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Abstract

The goal of this paper is to estimate the states of two-phase permanent magnet (PM)
synchronous motor. The system is highly nonlinear and one therefore cannot directly use
any linear systems tools for estimation. However, if one can linearize the system around a
nominal (possibly time-varying) operating point then linear system tools could be used
for control and estimation. The standard discrete Kalman filter (KF) has been used for
state estimation. As such, the nonlinear model has been discretized and extended to be
suitably applied for such filter. The entire state estimated system has been modeled using
MATLAB/SIMULINK blocks. The state estimation algorithm and the motor discretized
model are coded inside special S-functions of m-file type. Also, the error covariance
matrices of measurement and process will be developed from the system model.
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Introduction
In controlling AC machine drives, speed transducers such as tacho-generators,

resolvers, or digital encoders are used to obtain speed information. Using these speed
sensors has some disadvantages [1].
o They are usually expensive,
- The speed sensor and the corresponding wires will take up space,
o In defective and aggressive environments, the speed sensor might be the weakest part of

the system.

Especially the last item degrades the systems reliability and reduces the advantage of
an induction motor drive system. This has led to a great many speed sensor less vector
control methods.

On the other hand, avoiding sensor means use of additional algorithms and added
computational complexity that requires high-speed processors for real time applications.
As digital signal processors have become cheaper, and their performance greater, it has
become possible to use them for controlling electrical drives as a cost effective solution
[2].

Estimation of unmeasurable state variables is commonly called observation. A device
(or a computer program) that estimates or observes the states is called a state-observer.
An observer can be classified according to the type of representation used for the plant to
be observed [1].

If the plant is deterministic, then the observer is a deterministic observer; otherwise

it is a stochastic observer. The most commonly used observers are Luenberger and



Kalman types [2]. The Luenberger observer (LO) is of the deterministic type, and the
Kalman Filter (KF) is of the stochastic type. The basic Kalman filter is only applicable to
linear stochastic systems, and for non-linear systems the extended Kalman filter (EKF)
can be used, which can provide estimates of the states of a system or of both the states
and parameters [1,2].

The EKF is a recursive filter (based on the knowledge of statistics of both the state
and noise created by measurement and system modeling), which can be applied to non-
linear time varying stochastic systems. EKF being insensitive to parameter changes and
used for stochastic systems where measurement and modeling noises are taken into

account.

Model of Two Phase PM Synchronous Motor

The continuous-time electromechanical model of two-phase permanent magnet (PM)

synchronous motor is fourth order, nonlinear and can be described by:

I, = —(Ry/L) iy + (/L) @, sin 6, + (L) u,

I, =—(Ry/L) iy — (4/L) @, cosé, + (/L) uy

o, =—(314/2J) i, sin 6, +(31/23) i, cos 6, ()]
—(F/L) o, -(/) T,

6, = o,
where i,, and i, are the currents through the two windings, R, and L are the resistance
and inductance of the windings, ¢ and w,are the angular position and velocity of the

rotor, 4is the flux constant of the motor, u,and u, are the voltages applied across the



two windings, J is the moment of inertia of the rotor and its load, F is the viscous

friction of the rotor, and T is the load torque [3].

However, the system is highly nonlinear and one therefore cannot directly use any
linear systems tools for estimation. However, if one can linearize the system around a

nominal (possibly time-varying) operating point then linear system tools could be used

for control and estimation. We start by defining a state vector as x=[i, i, o, 6,]' and

the output vector as y=[i, i, ] . With this definition, Eq.(1) can be written compactly as

x=[ X K %[
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The motor Equation (2) is to be discretized for the digital implementation as:

Xeog = AX, + B U, +M, T, 4
Yk = CiXk )
A, and B, are the discretizd systems and input matrices, respectively. They are [1, 3, 4]:
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~ 1+ AT (6)
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where T is the sampling time and | is an identity (4x4) matrix. The above approximation

is justified due to the small size of sampling time and the presence of increasingly large

factorials, which further diminishes the magnitude of the higher-order terms.
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If the noises Au, , Au, have corrupted the inputs u, and u,, respectively, and the noise
Ao has been admitted to account for uncertainties in the load torque, then a noise vector

will arise in Eq.(4)
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Similarly, if the measurements i, and i, are distorted by noises Ai,and Ai, respectively,

then Eq.(5) becomes

i, +AI Al
i

:Cdxk+{A!a} =Cyxt vy (12)
Aly,
where
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w5 19

where the vectors w, and v, are called the process and measurement noises respectively.

The Kalman filter theory and algorithm

The aim in all estimation problems is to have an estimator that gives an accurate
estimate of the true state even though one cannot directly measure it. Two obvious
requirements should be attained [5]:
a First, the average value of our state estimate is to be equal to the average value of the

true state. That is, the estimate has not to be biased one way or another.



Mathematically, one would say that the expected value of the estimate should be equal
to the expected value of the state.

o Second, the requirement a state estimate that varies from the true state as little as
possible. That is, not only do we want the average of the state estimate to be equal to
the average of the true state, but also want an estimator that results in the smallest
possible variation of the state estimate. Mathematically, an estimator with the smallest
possible error variance is sought.

It so happens that the Kalman filter is the estimator that satisfies these two criteria. But

the Kalman filter solution does not apply unless certain assumptions about the noise that

affects the system under study must be satisfied:

1. It is firstly to assume that the average value of both w, and v, are zero.

2. One has to further assume that no correlation exists between w, and v, . That is,
at any time k, w, and v, are independent random variables. Then the noise covariance
matrices S,, and S, are defined as:

Process noise covariance:

S, = E(w,w}) (13)

Measurement noise covariance:

S, =E(,v]) (14)

where w' and v indicate the transpose of wand v random noise vectors, and E(.) means

the expected value.
Substituting Eq.(10) into Eq.(13), and Eq.(12) into Eq.(14), one can get the following

process and measurement noise covariance matrices:
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If the noises Au, (Au, ), AT, , Ai, (Ai,) are white, zero mean, uncorrelated, and have known

variances o7, o and oZ , respectively, then the covariance matrices S, and S, will

become
-, -
(Tﬂ o? 0 0 0
T 2
sl o [T 0 o (17)
T 2
0 0 [3) o 0
0 0 0 0]
2 0
s, =M 18
A ] (19

One may summarize the recursive state estimation of the discrete Kalman filter as
shown in Fig.(1). In the figure, the superscripts "-1", "T", "+" and "-" indicate matrix
inversion, matrix transposition, posteriori and priori of variable respectively. The K

matrix is called the Kalman gain and the P matrix is called the estimation error



covariance. The flowchart includes the initialization of state x, in the absence of any
observed data at k=0, and the initial value of the a posteriori covariance matrix P, [6].

The timing diagram of the various quantities involved in the discrete optimal filter
equations is shown in Fig.(2). The figure shows that after we process the measurement at

time (k-1), we have an estimate of x,,; (denoted x;_,) and the covariance

Initialization
Xo = E[Xo]
Po = Ekxo —E[xoD(xo - E[XODTJ

State estimate prpogation
o— +
X = AaX

l

Error covariance prpogation

P = ALPRLAL +Qu

4

Kalman gain matrix

K, =Pl [c.pcl +R]

State estimate update

R = R+ K (e = CeXe)

Error covariance update

Pk+ =(I- chk)Pk_

Figure (1) Recursive Algorithm of Discrete Kalman Filter

of that estimate (denoted P,”,). When time k arrives, before we process the measurement
at time k we compute an estimate of x, (denoted x, ) and the covariance of that estimate
(denoted P, ). Then the measurement is processed at time k to refine our estimate of x, .

The resulting estimate of x, is denoted x; and its covariance is denoted P, .
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Figure (2) Timeline showing a priori and a posteriori state estimates and estimation-

error covariance.

By substituting error covariance update equation into propagation equation, and the

state estimate propagation equation into update equation, the algorithm of Fig.(1) will be

summarized as [3,5,6-10]

1

X = A X1 + Ky (Ve = CiX) (20)

R = Aca (1 =K C)PRO) A + Qg (21)
Extended Kalman Filter (EKF)

The state-space model of Egs.(10) and (12) can be rewritten in the following form:

Xie1 = FOGUK) +wy

(22)

Yie =Cqg X +Vi

(23)

where

8y % (K) +ay3 X3 (K) sinx, (k) +by, u,
f(x,u,k) = a1 %o (K) —ay3 X3(K) cosx, (k) +by; Uy
ag; X (K) sinx, (K) —ag; Xy (k) c08X, (K) +833 X3(K)
84 () + X4 (K)



It is clear that f(x,u,k) is nonlinear. However, to use nonlinear model with the standard
KF, the model must be linearized about the current operating point, giving a linear

perturbation model represented by Jacobian matrix F(x,u,k),

of (x,u,k)

F(x,u,k) = 5
X

(k) + u(k) (24)

0 ap —ay3 cosX4(K) a3 X3(K) sinx, (k)
ag;Sinx, (k) —ag; cosx, (k) ag a1 (% (k) cosx, (k) + X, (k) sinx, (k)

a 0 a3 sinx, (k) ay3 X3(K) cosx, (k)
0 0 ay 1

By now, the Jacobian matrix is replaced by A into Eq.s (20) and (21).

Modeling of Motor State Estimation System Using MATLAB/SIMULINK

SIMULINK is an extension to MATLAB and allows graphical block diagram
modeling and simulation of dynamic systems. It is easier to develop state estimator using
this package, as many components of the system are already included in the SIMULINK
block diagram library.

The discretized model of the motor and the state estimation algorithm has been
entered into a S-function-type of m-file. An m-file is a MATLAB program that allows
algorithms or equations to be entered in a programming language. An S-function block,
from the SIMULINK nonlinear library, links this m-file into a graphical block for use
within the overall state estimation system.

Two quadrature sinusoidal waveforms drawn from the SIMULINK library have fed
both the blocks of motor dynamic system and the state estimator, as shown in Fig.(3).

The load change has been permitted and the repeating sequence block, from the



SIMULINK source library, is employed. The S-function block of motor model generates

the actual states. The state estimator block receives, in addition to inputsu,, u, andT_,

the actual currents i, and i,. The estimator produces the estimated states of the motor.
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Figure (3) SIMULINK Modeling of Motor State Estimation System

Simulated Results

The parameters of the motor are listed in Appendix (1). The SIMULINK model of
Fig.(3) has been run and the estimated and actual states representing stator currents and
rotor velocity and position has shown in Fig.(4). The system was simulated at sampling
time (T=2.5 ms). One can easily notice that the EKF estimator could successively
estimate the motor states and the estimator showed an excellent noise rejection capability.
However, one can observe that the estimator does hardly estimate the speed and the

angular position at the motor starting, but there is a perfect overlap at steady state.

Figure (5) shows the outputs of the estimator when the sampling time is increased to
(T=2.95 ms). The performance of estimator will show a great degradation in its

responses. This unstable behavior of the estimator is attributed to matrix singularity



problems in the Kalman gain matrix. As this would assign the gain K large values, which

will reflect directly to updated state estimates.

In Figure (6), a mechanical load having the waveform of Fig.(7) has been applied. It is
clear from the figure that the estimated speed state still well tracks the actual state at
times of load changes. A nice overlapping between states has been observed. One may

conclude that the EKF works properly under load conditions.

In figure (8), the standard deviation of measurement noise has been changed and the trace
of error covariance matrix, Trace (P), is calculated in each time. Being the covariance
matrix P is a measure of how we are certain in the measurements; one can expect that the
trace of matrix will show large values for large values of standard deviation of

measurement noise. This conclusion has been reported in Fig.(8).



Phage A currert (4)

Phase B current (A
o
T
——
i

TR

Il :
1 1

"""""" !”|.||“ il hLT i

by Estimated
| || Ilﬂ :

0.2

JRS TP 1) SRR T MY . L

Time (seconds)

Engular Speed (radisec)

Time (seconds)

Angular Posttion (rad)

Time (seconds)

Figure (4) Estimated and actual states of the motor.
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Figure (6) Estimated and actual states of the motor.
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Figure (8) Trace of the error state covariance matrix with different standard deviations of
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Conclusion
Based on the observations of the simulated results one might highlights the
following points:
Inspection of the figure (8) shows that if the measurement noise is large, so P will be

large two and we don’t have much certainty about the measurement y when computing



. On the other hand, if the measurement noise is small, so P will be small and % the next
. xwe will have a lot of certainty to the measurement when computing the next

7 One can easily conclude that the EKF estimator could successively estimate the motor
states and the estimator showed an excellent noise rejection capability.

o The application of Kalman Filter is restricted by the limitation of sampling period. A
serious stability problem will arise as the sampling time is increased to a specified
value. As the Kalman gain K suffers singularity at the increased sampling time.

1 The EKF estimator shows good tracking performance in spite of load exertion during

estimation process.
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Appendix |

The parameters of two-phase synchronous motor are listed in Table (1)

Table 1: Parameters of two-phase synchronous motor

Winding resistance | R 20

a

Winding inductance | L 3 mH

Motor flux constant | 0.1

andard deviation of | . | 0.001 A

control input noises

andard deviation of | &, 0.05
rad /sec?

load torque noise

andard deviationof | 5 | 01 A

measurement noise

Moment of Inertia | J | 0.002

Frequency f 1Hz




Appendix 11
Two-phase Motor S-function-Type m-File Listing
function [sys,x0]=SfunctionDynamicModel (t,x,u,flag,T)
global all al13 a31 a33 a43 b11;
global StateNoise MeasNoise;
if flag==
Initial,
x0=zeros(4,1); % zero Initial states
sys=[0,4,4,3,0,0];% zero continous states:four discrete states
% four outputs and three inputs.
elseif flag==
U=[u(1);u(2)]; % receive sinusoidal inputs.
Tl=u(3); % receive Torque load input.
% X=A*X+B*U+M*TL+W : State equation
% Y=C*X+V . Output equation
% where
%A=[(-Ra/L),0,(lambda/L)*sin(x(4)),0;
% 0,(-Ra/L),-(lambda/L)*cos(x(4)),0;
% -(3/2)*(lambda/J)*sin(x(4)),(3/2)*(lambda/J)*cos(x(4))-(F/J),0;
% 0,0,0,x(3)];
% B=[1/L;1/L];
% C=[1000;0100];

% M=[0;0;0;-1/L]



W=StateNoise.*randn(4,1);

V=MeasNoise*randn(2,1);

% Ad=I+A*T+(1/2)*(A*T)"2+......

% Ad=[1-(Ra/L)*T,0,(lambda/L)*sin(x(4))*T,0;

% 0,1-(Ra/L)*T,-(lambda/L)*cos(x(4))*T,0;

% -(3/2)*(lambda/d)*sin(x(4))*T,(3/2)*(lambda/J)*cos(x(4))*T,

%  1-(F)*T,0;

% 0,0,T,1];

Ad=[al11,0,a13*sin(x(4)),0;
0,a11,-a13*cos(x(4)),0;
a31*sin(x(4)),-a31*cos(x(4)),a33,0;
0,0,a43,1];

% Bd=B*T : Wd=W*T : Cd=C : D=0

Bd=[b11 0;0 b11;0 0;0 O];

% C=[1000;0100];

Wd=W*T;

Md=[0;0;0;-T/L];

% X=A*X+B*U+W

Xd=Ad*x+Bd*U+Wd+Md*TL;

% Y=CX+V

%Y=C*x+V

sys=[Xd];

elseif flag==3



U=[u(1);u)];
V=MeasNoise*randn(2,1);
C=[1000;0100];
Y=C*x+V,
sys=[Y(1) Y(2) x(3) x(4)];
else

sys=I[I;
end

Appendix 11

State Estimator S-function-Type m-File Listing
function [sys,x0]=SfunctionStateEstimator (t,x,u,flag,T)
global a1l al13 a31 a33 a43 b11;
global Q R P;
if flag==
Initial2;
x0=zeros(4,1);
sys=[0,4,4,5,0,0];
elseif flag==
U=[u(1);u(2)]; % The quadrature sinusoidal inputs.
Y=[u(3);u(4)]; % The actual currents inputs.
TL=u(5); % Reception of Torque Load.
Xest=x;

% Compute the partial derivative matrices



dA=[al1,0,a13*sin(xest(4)),al3*xest(3)*cos(xest(4));
0,a11,-al3*cos(xest(4)),al3*xest(3)*sin(xest(4));
a31*sin(xest(4)),-a31*cos(xest(4)),a33,
a31*(xest(1)*cos(xest(4))+xest(2)*sin(xest(4)));

0, 0,a43,1];

C=[1000;0100];

% Compute the Kalman gain

K=P*C"*inv(C*P*C'+R);

% Update the state estimate

Ad=[al11,0,a13*sin(x(4)),0;
0,a11,-a13*cos(x(4)),0;
a31*sin(x(4)),-a31*cos(x(4)),a33,0;
0,0,a43,1];

Bd=[b11 0;0 b11;0 0;0 O];

Md=[0;0;0;-T/J];

Xd_est=Ad*xest+Bd*U+Md*TL+K*(Y-C*xest);

% Update the estimation error covariance

P=dA*((eye(4)-K*C)*P)*dA'+Q;

sys=Xd_est;

elseif flag==3

sys=[x(1) x(2) x(3) x(4)];

else

sys=[l;
end



	 

