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Abstract: Vision is an important sense for the navigation of
mobile robots. Indeed this work presents a solution to an
interesting and important problem, i.e. visual beacon
detection for mobile robots. The proposed approach is
based on a combination of a neural network pixel classifier
and the Hough Transform to detect shapes in the incoming
images. One of the objectives is to enable the robot (CESA)
to move in an unspecified environment and acquire the
necessary information for its vision. In view of the positive
results obtained with a momentum of 0.001 and a
coefficient of training equal to 0.015, we can conclude that
our system is robust. Also, our algorithm allows a
significant reduction of the computation time and can be
therefore used in real-time applications. Moreover the
proposed architecture can be easly fitted into Field
Programmable Gate Array (FPGA) reconfigurable devices,
since the present performance increase of this technology
allows the implementation of complex applications while
real-time constraints in Hough Transform for lines
detection are respected for most of the video transmission
standards. From this perspective, the present work
congtitutes an important step toward a better
comprehension of the problem and proposes a solution that
is robust under diverse conditions.

Key words: Hough Transform, Neural Network, Robot
Vision, FPGA.

1. Introduction

discouraged to work on robot vision. As a conseqagn
robot vision software systems are often inflexibfed hard
to maintain, because they tend to contain harddapgck
hacks, which for efficiency reasons try to explmitcroop-
timizations like performing multiple operations siltane-
ously, or because they are heavily model-basedarpo-
rate application-specific heuristics. To address aspect of
this problem a solution is put forward.

In this paper, we propose a methodology (NN-HT)alhi
is applicable in real-time and especially impleneenin an
FPGA chip. In that sense, the remainder of the peper-
ganized as follows: in section 2 we first review firevious
work in robotic vision and in particular perceptidech-
nigues in order to motivate the directions that falowed
in the proposed methodology. In section 3, we pedde the
detailed description of the proposed process awndvghe
hardware implementation (FPGA) of the novel alduonit
and its validation. The obtained results on realges with
robot CESA can be appreciated in section 4. Fipa#igtion
5 summarizes our findings and gives a perspectiveuo
research.

2. Previous work

The work of Meribout [1] has been carried out itatien
to real-time HT hardware implementation while th&4P50
[2] chip from LSILogic Corporation uses a modified Hough
Transform for real-time processing. M. Karabern8lHas
proposed the use of the CORDIC algorithm for fastigh

Vision systems for autonomous mobile robots musyun transform. This makes the HT problem suitable farafiel

the requirements and demands of two very challendis-
ciplines: i) computer vision and image processiag ii)
robotics and embedded systems. While the statieecdt in
computer vision algorithms is quite advanced, maogn-
puter vision methods are intrinsically computatignax-
pensive. Even an efficient implementation of sudtthads
cannot fix this problem. Therefore, the resourceaeds of
computer vision methods are in conflict with thejuiee-

computing which would considerably reduce the pssitey
time. Hough Transform has been successfully usadany
applications. For instance, as a recent examplelpagh
transform based on a line cluster detection metbodock
mass discontinuity detection and analysis was sHowbeb
[4]. A study on more formal statistical propert@sHough
transform, such as the consistency of the estirmeatdr the
rate of convergence, was reported by Dattner [Sluring

ments posed by robotics and embedded systems, which[6] proposed in his work, a hybrid method usinguper

demand very short execution cycles for the conlwops
which read out and process sensor data, interpicktfzse
them, and determine appropriate actions for theiaaots.
Particularly the real-time requirements of robotsgem to
rule out most sophisticated computer vision methadisch
is one of the reasons why some computer vision réxpet

resolution (SR) to improve Hough Transform (SRHThis
has allowed addressing the vote spreading and dad p
splitting. In the current context, the interestus®e the tech-
niques of artificial intelligence solves many predls related
to cognitive tasks such as learning, adaptationggsiza-
tion and optimization.



J. Tani [7]offers an interesting approach to robot navigaf having two aspects: real time parallel procegsamd

tion learning problem. In fact, the robot learns thodel of
the environment by recurrent neural network. Otbelu-
tions that use neural networks and fuzzy logic rfation
planning and the representation of human knowleglge
plied to the navigation of robots are also foun{Bin

To distinguish the main objects in image datasBis,

control of the process including the non-lineasitie

Our neural network is a MLP (multilayer perceptrooi):
ten recommended in studies of pattern recognisame it
provides accurate results [16]. The network (9-8)}3in
figure 2 gives better generalization for the entirmge at
the input of the network. To train the network, use the

Ngoc Nam [9] uses the graph-based segmentationttend generalized delta rule with momentum as learnirrggigm.

normalized histogram (PODSH). There are some altern — Gray Level Binary
tives to find robust features that can be idertifted char- Image image
acterized.with a desc_riptor like the Surf [1Q]. I%mample "~ Acquisition ’L_;x} Rpg _;l Deriche
Fontanelli[11] uses Sift for a wheeled vehicle visual ser- ! ) i

voing. Other detectors like Corner Detector in [1ve dge Binary
found corner features that are very common in semi- ] | Image
structured environments. In our previous work wedus -‘
neural network model for objects detection in theprof the
robot's environment. This approach has allowedsthdy of

the cluster analysis with range finder data [18]céntrastto [ |
other works, we propose a new method that can Ipdeim

mented by any FPGA device. Moreover, all previouskw peynushe e
discussed so far concerns applications where bt ' '
hicles operate within natural environmerfsom this pers- '
pective, the present work constitutes an imporstep to- [ | ‘ —
ward a better comprehension of the problem andgzepa
solution that is robust under diverse conditions.
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3. Proposed method (LA

The problem that we are addressing is decompoded in
two sub-problems, namely, computer vision method an
FPGA implementation. In figure 1, we provide a sohéc
overview of the individual steps that are followed the

proposed process. 1 Computer Integrated Manufacturing

. }——————————p Navigation Strategies
3.1 Problem and solutions

An effective vision system is very important fotbots to
sense the environments where they work and to d#tec
objects where they will operate. The system caratiyre
improve the robot's flexibility, adaptability andtélligence
[14]. With the developments of optical engineeriagbed-
ded vision systems integrating camera and proggssiit
together, were developed in recent years.

However, it is necessary to investigated how tdnaipe
sufficiently the limited computing capability in @mbedded
vision system. For this problem, a solution thadugable is
recommended: A real-time process based on the cambi
tion of the Hough Transform and neural networkshewn
below in the block diagram of figure 1.

The objective of the flow chart is to permit to tB&SA
robot in figure 9 to understand better its percgieaviron-
ment which will allow it to detect the beacons daadecog-
nize their forms. A mapping by a Hopfield netwoskwell
adapted to compare with its database and to makeight
decision.

ey Planified Tasks

Fig. 1 Algorithm flowchart.

3.2 Neural network implementation
3.2.1 The network architecture

After the calibration step of our aquisition systésen-
sors), we obtain gray level images. Then, we usebttk-
propagation algorithm of the gradient [15]. It hhe merit

Fig. 2 Structure of an MLP neural network.

To reproduce our image or detect objects in a saenme
necessary to develop a neural classifier. Therlattesists of



a window of a multi-layer back propagation gradievitl-
tiple tests performed in the laboratory with windoof dif-
ferent sizes showed that the window (3*3) is thestrap-
propriate. The figures below (3-a, 3-b and 3-a)silfate the
relevance of our choice [13].

g,

(b) (©)
(a): Original input image;
(b): Results with a 3x3 window size;
(c): Results with a 5x5 window size.
Fig. 3 Test results with other window sizes.

3.2.2 The momentum

f(z)=1/10+ e (3)

f(z) is between 0 and 1 when z varies betweeand +o.
The derivative of f (z) is:

f'(2) = f(2).(1.0 = f(2)) (4)

3.2.3 The back-propagation algorithm (Rpg)

The Rpg learning in the flowchart of figure 2 caarit-
ten in algorithmic form as follows:

We note that i, k, I, j are the layers of the néutwork,
respectively the input layer, the first hidden kayke second
hidden layer and the output layer for the multidayeural
network classifier.

Procedure 1

Sepl:  Calculate the output yifor thefirst hidden layer

Sep2:  Calculate the output z; for the second hidden layer

Sep 3:  Calculate the output u; of the output layer

Sep4:  Calculatethe error of the output layer

Sep5:  Calculate the error of the second hidden layer using the output
error

Sep 6:  Calculate the error of the first hidden layer using the error of the
second hidden layer

Sep7:  Calculate the weight variation for all the layers using the learn-
ing rate C1 and the momentumrate C2

Sep 8 Update the weights

Sep 9:  if the algorithm converges (€3 inferior to a predefined threshold)
stop the process, if not, return to step 1

Note

For our contribution we improve the rule of the riicd-
tion of the weights in the algorithm of the baclojpagation
by adding the following equation:

The concept of momentum has been introduced teaehi AW+ 1) =AW() +09W (5)

a compromise between a low learning coefficient and

Through experimentation, this major change enhances

acceptable learning timéVlomentum acts as a low pass€onsiderably the reliability of the algorithm.

filter on the term of the weight change, sinceeiinforces
the general trend and reduces the risk of osalati
The total number of weights is given by:

N=%"Li Liy (1)

The network is trained by the delta rule with a neabam
term which was introduced by Rumelhar] At the (t+1)"

3.3 Extraction of binary images by Derichefilter

We proceed by applying a noise filtering operatiorthe
2D binary image that was computed in the previogp s
(Rpg). We obtain finally edge binary images.

All edge detectors are considered to be a trigligfofithm,
parameters and precondition)The precondition is

iteration of the training, the network weight s updated represented by the context in which the pair (aflor,

with two components. The first component is projpowl to parameters) runs correctly. It appears that thécDerdetec-
the error signal jeon the output X for the neuron sending tor seems to be better suited for highlighting edayed noisy
the activation signal. The second component is gntmal contours. This is an operator optimal edge detedtiased
to the amount of weight changes in the previousaiien on Canny criteria implemented recursiveMoreover, it

(the momentum term).
Awij (t +1) = wij(t) + Cl.ej /Xij + C2.Awij(t) (2

Where G is the learning rate and, §e momentum term.

provides edges better localized, and thus prodackesver
error of localization and omission. The edges aheainary
image are extracted by the Deriche operatbere is a fairly
significant noise reduction which reduced the redon

C. and G are the main factors that affect learning and th@srors. The results confirm this.

allow the tradeoff between system stability and qoality

of the classification. Therefore,;@ontrols the speed of 3.4 Generated Hough Transform

convergence in the training process angd pevents the
problem of oscillation in the vicinity of the soior.

Two types of transfer functions are usually usedngsid
or hyperbolic). Ours must be continuous and mormien
so our choice was the sigmoid function in our agtion,
because it gives us the best results.

The Hough Transform is an attractive technique bseaf
its robustness towards noise. However, its maiaddian-
tages are the large memory size required and tbeseary
complex and time consuming computations. The Hough
Transform can be used to detect colinear pointstbgying
the Hough space as shown in figure 4.



Points R(x,y), P,(x,y) and R(x,y), lying on the same line,
share the same @) combination §, 6,), which implies that
the sinusoidal curves of the colinear points irgetrsn the
Hough space.

P Hr'mx

Calculation of the P (i) +mxymy and the
P (n+1) + (mk/M) +(k/ 2) Values
For each calculated p i we increasing by one the cell (i€, p
i) from the Hough space
EndDo.
EndDo.
EndDo.
End.

Pi(xs, y1)
Pa(xz, y2)

Ps(xs, ys)

(Pe %)

Prmax

(a)

So, these parameters (K and M) are very importadt a
must be chosen so that the accumulated errorsepteirkan
acceptable range. The used segment extractionithigor
outputs the polar coordina(é, p) of a line and the coordi-
nates of its end points.

(a): Colinear points in image plane
(b): Intersecting sinusoids in Hough space

Procedure 3: the line segment extraction Algorithm

(c): Implementation as a 2D array of accumulators
Fig. 4 Straight lines Hough Transform.

It appears that the inputs are all pixels of thgpouof the
line detection algorithm and the output is a clasan ob-
ject. The neural network function is to classifismmall re-
gion in the image as a part of object and his bankad.
Once after line segments are detected by HT andhimat
lines pattern with the images are stored in thehimac The
line segment extraction algorithm from the Houghcspis
performed by searching segments carried by eaciifisant
line segment in this space. A significant line segmis
characterized by a peak in the Hough space, anedoh

Begin
The Max peak (nmax &, P max) value extraction from the Hough space.
While this value is superior of an experimentally threshold ThH Do

For each binary edge image point forming this peak Do

For 0 <n < (K/M - 1) in each sub interval

[mK/M, (m +1)K/M] of the 8 -axis Do
Decreasing by one the cell ( ne, pn) from the Hough space

EndDo.

EndDo.

For the whole binary edge image points forming this peak Do
looking for all adjacent points whose lengths are superior to the
same threshold ThH.

EndDo.

End While.

End.

detected peak, we remove from the Hough spacefthet e
of its points. The used segment extraction algoritutputs

the polar coordinatéd, p) of a line and the coordinates of its

end points. The idea of the improved HT algoritf@{ in
figure 1) is to generate a number Mm¥alues at the same

3.5 Matching problem by Hopfield model

Given the state of the art, we opted for the Hdgfraodel
that is most compatible with our application. Wewtthat
the matching problem can be formulated as an opditioin

time during a fraction of th@ interval in order to reduce 51 \where you have to satisfy the constraintsoofespon-
both the effect of these errors on final results gre full HT  4apce. An energy function representing these caingsron
computation time. _ the solution is minimized. Then the connection imais
~ Using the same notations as above, ghealue generated geduced to change the network to its stable skageire 5
in a sub-interval m of th@-axis (theB-axis is divided into M shows the structure of two-dimensional Hopfield athcan

sub-intervals) is given by the following equation: be likened to a matrix.
(pp=xcos 0 +y sind Lyapunov function for a binary two-dimensional netl
E=— EZu,l Zv,m Tyivm Ve Vom — Zu,l Ly Vi
0<m<M
1<M<K
in our case after using the Deriche edge detectigorithm
described in [18]. It uses the two procedures (2 3nwhich

0 = ne + mn/M of Hopfield [19] is given by:
l e=mn/K
summarize the voting process and the segment émtmac

0<ne<n/M ! @)
This algorithm is applied on binary edge imagesiietd
algorithms.

(6)

Procedure 2: the voting process Algorithm

Begin
For each binary edge image point Do,
For each sub interval [mK/M, (m+1) K/M] of the 6-axis
Do
Calculation of the p’s initial values p cux/m
and p m/m+ /2
For 0<n< (K/M-1) Do,

Fig. 5 Structure of the Hopfield network.

Vu et V,n, represent the binary states (output) neurons (u,l)
and (v,m), which can be set to 1 (active) or Odiive).



Tuwm IS the connection weight between the two neurons.

RAM

This connection is symmetric {Jm = Tymul)-

. . p| Address

It is shown that for a stable network, It would uigg to Bus
each neuron has no connection on itself, jg 0 and |, R ACCO
is the initial entry for each neuron. In this netiyove used ’ Read

. . . . ) D »D D,.|—>

one hand the constraints of intensity and dispaaity se- o " =
condly the law of oneness and the scheduling. Data N[5

Write

3.6 Hardwareimplementation of the HT Algorithm Fig. 7 The voting process architecture bloc.

3.6.1 The proposed architecture

Three main architectures have been proposed foHe 1he presented architecture has been implemented asi
algorithm: _ 8-bits Virtex Il Xilinx Xc 250-5fg456C FPGA for aapticu-

* Thep generation. lar case of M=4. The design entry used the VHDldhere

= The voting process. description language based on ISE Fondation Coiuwcept

* The control bloc. _ _ _ EDA tools. Expression (8) is rewritten as follows:
The general expression of the HT algorithm is entas

follows: =
p=p+ EPM(%)

M T K
0<m<—-—,1<M<K,,e=—-and 0<n<-=— — al
p 2 P + ng M pn+1+(§) - pn+(5) Epn
mK = mK . mK K
pn+1+¥ K_HJTK ) ;pT-'-EK pn+1+(§)—pn+( )+£p )
m. - - m.
n+1+7+5 n+7+3 n+7 ®) pn+1+(¥) = pn+(T) - gpn+(z)
_ (% 6) +y.5in (X ¢) K ©)
me.K—XCOS o €) tysin{— =€ ()Sn<Z
K , K
pmK = Y.COS (mTE) —x.sm(%.s) With : Po=X; PK=Y ; PK =g(x+y);
2 4
. L . vz
£ is the resolution in the-axis. P3ksa =~ (¥ — %)
M is the number of the values generated at the same time.
K is the number of the divisions of the thaxis. Since the value must be selected as 1&hd K/M value
a is thep value obtained from the discrete angular coordmust be an integer, we have chosen K= 48 whichiaspl
nate i along the thé-axis. that p=4. Two modules from figure 6 and four bldcsm
(x,y) are the image point coordinates. figure 7are necessary to generate and store all Hougli- distr

butions.
A | and (me KJ are the seed values of thgenera-
™ ™2
ted at the beginning of each sub-interval of@kexis.

Figure 6 shows theith module that realizes ttgegenera-
tion architecture defined by expression (8). Trhevalue
indicates which sub-intervals the generation module is

working on M/2 modules in parallel are necessary to gene-
rate the Hough distributions.

3.6.2 FPGA implementation

mK | : L e +7K Fig. 8 HT parameters extraction circuit.
M
Sel J
Pty — The used memory will be addressed over 14 bitsthad
¢ K . A NPRURRERLC. stocked data will be coded over 9 bits for a binadge
Pt T2 3 image of size 256x256. The resulting architectuae be
> clocked at 606.081MHz and can generate in partdlal p
each 11.852 ns.

Fig. 6 Thep generation architecture of th&fH module.



Table 1: The occupation of space FPGA

SLICE (CLBs) OCCUPIED 618/1536 ~ OCCUPATIONOF
37%

I0Bs OCCUPIED 138/200 OCCUPATIONOF
69%

RAM 19/24 OCCUPATIONOF

81%

Figure 8 shows the Virtex Il Xilinx Xc 250-5fg456C

FPGA package. It utilizes: 37% or 618 out of 153@€eS
(CLBs), 69% or 138 out of 200 10Bs and 81% or 19 @fu
24 RAM.

Unlike Djekoune [20] who ran out of circuit areadan
therefore was unable to generate@lNalues for their cor-

respondingd values because they made use of LUT to store

sine or cosine function required by the HT, we weod
confronted to this problem in our test setup.

The circuit area is sized according to the M valtie
greater the area. The free circuit area can be tosgtiude
one or more functions such as straight-line extactunc-
tion. This will allow us to avoid additional cird¢ty to be
placed on different chips that would slow down thecu-
tion time because of a slower off-chip communiaatio

4. Experimental results

The CESA vehicle in the figure 9 is an experimene
hicle designed to operate autonomously within acttired
office or factory environment. It has been desigmwégth
several goals in mind. First and foremost, CESAested
with which to experiment with such things as rolpob-
gramming language and sensor integration/data riugioh-
nigues. Second, CESA is designed to be low cost,dm
pend on only one camera and two active telemegnisa's.
CESA has a tricycle configuration with a singlenfravheel,
which serves both for steering and driving the &lghiand
two passive load-bearing rear wheels.

¥ oo f.-"?]l]I
M Frme S
Sensors : -
B
".__
\
Passive rear Batteries y
whcé}& \
Mu]llhu\
Y= Ceardtage -
I
i
Xa ¥

(©)
Fig. 9 Robot CESA.
(a): Structure of the vehicle and its referenceeecoordinates
(b): The CESA autonomous vehicle
(c): Robot CESA with embedded system

The onboard control system uses several sensoredemb
ded telemetry assetsd a vision system to provide the posi-
tion and heading information needed to guide theicle
along specified paths between stations. The exXtesnaff-
board, part of the system consists of a global pénner
which stores the structured environment data aodymes
the path plans from one station to the next. ib atsludes a
radio communication link between this supervisoopteol-
ler and the vehicle. The CESA vision system is cosep of
a camera iVC 500 CCD and a microcontroller-basetd da
acquisition card. The 80C51 microcontroller corgrohe
whole operation of the card.

The acquisition is performed in real time in 5mshiAary
edge-recognition algorithm was implemented on dd fie
programmable gate array (FPGA) on this card. Thené-
work is successfully applied in different roboticegarios,
such as biologically-motivated neural network |éagn
neural object classification in an office enviromhend
reliable high speed image processing in the Robo@igp
dle-size robot league [21].

For this purpose, we use the laboratory environnasni
field of action for our experimental mobile platforBy
comparison with our work a similar robotic mappimgthod
has been developed in this method, scan matchiegns
bined with a heuristic for closed loop detectionl @nglobal
relaxation method, results in a 6D concurrent liaasibn
and mapping on natural surfaces [22].

In all experiments, various types of beacons (padyhl,
cylindrical and rectangular) are used. The proposigo-
rithm was applied to the images numbered 10-a,, 12&a
and 13-a. The results are shown respectively urdig 10-b,
11-b, 12-b, and 13-b.



(a) (b)

Fig. 10 Algorithm results of polyhedral beacon.
(a): Original input image
(b): Recognition results
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Fig. 11 Algorithm results of cylindrical beacon.
(a): Original input image
(b): Recognition results
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Fig. 12 Algorithm results of rectangular beacon.

(a): Original input image
(b): Recognition results

(b)
Fig. 13 Algorithm results of differents objects.
(a): Original input image
(b): Recognition results

Increasing the number of hidden layers impliesntraj
difficulties and decreases the performance. Thues,cen-
clude that the four-layer network (two hidden lajers
sufficient for the segmentation problem. Also, vwan csay
that increasing the input window size increasescthpu-
ting time and the output images that resulting roesier.
The rate parameters for the back-propagation legraffect
not only the learning rate but also the classificaperfor-
mance. The appropriate choice for our problem igery
small learning rate (££0.001) combined with a medium
momentum rate (£0.015).

The mobile robot has been made familiar with thei-en
ronment during an initial training phase. The aigfl neural
learning system is made to detect only the beadmm
other items such as the blurs shown in all figu@s11, 12
and 13. Although the mobile robot is moving in seene,
the visual information (input data to the NN) isnguuted
using a stochastic parametric activation functibthe neu-
ron. The experiments have been carried out in synemvi-
ronment. With our algorithm, the remaining noise tire
background of the scene is removed from the fittage.
The correspondence between the object of intebestcon)
and the filtered image is found by matching the -two
dimensional projections of the beacon by considemf
possible sets of the available beacons in thenateznvi-
ronment of the mobile robot. The data base incluaté§-
cial landmarks. While joining the technical mukéisolution
and the data fusion, our system remains robusiegptice of
an extremely appreciable computing time per exeaouti
cycle.

z(cm)

U =0
20
v (em) 707 7y 10

® (em)

Fig. 14 Three-dimensional plot of the estimatéesta



The proceduremcluding the image feature detection ¢
tracking method, feature initialization, systenrtsa proce-
dure are integrated. In this experiment, the robhoves fronm
the left- to rightside of the field, and the estimate state
image features are depidtas a 3D map shown in the figt
14. In the plot, the dots indicate the landmarksaioied
from the initialized image features and the astsriepe-
sent the state of the camera equipped on the rdbete-
fore, our mobile robot performs the skitalization and
mapping procedures simultaneously. The time remergs
to process a frame, after the learning stage, asitah milli-
seconds during the operation of the mobile robdijctv
seems better than other published results obtainddrthe
same working conditions.
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Figure 15 Recognition rate in % of hybrid classifi
based on thresholds of confusion and ambic

The hybrid classifier was evaluated on the basitesfs.
Figure 15indicates the evolution of the recognition r
depending on the level of ambiguity and confusiontioe
threshold of the objects used in the database.r&begti-
tion rate also increases with the level of ambigi

The results show the effectivenessoof method for rc-
ognition beacons on all forms. The recognition riatesi-
mated at 97.8%.

Our experiments have been carried out on an auat
guided vehicle (AGV) shown in figure 9c, which
equipped with a camera. The obtained results ootig@al
images are satisfactory since the objects arelgleaccg-
nized.Also, we obtained a valuable insight into thie of
network topology, rate parameters, training sangefeanc
initial weights.

The FPGA device has been implemented in the v
navigdion system of our CESA mobile robot. After ec
restoration, the device’s results may be used ritisethe
basic data to determine the depth of an objechieet -
mensions (stereoscopic vision) by geometric reagpmr as
input data to other algoriths such as the matching o-
rithms developed in [227] and also to endow the mob
robot with the intelligence required to perceive énvirn-
ment. Two semiecal constraints on combinations
neighbourhood correspondences are derived (oneeggor
the other photometric). They allow testing the cstesicy of

correspondences and hence to

neighbourhoods.

reject falsely ma

The table 2 below shows the numerical results obt

during treatment.

Table 2: Experimental rest

TYPES OF BEACONS
POLYHEDRAL BEACON
CYLINDRICAL BEACON

RECTANGULAR BEACON
OTHER OBJECTS

RECOGNITION RATE
97.7%
97.9%
97.8%
97.8%

According of the proved experimental results, o
conclude that oummethod in comparisc with previous
works on subject [28-31] ialso very effective and faster
be employed in practical applications. show clearly the
excellence of our system basemtable &



TABLE 3: COMPARISON OF SEARCH METHODS
ADVANTAGES

deterministic method
very effective
technical analysis
results = 97.8 %

deterministic method
very effective
technical analysis
results > 93.0%
deterministic method
very effective

LPR results = 93.0%

deterministic method
very effective
financial ratios

LPR results = 98.0%
technical analysis

very effective
results = 97.30%

DISADVANTAGES

need wide
work space
time < 500ms

SEARCH METHODS

PROPOSED METHOD WITH HYBRID
COMBINATION

F.BONIN-FONT[28] work space

time consuming > 500ms

JAEDO KIM [29] time consuming > 500ms

KUMAR PARASURAMAN [30] time consuming > 500ms

M. ANTON_RODRIGUEZ[31] time consuming > 500 ms

Limitations of our method

In order to optimize this methodology from an eawmial point of view, additional variables must bensidered in the
development and validation of the methodology.rAikir work with NeuroHough transform of RANSAC wdube interest-
ing for performance comparison.

1. Integrating heterogeneous sensor modules, such as
5. Conclusion and future work ultrasonic range data and an active stereo-visjsn s
o . . . tem or other types of sensors.
Robotic vision is a key and difficult problem irethaviga- 2. Merging accurately topological maps, or hybrid maps

tion of mobile robots, because their backgroundampli-
cated and changeable. A combination of a neuralorét
pixel classifier and the Hough Transform to des@pes in
the incoming images is proposed in this paper. diffieul-

ties of applying advanced computer vision to autooas
mobile robots in dynamic environments are discusyéel
have proposed a hybrid method to achieve paraiielpuita-
tion for higher performance. It consists of comb@ithe
techniques based on a Hough transform for strdiglet
detection associated to neural networks for oljetection
and recognition. The HT is used because it is d&kvelwn

method for the detection of parametric curves inahy

created by different mobile robots.
3. Using better encoders with higher resolutions can
improve the performance of the algorithms.

Finally, the method RANSAC (Random Sample Consen-

sus) is a method of probabilistic voting which seaim be
interesting for reducing the computation time. Hoer
only its inclusion in a hybrid process could entghus as to
the performance advantage of this method. We readetive
robust estimation methods used in the robotic wislb ap-
pears that the use of voting techniques such agi®rans-
form or the consensus method of Ransac represeytec
compromise between robustneess and algorithmicieifiy

images, and it was recognized as an important meansdespite a reduced speed of convergence.

searching for beacons and features in binary imagks
presented system has the major advantage thaty afih
increasing the number of the outputs of the netyihle
processing time remains the same as for a neutalorie
with a single output. We observe other benefitsigisiur
hybrid approach compared with classical calculushods
that are as follows:
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1. They do not require the complex derivative evalud? France for their help.

tions and they are easy to understand.

2. They do not get caught in local minima as easily as

the classical methods.

We believe that our work has enabled us to progidelu-
tion to the problems of pattern recognition in nebbbot-
ics. A direction for the future is to improve oummk by
introducing the further support in the followingesjfica-
tion:

References

[1] M. Meribout, M. NakanishiA real-time image segmentation
on massively paralle architecture. Real-Time Imaging Vol. 5,
1999, p. 279-291.

[2] LSI Logic, L64250. Histogram/Hough Transform Prams
1989.



M. Karabernou, F. TerrantReal-time FPGA implementation
of Hough Transform using gradient and CORDIC algorith.,
Image and Vision Computing, No.23, 2005, p. 10094101
D. Deb, S. Hariharan, U. Rao, C.H. RyAutomatic detection
and analysis of discontinuity geometry of rock mass from

(3]

[4]

digital images. Comput. Geosci, Vol. 34, No.2, 2008, p. 115—

126.

Dattner, |. Satistical properties of the Hough transform
estimator in the presence of measurement errors. J.
Multivariate Anal, Vol. 100, No.1, 2009, p. 112-125

(5]

6]
Du. A Super Resolution Algorithm to Improve the Hough

Transform. ICIAR’2011, 8th International Conference on
6753, Burnaby,

Image Analysis and Recognition, Vol.

Canada, June 22-24, 2011, p. 80-89.

J. Tani.Model-based Learning for Mobile Robot Navigation

from the Dynamical Systems Perspective. IEEE Transactions

on Systems, Man, and Cybernetics-Part B: Cybernétiak,

26, No.3, 1996, p. 421-436.

D. JanglovaNeural Networks in Mobile Robot Motion. Inter-

national Journal of Advanced Robotic Systems, VpING.1,

2004, p. 15-22.

B. Ngoc Nam, Pham The Ba®rincipal objects detection

using graph-based segmentation and normalized histogram.

International Journal of Computer Science Issued, 9p

No.1, Issue 1, January 2012, p. 47-49.

[10] H. Bay, T. Tuytelaars, L. Van Gool. SURF: spekde robust
features. In: Proceedings of the Ninth European €ente
on Computer Vision, 2006.

[11] D. Fontanelli, A. Danesi, A. Bicchifsual servoing on image
maps. In: Springer Tracts in Advanced Robotics. Experimental
Robotics, Vol. 39, 2008, Springer, New York.

[12] I.Parra, D. Fernandez, JE. Naranjo, R. Gaidi&, Sotelo, M.
Gavilan. 3d visual odometry for road vehicles. Journal of In-
telligent Robotics and Systems, Vol. 51, No.1, 2088113
134.

[13] A. Boutarfa.An approach to beacons detection for a mobile
robot using a neural network. Proceedings of the '8nterna-
tional Conference Modelling and Simulation, Montre@lie-
bec, Canada, May 30, 2007, p. 118-124.

[14] F. Bonin-Font, A. Ortiz, G. OliverMisual Navigation for
Mobile Robots: A Survey. J. Intell. Robotic Syst, Vol. 53, No
3, 2008, p. 263-296.

[15] Resa Nekovei, Ying SurBack-propagation network audits
configuration for blood vessel detection in angiograms. IEEE
Transactions on neural networks, Vol. 6, No.1, 1995

[16] A. Ghosh, KP. SankaNeural Network, self organization, an

[7]

(8]

[9]

C. Tu, B. Jacobus van Wyk, K. Djouani, Y. Hamam and S

[22] D. Wang, C B. LowModeling and analysis of skidding and
dlipping in wheeled mobile robots: Control design perspective.
IEEE Trans. on Robotics, Vol. 24, No. 3, 2008, 6-6387.

[23] R.K. Satzoda, S. Suchitra, T. Srikanthdarallelizing the

Hough Transform Computation. IEEE Signal Processing Let-

ters, (2008), Vol. 15, No.1, 2008, p. 297-300.

[24] Y. F. He, Z. Zivkovic, R. Kleihorst, & AlReal-time imple-

mentations of Hough Transform on SIMD architecture.

ICDSC’'08, ACM/IEEE. 2nd International Conference ors-Di

tributed Smart Cameras, Stanford University, USA17Sep-

tember 2008, p. 1-8.

[25] N. Baklouti, A. Alimi. The geometric interval type-2 fuzzy

logic approach in robotic mobile issue. IEEE International

Conference on Fuzzy Systems, 2009, p. 1971-1976.

[26] S. Suchitra, Sathyanarayana, R.K. Satzoda, rikaighan.
Exploiting Inherent Parallelisms for Accelerating Linear
Hough Transform. Vol. 18, No.10, 2009, p. 2255-2264.

[27] B. Ommer, JM. Buhmann. Learning the Compositidvaiure
of Visual Object Categories for Recognition. |IEEE nEac-
tions Pattern Analysis and Machine IntelligenceANIP, Vol.
32, No.3, 2010, p. 501-516.

[28] F. Bonin-Font, A. Ortiz, G. Oliver. A visualamigation strate-
gy based on inverse perspective transformation Rabot Vi-
sion Eds, 2010, p. 62-84.

[29] Jaedo Kim, Youngjoon Han, Hernsoo Hahn. CharaSeg-
mentation Method for a License Plate with Topolagitrans-
form. World Academy of Science, Engineering andhhedo-
gy, No.56, 2009, p. 39-42.

[30] K. Parasuraman, P. Vasantha Kunfar.Efficient Method for
Indian \ehicle License Plate Extraction and Character Seg-
mentation. IEEE International Conference on Computational
Intelligence and Computing Research, 2010.

[31] M. Anton_Rodriguez, D. Gonzalez_Ortega, PDiaz_Pernas,
M. Martinez_Zarzuela, |. de la Torre_Diez, D. Bdkiralda,
and J. F. Diez_Higuer8io-inspired computer vision based on
neural networks. Pattern Recognition and Image Analysis,
Vol. 21, No.2, 2011.

Mahfoud Hamada was born in Tebessa, Algeria in 1960. He re-
ceived the Electronics Engineer degree in 1985 from University of
Annaba and his Magister on Industrial Electricity (Master) in 2000
from University of Batna. Ph.D candidate at the Department of Elec-
trical Engineering, he is currently research member in LEB Laborato-
ry. His research interests include Image Processing, Pattern Recog-
nition, Real Time Embedded Systems, Robotics and their Applica-
tions.

object extraction. Pattern Recognition Letters, Vol. 13, No.5Abdelhalim Boutarfa was born in Lyon (France) in 1958. He has

1992.

[17] D.E. Rumelhart, JMc-Clelland & PDP. Researchugt®aral-
lel Distributed Processing. Explorations in the Microstructure
of recognition. Vol. 1, 1986, MIT Press, Cambridge.

[18] D. Cremers, M. Rousson, R. Dericlfereview of statistical
approaches to level set segmentation: integrating color, tex-
ture, motion and shape. International Journal of Computer Vi-
sion, Vol. 72, No.2, 2007, p. 195-215.

[19] S. Young, P. Scott, NM. Nasraba@bject recognition multi-
layer Hopfield neural network. IEEE Transations on image
processing, Vol. \o.3, 1997.

[20] O. Djekoune.Incremental hough transform: an improved

algortithm for digital device implementation. Real Time Imag-
ing. Vol. 10, No.6, 2004, p. 351-363.

[21] Mayer, G. Kaufmann, U. Kraetzschmar, G. & Patén Neural
Robot Detection in RoboCu. In: Biomimetic Neural Learning

for Intelligent Robots, Wermter, S. & Palm, G. & Edsv, M.
(Ed.), Springer, Heidelberg, 2005, p. 349-361.

graduated from University of Constantine (Algeria) in Physics in
1982. He obtained the Electronic Engineer Degree from the Poly-
technic School of Algiers in 1987, a Magister (Master) in 2002 and a
Doctorate (PhD) in 2006 in "Control Engineering" at the University of
Batna. In 2007 he received a postdoctoral degree in “Habilitation of
conducting research in Control Engineering” from the same Univer-
sity where he is currently full professor and research member in the
Advanced Electronics Laboratory (LEA). He is also, since October
2010 the Project Manager of the National Center for Technology
Transfer at the University of Setif (Algeria). His research interests
include applications of neural networks to pattern recognition, robotic
vision, and industrial processes.



