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Abstract: This paper presents an efficient decoupled 
power flow based on line power flows with a view to 
obtain a reliable convergence and higher computational 
speed for radial distribution systems. The real and 
reactive line powers are combined using simple 
multiplying factors such that the modified set is 
decoupled into two set of equations without making any 
assumption on  ratios. The proposed method is 
simple and uses a constant sparse sub-jacobian matrix 
that needs to be factorised only once for both the 
decoupled sub-problems; and is solved iteratively similar 
to FDPF technique. This method is applied on three test 
systems to illustrate its performance. 
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Nomenclature 
BNPF  Branch-to-Node matrix based Power  

Flow 
FDPF  Fast Decoupled Power Flow 
FDGPF  Fast Decoupled G-matrix method  

for Power Flow 
FDDPF  Fast Decoupled Distribution Power  
  Flow 

fandg  vector of modified real and reactive  
set of functions respectively 

kmkm jBG +    real and imaginary terms of bus 
admittance matrix corresponding to 
k-th row and m-th column 

GS  Gauss-Seidel 

H   constant sub-jacobian matrix 
m  branch connected between nodes k  
  and m 
NR  Newton and Raphson  
nc   not converged in 50 iterations 
nn   number of nodes in the system 
PM  Proposed Method 

mm jQP +  real and reactive power at the  
 receiving end of branch-m 

mLmL jQP −− +  real and reactive power load at  
  node-m 

mm jxr +  resistance and reactance of the  
distribution line-m 

mm andV δ       voltage magnitude and voltage angle 
at node-m respectively 

kmδ                  mk δδ −  
βα and  vector of multiplying factors 

Ψ    set of lines leaving node-m 
mm QandP ∆∆  real and reactive power mismatches 

at the receiving end of branch-m 
respectively 

mm andV δ∆∆  correction of voltage magnitude and  
voltage angle at node-m 

 respectively 
gandf ∆∆  vector of modified real and reactive  

set of mismatches respectively 



1.  Introduction 
Distribution Automation Systems (DAS) have 
evolved both in concept and implementation over a 
period of time. The distribution power flow has 
influenced other applications such as network 
optimisation, VAR planning and switching. The 
distribution systems, characterized by their 
prevailing radial nature and high  ratio, render 
them to be ill-conditioned and make the traditional 
Newton-Raphson (NR) [1] and fast decoupled power 
flow (FDPF) [2] solution techniques unsuitable. 
Consequently many power flow algorithms specially 
suited for distribution systems have emerged and are 
well documented [3-27]. These methods are roughly 
viewed as node based and branch based methods.  
The first category has used node voltages or current 
injections as state variables and requires information 
on the derivatives of network equations. The Z-bus 
method [3], NR based algorithms [4-8] and FDPF 
based algorithms [9-12] have revolved around this 
group. The second category has adopted branch 
currents or branch powers as state variables and 
involves only basic circuit laws. The 
backward/forward sweep based methods [13-22] and 
loop impedance [23] based methods have belonged 
to this group.  However, the formulation and the 
algorithm are different from the NR technique, 
rendering this category to be unsuitable for other 
applications such as optimal power flow, state 
estimation, etc., for which the former seems to be 
more appropriate. Although there are many research 
papers discussing distribution power flow methods, 
a generalised distribution power flow method is yet 
to be developed. There is therefore a significant need 
for developing a specific fast power flow algorithm 
exclusively for distribution systems.  
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The objective of this paper is to formulate a robust 
decoupled power flow algorithm based on line 
power in order to obtain a faster and reliable 
convergence. The real and reactive sets of line 
powers are combined using simple multiplying 
factors such that the modified set is decoupled into 
two set of equations without making any assumption 
on  ratios; and is solved similar to FDPF 
iterative technique.  The proposed method is applied 
on three test systems to illustrate its superior 
performance and the results are presented. 
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2.  Proposed  decoupled power flow 
The algorithm is based on real and reactive powers 
at the receiving end of each branch instead of 
injected real and reactive powers at each node like in 
traditional methods. These real and reactive powers 
and their functions are combined using simple 
multiplying factors such that the modified set is 
automatically decoupled into two set of equations 
without any assumption on line  ratios. The 
resulting jacobian matrices of decoupled set of 
equations are sparse, constant and identical.  
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Fig.1   Sample Distribution Line 
 
The equivalent real and reactive powers,  
and , at the receiving end of branch-m, shown in 
Fig.1, can be computed from the specified load 
powers by the following recursive set of equations,  
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where  Ψ  is a set of lines leaving node-m. 
 
The expressions for  and of branch-m can be 
written as 

mP mQ
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The above two equations can be combined to form 
modified real, g , and imaginary, , set of 
expressions using factors 

f
mα  and mβ  as  

 
mmmmm QPg βα +=                        (5) 

mmmmm QPf αβ +−=                       (6) 
 
 

The Eqs. 5 and 6 are linearised around a known 
operating point of  and , oδ oV
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Where  
( ) mmmmmm VQPg /∆+∆=∆ βα              
( ) mmmmmm VQPf /∆+∆−=∆ αβ             (8) 
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If the off-diagonal blocks 
δ∂
∂

∂
∂ f
V
g &  of the jacobian 

matrix of Eq. (7) are made zero, the problem can be 
decoupled into two sub-problems. It is observed that 
all the terms in the off-diagonal sub-matrices can be 
made zero, when kmm B=α  and kmm G=β .  
 
The derivatives of Eq. (7) can be written, while 
substituting kmm B=α  and kmm G=β . with the 
assumptions , upVV mk .0.1≈≈ 0.1cos ≈kmδ  and 

0sin ≈kmδ , as 
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It is observed from Eq. (9) that the diagonal 

submatrices, 
V
fg

∂
∂

∂
∂ &
δ

, are sparse, constant and 

identical.  Eq. (7) can be decoupled into two 
subproblems as  
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Equations 10 and 11 can be solved iteratively similar 
to FDPF algorithm. It should be noted that the sub-
jacobian matrix H  needs to be factorised only once 
during the iterative process.  
 
The algorithm of the proposed method is 
summarized as follows 
 

1. Read the network and load data. 
2. Initialise all node voltages. 
3. Compute the sub-jacobian matrix, H  and 

factorise it 
4. Compute fandg ∆∆ using Eq. (8). 
5. Solve Eq. (10) for δ∆ . 
6. Solve Eq. (11) for . V∆
 



7. Check for convergence. i.e., check whether 
all the values in  and  V∆ δ∆ are 
sufficiently small in magnitude. If not 
converged, update the voltages   

   
δδδ ∆+=
∆+= VVV

   

     and go to step (4) 
8.  Stop 

 
3.  Simulation 
The proposed algorithm is tested to evaluate its 
solution accuracy and computational efficiency on 
15, 29 and 69 node distribution systems [13,14,28] 
using a Pentium-IV, 2 GHz, Personal Computer.  
The convergence sensitivity of the proposed method 
(PM) to  ratio of the distribution lines is also 
tested. Two series of tests are generated, one by 
varying the base case resistance and the other by 
changing the base case reactance using a uniform 
scaling factor, keeping the latter parameter 
unchanged. The results obtained by the PM are 
compared with that of  FDDPF [12], BNPF [18] and 
FDGPF [10] methods to highlight its superior 
performance. The algorithms are tested with a flat 
start and a convergence tolerance of  0.0001 per unit.  
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The solution of the PM for the 15-node system with 
base case resistance multiplied by a scaling factor of 
1.5 is compared with the solution obtained by 
FDDPF, BNPF and FDGPF methods in Table-1. 
This table indicates that the PM offers the same 
solution as that obtained by the other methods, 
which validates its solution accuracy.  Table-2 
explains the convergence characteristics in terms of 
number of iterations. The PM reliably converges for 
all test systems with wide variation in  ratio of 
the distribution lines similar to FDDPF and BNPF 
methods. But the FDGPF needs a higher  ratio 
for convergence even for smaller systems and 
diverges for 69 node system irrespective of the 
ratio.   It is very clear that the PM is insensitive to 

 ratio and  provides solution for larger systems 
unlike FDGPF method. The execution time of the 
PM, shown in Table-3, is very less for all the test 
cases when compared with FDGPF, FDDPF and 
BNPF methods.  
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These results indicate that the PM is accurate, fast 
and robust and is suitable for larger distribution 
systems. 

 
Table-1   Power Flow Solution obtained for 15 node system 

PM FDDPF BNPF FDGPF Nod
e 

No V          δ V          δ V            δ V          δ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

1.0000   0.0000 
0.9635   0.0078 
0.9450   0.0120 
0.9377   0.0137 
0.9364   0.0142 
0.9344   0.0151 
0.9347   0.0150 
0.9361   0.0156 
0.9307   0.0179 
0.9290   0.0186 
0.9592   0.0096 
0.9578   0.0101 
0.9464   0.0147 
0.9435   0.0159 
0.9447  0.0154 

1.0000   0.0000 
0.9635   0.0078 
0.9450   0.0120 
0.9377   0.0137 
0.9364   0.0142 
0.9344   0.0151 
0.9347   0.0150 
0.9361   0.0156 
0.9307   0.0179 
0.9290   0.0186 
0.9592   0.0096 
0.9578   0.0101 
0.9464   0.0147 
0.9435   0.0159 
0.9447  0.0154 

1.0000   0.0000 
0.9635   0.0078 
0.9450   0.0120 
0.9377   0.0137 
0.9364   0.0142 
0.9344   0.0151 
0.9346   0.0150 
0.9361   0.0156 
0.9307   0.0179 
0.9290   0.0186 
0.9592   0.0096 
0.9578   0.0101 
0.9464   0.0147 
0.9435   0.0160 
0.9447   0.0154 

1.0000   0.0000 
0.9635   0.0077 
0.9449   0.0119 
0.9376   0.0136 
0.9363   0.0141 
0.9344   0.0150 
0.9346   0.0149 
0.9361   0.0156 
0.9307   0.0178 
0.9289   0.0186 
0.9592   0.0095 
0.9578   0.0101 
0.9464   0.0147 
0.9434   0.0159 
0.9447   0.0154 



Table-2   Number of Iterations 
 15 node  29 node 69 node 
 PM Ref. 

[12] 
Ref. 
[18] 

Ref. 
[10] 

PM Ref. 
[12] 

Ref. 
[18] 

Ref. 
[10] PM Ref. 

[12] 
Ref. 
[18] 

Ref. 
[10] 

r + j x 4 4 4 nc 5 5 5 nc 5 5 5 nc 
0.5 r + jx 3 3 3 nc 5 5 5 nc 4 4 4 nc 
1.5 r + jx 4 4 4 16 7 7 7 15 6 6 6 nc 
r + j 0.5x 3 3 3 9 5 5 6 10 4 5 5 nc 
r + j 1.5x 4 4 4 nc 6 6 6 nc 5 5 5 nc 

 
Table-3   Normalised Execution Time (milliseconds) 

 PM Ref. 
[12] 

Ref. 
[18] 

Ref. 
[10] 

15 node 14 15 16 31 
29 node 15 16 16 62 
69 node 28 31 31 nc 

 
 
4.  Conclusions 
An efficient and robust decoupled algorithm, 
based on equivalent line power flows, has 
been described and investigated to solve 
power flow problem of the distribution 
systems. The problem has been decoupled 
into two sub-problems without making any 
assumptions on  ratios, which has 
endeared the algorithm to be robust. This 
method has used a constant and identical 
jacobian matrix for both the decoupled sub-
problems, which has enabled the algorithm 
to be computationally efficient.  The 
developed algorithm is thus well suited for 
online applications of distribution systems. 
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