements in terms of rupees 
per hour (Rs/h) are minimized. It (ELDP) is defined as the 
minimization fuel cost (Objective Function) of generating 
plants subject to various constraints (Condition). The ELD 
problem with fuel cost function subject to generating 
constraint can be solved by using deterministic method such as 
gradient method, λ-iteration method. The fuel cost function 
with generating constraint is a linear, convex, smooth and 
continue function. Improvements in scheduling the unit 
outputs can lead to significant cost savings. Traditional 
dispatch algorithms employ Lagrangian multipliers and 
require monotonically increasing incremental cost curves. 
Unfortunately, the input–output characteristics of modern 
units are inherently highly nonlinear because of valve-point 
loadings, ramp rate limits, prohibited operating zone etc., so 
the resultant objective function became as highly non-linear, 
non-convex, and discontinue objective function. And 

furthermore they may generate multiple local minimum points 
in the cost function.

In light of the nonlinear characteristics of the units, there is 
a demand for techniques that do not have restrictions on the 
shape of the fuel-cost curves. Classical calculus-based 
techniques (gradient, λ-iteration) fail to address these types of 
problems satisfactorily. Unlike some traditional algorithms, 
dynamic programming (DP) [6] imposes no restrictions on the 
nature of the cost curves and therefore it can be solved as ELD 
problems with inherently nonlinear and discontinuous cost 
curves. This method, however, suffers from the “curse of 
dimensionality” or local optimality.

So the new way for obtaining solution for these non-linear 
problems is soft computing methods which include various 
techniques based on learning from nature. These type of 
algorithms are formed from the behavior of nature. Some of 
the techniques are Genetic algorithm (GA), Differential 
Evolution algorithm (DE), Particle Swarm Optimization 
(PSO), etc…, Recently Kevin M. Passino introduce a 
technique [4], which imitate the foraging(searching for food) 
behavior of E.coli  bacterium . 

II. ESCHERICHIA - COLI (BIOLOGY)

Structure:

It is commonly found in the lower intestine of warm-
blooded organisms (endotherms). Most E. coli strains are
harmless, but some serotypes can cause serious food 
poisoning in humans. The E. coli (Escherichia Coli) bacterium 
has a plasma membrane, cell wall, and capsule that contain, 
for instance, the cytoplasm and nucleoid [4]. The pili 
(singular, pilus) is used as a type of gene transfer to other E. 
coli bacteria, and flagella (singular, flagellum) which are used 
for locomotion. The cell is about 1mm in diameter, and 2mm 
in length. The E. coli cell only weighs about 1 Pico-gram, and 
is composed of about 70% water.  Salmonella typhimurium is 
a similar type of bacterium.

The E. coli bacterium has a control system which enables 
it to search for food and try to avoid noxious substances (the 
resulting motions are called “taxes”.  For  instance,  it  swims  
away from  alkaline  and  acidic  environments,  and towards 
more neutral ones. To explain the motile behavior of   E.coli   
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Fig 1: E-coli Bacteria

bacteria, we will explain its actuator (the flagella), “decision-
making,” sensors, and closed-loop behavior (i.e., how it moves  
in  various  environments its  “motile behavior”). You will see 
that E. coli perform a type of “salutatory search.”

2.1 Swimming and tumbling via flagella

Locomotion is achieved via a set of relatively rigid flagella 
that enable it to “swim” via each of them rotating in the same 
direction for about 100 200 - revolutions per second.   An E. 
coli   bacterium  can  move  in  two different ways: it can 
“run” (swim for a period of  time)  or  it  can  “tumble,”  and  
also it  alternates between these two modes of operation[3] for 
its entire lifetime (i.e., it is rare that the flagella will stop 
rotating). First, we explain each of these two modes of 
operation. Following that, we will explain how it decides and 
also how long to swim before it tumbles.

If the set direction of movement and there is little 
displacement. To tumble after a run, the cell slows down or 
stops first; since bacteria are so small they experience almost 
no inertia, flagella rotate clockwise, each flagellum pulls on 
the cell and the net effect is that each flagellum operates
relatively independent of the others and so the bacterium 
“tumbles” about (i.e., the bacterium does not have only 
viscosity, so that when a bacterium stops swimming, it stops 
within the diameter of a proton.

2.2 Bacterial motile behavior

The motion patterns (called “taxes”) that the bacteria will 
generate in the presence of chemical attractants and repellents 
are called chemotaxis. 

First, note that if an E. coli is in some substance that is 
neutral in the sense that it does not have food or noxious 
substances, and if it is in this medium for a long time (e.g., 
more than 1 min), then the flagella will simultaneously 
alternate between moving clockwise and counter clockwise so 
that the bacterium will alternately tumble and run[7]. This 
alternation between the two modes will move the bacterium, 
but in random directions, and this enables it to “search” for 
nutrients.

Next, suppose that the bacterium happens to encounter a 
nutrient gradient (e.g., serine. The change in the concentration 
of the nutrient triggers a reaction such that the bacterium will 
spend more time swimming and less time tumbling.

On the other hand, typically if the bacterium happens to 
swim down a concentration gradient (or into a positive 
gradient of noxious substances), it will return to its baseline 
behavior so that essentially it tries to search for a way to climb 
back up the gradient.

2.3 Underlying sensing and decision-making mechanisms

The sensors are the receptor proteins that are signalled 
directly by external substances (e.g., in the case for the 
pictured amino acids) or via the periplasmic substrate-binding 
proteins. The receptor proteins then affect signalling 
molecules inside the bacterium[3]. Also, there is an effect of
“adding machine” and an ability to compare values to arrive at 
an overall decision about which mode the flagella should 
operate in; essentially, the different sensors add and subtract 
their effects, and the more active or numerous will have a 
greater influence on the final decision.

2.4 Elimination and dispersal events

It is possible that the local environment where a population 
of bacteria live changes either gradually (e.g., via consumption 
of nutrients) or suddenly due to some other influence. Events 
can occur such that all the bacteria in a region are killed or a 
group is dispersed into a new part of the environment. What is 
the effect of elimination and dispersal events on chemotaxis? 
They have the effect of possibly destroying chemotactic 
progress, but they also have the effect of assisting in 
chemotaxis, since dispersal may place bacteria near good food 
sources. From a broad perspective, elimination and dispersal 
are parts of the population-level long-distance motile 
behavior.

2.5 E. coli bacterial swarm foraging for optimization
Suppose that we want to find the minimum of J(θ),

θ�Rp, where we do not have measurements or an analytical
description of the �J(θ)[5]. Here, we use ideas from bacterial 
foraging to solve this non gradient optimization problem. 
First, suppose that θ is the position of a bacterium and J(θ) 
represents the combined effects of attractants and Repellents 
from the environment ,with, for example, J(θ) <0, J(θ) = 0, 
and J(θ) >0 representing that the bacterium at location θ is in 
nutrient-rich, neutral, and noxious environments[8], 
respectively. Basically, chemotaxis is a foraging behavior 
which implements a type of optimization where bacteria try to 
climb up the nutrient concentration (find lower and lower 
values of J(θ)), avoid noxious substances, and search for ways 
out of neutral media (avoid being at positions θ where      J(θ) 
≥0). It implements a type of biased random walk.

III. PROBLEM FORMULATION

The ELD load dispatch problem can be described as an 
optimization (minimization) process with the objective:

                               Min 


N

J
JJ PF

1

)(                               (1)

Where FJ(PJ) is the fuel cost of the thermal unit ‘J’ , which 
is the function of PJ .normally fuel cost function of a thermal 
unit is  quadratic , sometimes it may consider as the cubic 
function.
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And the above objective function is subjected to these 
constraints.
Power balance: This is a equality constraint for this objective 

function
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Where PD is the system load demand and PL is the 
transmission Loss
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Generating Capacity Constraints:
This is a generating limit constraint

                     JMAXJJMIN PPP  For J=1,2,...n               (5)

Where PJMIN and PJMAX are the minimum and maximum power 
outputs of the unit. 
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Fig 2: Normal Fuel Cost Function

Valve point effect

The fuel-cost function considering valve-point loadings 
[6]of the generating units are given as
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Where aJ , bJ , and cJ are the fuel-cost coefficients of the unit, 
and eJ and fJ are the fuel cost coefficients of the unit with 
valve-point effects. The generating units with multivalve 
steam turbines exhibit a greater variation in the fuel-cost 
functions. The valve-point effects introduce ripples in the 
heat-rate curves.

Fig 3: Fuel Cost Function with Valve Point Effect

Prohibited operating zone

Normally a generating unit is designed for running in pre-
specified range between minimum and maximum generating 
limits for protective operation. In this region the unit seems to 
be a continuous function. 

But in some special cases, the unit seems tthat it undergoes 
for a mechanical vibration when it is operating in a particular 
short region. Mechanical vibrations cause cumulative metal 
fatigue in turbine blades and lead to premature turbine blade 
failures. Because of these problems the unit is should not 
operating on those region, is called as Prohibited operating zone.

Due to this the continuous fuel cost function is become as a 
discontinuous cost function that leads to complexity of the 
problem.  
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Fig 4:Fuel Cost Function with Prohibited Operating Zone

IV. STEPS INVOLVED

The foraging strategy of E-coli bacteria is converted as a 
mathematical process for solution finding of various problems.  
It is governed basically by four processes namely Chemo 
taxis, Swarming, Reproduction, Elimination and Dispersal.
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4.1. Chemotaxis

Define a chemotactic step to be tumble followed by a 
tumble or a tumble followed by a run. Let j be the index for 
the chemotactic step. Let k be the index for the reproduction 
step. Let l be the index of the elimination-dispersal event.
                   P( j,k,l ) = {θi( j,k,l )|i =1,2,….,S}                       (6)
let
J(i , j,k,l)  denote the cost at the location of the ith bacterium θi( 
j,k,l ) ∈Rp

It represents the position of each member in the population 
of the S bacteria at the jth chemotactic step, kth reproduction 
step, and lth elimination-dispersal event.

To represent a tumble, a unit length random direction, say 
φ(j), is generated; this will be used to define the direction of 
movement after a tumble. In particular, we let
                 θi( j+1,k,l ) = θi( j,k,l )+C(i )φ( j)                         (7)
Where
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C(i)  =  step size for random direction

If  at  θ i ( j+1,k,l ) the cost J(i , j+1,k,l ) is better (lower) 
than at θi( j,k,l ), then another step of size C(i ) in this same 
direction will be taken, and again, if that step resulted in a 
position with a better cost value than at the previous step, 
another step is taken. This swim is continued as long as it 
continues by the (3.2) to reduce the cost, but only up to a 
maximum number of steps, Ns(4) .

4.2. Swarming

Bacteria exhibits swarm behavior i.e. healthy bacteria try to 
attract other bacteria so that together they reach the desired 
location (solution point) more rapidly. The effect of Swarming 
is to make the bacteria congregate into groups and move as 
concentric patterns with high bacterial density. 
Mathematically swarming behavior can be modeled as(7)
It also  have cell – to - cell  signaling  via an attractant  and 
will  represent that with   Ji

cc (θ,θi(j ,k,l )), i =1,2,……,S, for 
the ith bacterium This produces the swarming effect. When we 
want to study swarming, the ith bacterium, 
i =1,2,…..S, will hill-climb on

TABLE 1 PARAMETERS FOR SWARMING
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                           J=J(i, j , k , l)+J cc(θ,P )                             (10)
So that the cells will try to find nutrients, avoid noxious 
substances, and at the same time try to move toward other 
cells, but not too close to them. The JPcc(θ) function 
dynamically deforms the search landscape as the cells move to 
represent the desire to swarm (i.e., we model mechanisms of 
swarming as a minimization process).

4.3 Reproductions

After Nc chemotactic steps, a reproduction step is taken. Let 
Nre be the number of reproduction steps to be taken. For 
convenience, we assume that S is a positive even integer. 
                                    SR = S/2                                            (11)
Let be the number of population members who have sufficient 
nutrients so that they will reproduce (split in two) with no 
mutations. For reproduction, the population is sorted in order 
of ascending accumulated cost then the SR least healthy 
bacteria die and the other Sr healthiest bacteria each split into 
two bacteria, which are placed at the same location .

4.4. Elimination and Dispersal

Let Ned be the number of elimination-dispersal events, and for 
each elimination-dispersal event each bacterium in the 
population is subjected to elimination-dispersal (1).  We 
assume that the frequency of chemotactic steps is greater than 
the frequency of reproduction steps, which is in turn greater in 
frequency than elimination-dispersal events .

V. ALGORITHM

Step 1: Initializations 
For initialization, choose p, S, Nc , Ns, Nre , Ned, ped,and the 

C(i), i = 1,2,,,,S.

Choose initial values for the θi , i = 1,2,,,S,
Step 2: Elimination-dispersal loop: l= l + 1
Step 3:      Reproduction loop: k = k +1
Step 4:      Chemotaxis loop: j = j + 1

Step 4.1: compute the fitness value of ith bacteria

J(i,j)=J(i,j)+Jcc  take      J(i,j)=Jlast

The value of Jcc found by using eqn (8).
Step 4.2: Tumble

find new position of ith bacteria by eqn(7) and (8)

S.No Parameter Value

1 dattract 0.1

2 wattract 0.2

3 hreppelent 0.2

4 wreppelent 10
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Find the fitness value J(i,j+1) and compare,

If J(i,j+1)<Jlast   Set                

   Jlast=J(i,j+1) else Jlast = Jlast

Step 4.3: Swimming

set m=0  let m=m+1 find new position by eqn (8)

Find the new position fitness value J(i,j+1) and

if    J(i,j+1) <Ji
last set Ji

last = J(i,j+1)Else   setJi
last = Ji

last

Step 4.4: termination criteria 

Check if  m<Ns then go to step 4.3 else set i=i+1

Check if i<S   then go to step 4.1 else

Check if j<Nc then go to step 4. otherwise go to  step 5 .

Step 5:        Reproduction:

Find the health of the each bacteria Sort the each bacteria by 
its cost.

            Lowest cost             highest health (split into two)

Highest cost            lowest health (will die)

check if k<Nre  go to step 3  else go to step 6.

Step 6: Elimination/dispersal

Eliminate the lowest health bacteria after reproduction and 
disperse it to a new random position.  Check if l<Ned go to 
step 2 else terminate process.

6. RESULT ANALYSIS

The results were analyzed for a case study of system with six 
units. The objective function added with losses and prohibited 
operating zones. The fuel cost coefficient a, b and c are given 
in below table.

TABLE 2: FUEL COST COEFFICIENT
UNIT PMIN PMAX AI BI CI

1 100 500 0.0070 7.0 240

2 50 200 0.0095 10.0 200

3 80 300 0.0090 8.5 220

4 50 150 0.0090 11.0 200

5 50 200 0.0080 10.5 220

6 50 120 0.0075 12.0 190

The ramp rate limits and prohibited operating zones are values 
with the initial generations are given in below table.

TABLE 3: PROHIBITED OPERATING ZONE LIMITS

UNIT P0
I UR DR

PROHIBITED ZONE

ZONE 1 ZONE 2
1 440 80 120 [210  240] [350 380]

2 170 50 90 [90    110] [140 160]

3 200 65 100 [150  170] [210 240]

4 150 50 90 [ 80    90 ] [110 120]

5 190 50 90 [ 90  110 ] [140 150]

6 110 50 90 [ 75    85 ] [100 105]

And the coefficient of the power loss equation B,B0,B00

B=
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0150.00002.0008.

0002.0129.00006.

0008.0006.0024.0

0006.0001.0002.

0010.0006.0005.

0000.00001.00001.

0006.0010.0000.0

0001.0006.0001.0

0002.0005.0001.

0031.00009.00007.0

0009.00014.00012.0

0007.00012.00017.0

B0=1.0×10-3[-0.3908 -0.1297 0.7047 0.0591 0.2161 -0.6635]

B00=0.056

The results analyzed for the various size of population with 
different iteration value are compared.

TABLE 4: RESULT ANALYSIS FOR VARIOUS CASE 

ITERATION
20 40 50 100

POPULATION

20 15466.56 15464.10 15500.33 15466.16

50 15542.36 15472.18 15475.75 15468.37

100 15464.38 1541.54 15451.23 15460.28

From the table we decide that the solution accuracy doesn’t 
affected by improving the iteration, only by the population 
size

The result for the study case for the six generating units, total 
fuel cost including the power loss are tabulated as 50 trials of 
solution for 100 population and 50 iteration

TABLE 5: GENERATION SOLUTION FOR UNITS

UNITS VALUE
P1 439.9741
P2 185.9209
P3 250.6985
P4 124.58
P5 189.5803
P6 85.20

PDEMAND 1275.969MW
PLOSS 12.969MW

TOTAL FUEL COST Rs.15454.26 

7. CONCLUSION

The foraging behavior of the bacteria solves the power 
system problems with more local optimum. This is fully a 
stochastic (random) based algorithm. The algorithm consumes 
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more time to find solution due to the more inner loops 
circulated inside algorithm. The result of the problem does not 
depend on the iteration but on population. Comparing with 
other soft computing technique BFO finds global optimum, 
but the precision of the solution is very low, even though for 
higher iteration. So it concluded as the algorithm can be 
modified to improve the speed of algorithm by reducing the 
cycles.   
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