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Abstract: In this paper, we present a numerical procedure 
allow of analyzing dynamic hysteresis in axial-symmetric 
problems. The ferromagnetic hysteresis is described by 
Jiles-Atherton model. This model is integrated in finite 
element method (FEM) in order to resolve magneto-
dynamic problems. The interface between the Jiles-
Atherton model and the finite element magnetic vector 
potential formulation is introduced through the fixed-
point iterative technique. The simulation results obtained 
are intended to give an explanation and understanding of 
nonlinear behavior of ferromagnetic material and their 
effect on the magnitude of the electromagnetic system. 
 
Key words:  hysteresis, Finite element, Preisach model, 
Jiles–Atherton model. 
 
1. Introduction. 
 
 The complexity of the geometry and the nonlinear 
behavior of the electrotechnical systems make the 
formulation of the model more complex to solve. 
The finite element method and the simulation 
techniques have rapidly spread with the 
development of the computer. Therefore the digital 
computer calculation of the performance of devices, 
including nonlinear magnetic materials, requires the 
use of the curves of the hysteresis magnetic. The 
magnetic characteristic must be accurately 
introduced into this method [1]-[2]. The 
development of an accurate analytical or numerical 
method which accounts for magnetic hysteresis is 
needed for many applications in which the magnetic 
field influences the performance of the component. 
The work presented in this paper develops such a 
method by coupling the finite element equations, 
and the Jiles-Atherton dynamic hysteresis model. In 
this work we use the Jiles-Atherton state model to 
represent hysteresis and magnetic saturation effects 
and the finite elements method to account for two-
dimensional geometric effects. The two approaches 
are combined with the method of the fixed point 
used for the resolution the nonlinear problem. It 

consists in repeatedly solving the problem until the 
convergence of the solution by integrating the 
calculation of the hysteresis loop. The process of the 
fixed point applied to the finite elements for the 
formulation in potential vector seems very natural, 
one takes as variable point fixes the magnetization 
since it is known at the initial moment. A general 
transient model is obtained that can be used to 
calculate the local magnetic field state along with 
the current variable. Finally, simulation results 
confirm the validity of the approach. 
 

2. Dynamic model of Jiles-Atherton 

In order to describe the magnetic proprieties of 
material, the Jiles-Atherton model is used in this 
effort because it provides a relatively simple, yet 
reasonably accurate, expression for magnetization 
[3]-[4]-[5]. It is based on the theory of ferromagnetic 
hysteresis, rather than only on mathematical 
arguments or experimental curve fitting. The 
magnetization is represented as the sum of three types 
of energy, energy due to the losses by eddy current, 
the anormal losses and the losses by hysteresis. The 
latter are includes implicitly. 

Firstly, the energy due to the losses by eddy 
current is determined as: 

 
                                                                      (1)                     
 
Secondly, the anormal losses are: 
 
 

                                                                             (2) 
 
Finally, the total energy is given by: 
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So, the magnetization is represented by the 
following equation: 
 

 
 

                                                                    (4)                    
                                                                              
 

α: factor that accounts for inter domain coupling; 

k: coefficient accounting for the pinning energy; 

ρ: resistivity of material.; 

e: thickness of the sheet; 

w: weight  of the sheet; 

G, β: Constants depending on material; 

μ0 : permeability of air (μ0 = 4.π.10−7 H/m); 
δ: directional parameter, equal +1 or -1 for increasing or 
decreasing field respectively. 
 
  The anhysteretic magnetization in follows the 
Langevin function (5), which is a nonlinear function 
of the effective field (6). 

 
                                                                          (5) 

 
                                                                          (6) 

 
Where a is a normalization constant of the field H, 
and Ms is the saturation magnetization. The 
Langevin equation is applicable for isotropic 
materials in which the magnetization has no 
preferred direction. 
By taking into account the preceding expressions, 
the result of simulation is obtained. The area of the 
hysteresis loop increases with increasing frequency 
and consequently the increase in the losses by 
hysteresis (see Fig.1). 
 
 
 
 
 
 
 
 
 
 

 

 

 

3. Finite element code with model dynamic 
of hysteresis magnetic 

The hysteresis model represented by (4) is included 
into the finite element code [6]−[7]−[8]. These code 
permits to resolve 2D magneto-dynamic problem 
expressed in terms of vector potential: 

 

                                                     (7) 
    
The constitutive relationship is: 

                                              (8) 
 
Js: current density; σ :  electric conductivity; B: flux 
density; M: hysteresis magnetization; H: magnetic 
field. 
 

When applying Galerkin’s weighted residual 
approach to (7) we obtain the following integral 
form: 

 
 

                 
(9) 

 
ω i : Ponduration function. 
With the following linear approximation for the 

vector potential:              
           

                                                 (10) 
 

Then, we obtain the following algebraic form: 
 

  (11) 
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Fig.1. Effect of the frequency on the hysteresis loop. 
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Fig.4. Grid of the domain with boundary conditions. 
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Fig .5.  Equipotentials of potential vector A. 

The proposed algorithm whose details are shown in 
figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Test problem modelling and simuling 

 The proposed algorithm whose details are shown 
in figure 2 is applied to an heating induction system. 
This latter is represented by a cylindrical 
ferromagnetic material surrounded by a conductive 
coil (see Fig.3). The magnetic characteristics of the 
ferromagnetic material are k = 1, Hc = 1000 A / m, 
Hs = 5000 A / m. The current density in the coil is  

Js = 106A/m2. 
 
 
 
 
 
 
 
 
 
 

 
5. Simulation results 

The numerical computations were performed using 
computer programs developed under Matlab 
environment. The results from simulation allow us 
to have the impact of magnetic hysteresis on the 
magnetic sizes such as the magnetic potential vector 
A. In figure 4, we present only the quarter of the 
system to reduce the number of mesh elements, we 
shows the inductor, the load (ferromagnetic 
material) and the surrounding air. The boundary 
conditions are taken according to Derichlet (A=0) 
and Neuman (         ). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
The figure 5 represents the equipotentials of 

potential vector A, which to justify the boundary 
conditions shown in figure 4. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 3. The studied system. 
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Fig.2. Proposed algorithm. 
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The figure.6 represents the evolutions of the 
magnetic potential vector with and without 
hysteresis for each node located on axis r                                 
(for t =5.10-5, t =2.5.10-5), one notice the value of A 
is inversely proportional to the distance from the 
node compared to the inductor (current source). 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
The evolutions of the magnetic potential vector 

with and without hysteresis according to axis r                
(for t =5.10-5, t = dt =2.5.10-5) are represents in the 
figure 7. By incrementing the time, the current 
density and consequently the vector potential 
increases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The nonlinear behavior of ferromagnetic material 
is the nonlinear characteristic of the magnetization 
as a function of magnetic field (Fig.8.a) or 
susceptibility depends on the magnetic field 
(Fig.8.b). When the element is more near to the 
source, the magnetization increases more rapidly and 
its saturation value is high. 
In view of the evolution of the magnetization 
represented by the figure 8.a, we note that the 
corresponding susceptibility (Fig.8.b) increases to its 
maximum and begins to decrease when the 
magnetization is near to the saturation, eventually 
attainment zero value at the moment of the 
saturation. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 Fig.8. Nonlinear behavior of ferromagnetic material. 

Fig.8.b. Magnetic susceptibility. 
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Fig.8.a. Magnetization. 

Fig.6. Magnetic vector potential for each  
              nodes along the axis  r. 
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Fig.9. Spatial distribution of Bs. 
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different values of frequency. 

   The figure 9, shows the spatial distribution of 
saturation induction (Bs) for each element of the 
ferromagnetic material. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The figure 10, shows the spatial distribution of 
saturation induction (Bs) for each element of the 
ferromagnetic material and for different values of 
frequency. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

The figure 11 enables us to clearly see the impact 
of the dynamic model of magnetic hysteresis on the 
induced currents, when the frequency increases the 
induced currents increase. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. Conclusion 

The purpose of our work is to make an accurate 
model which takes into account the no linearity of 
the behavior of ferromagnetic material, used in the 
construction of the majority of the electro technical 
systems. 

Our application is an induction heating, we 
illustrate the effect of the dynamic behavior of the 
model of magnetic hysteresis, for three values of the 
frequency, on the induced currents, when the 
frequency increases the induced currents 
increase. Then it is important to take into account 
the phenomenon of hysteresis in the electrotechnical 
systems modeling. 

 
 
 
 
 
 
 
 
 
 
 

Fig .11. Evolution of the induced currents .  
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