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Abstract 
 

 The goal of this paper is to estimate the states of two-phase permanent magnet (PM) 

synchronous motor. The system is highly nonlinear and one therefore cannot directly use 

any linear systems tools for estimation. However, if one can linearize the system around a 

nominal (possibly time-varying) operating point then linear system tools could be used 

for control and estimation.  The standard discrete Kalman filter (KF) has been used for 

state estimation. As such, the nonlinear model has been discretized and extended to be 

suitably applied for such filter. The entire state estimated system has been modeled using 

MATLAB/SIMULINK blocks. The state estimation algorithm and the motor discretized 

model are coded inside special S-functions of m-file type. Also, the error covariance 

matrices of measurement and process will be developed from the system model.     

Keywords:  

State estimator, two-phase permanent magnet synchronous motor, linearized model, 

Extended Kalman Filter. 
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     Introduction 

        In controlling AC machine drives, speed transducers such as tacho-generators, 

resolvers, or digital encoders are used to obtain speed information. Using these speed 

sensors has some disadvantages [1]. 

��  They are usually expensive,  

��  The speed sensor and the corresponding wires will take up space,  

��  In defective and aggressive environments, the speed sensor might be the weakest part of 

the system.  

Especially the last item degrades the systems reliability and reduces the advantage of 

an induction motor drive system. This has led to a great many speed sensor less vector 

control methods.  

On the other hand, avoiding sensor means use of additional algorithms and added 

computational complexity that requires high-speed processors for real time applications. 

As digital signal processors have become cheaper, and their performance greater, it has 

become possible to use them for controlling electrical drives as a cost effective solution 

[2].     

       Estimation of unmeasurable state variables is commonly called observation. A device 

(or a computer program) that estimates or observes the states is called a state-observer. 

An observer can be classified according to the type of representation used for the plant to 

be observed [1].  

         If the plant is deterministic, then the observer is a deterministic observer; otherwise 

it is a stochastic observer. The most commonly used observers are Luenberger and 



Kalman types [2]. The Luenberger observer (LO) is of the deterministic type, and the 

Kalman Filter (KF) is of the stochastic type. The basic Kalman filter is only applicable to 

linear stochastic systems, and for non-linear systems the extended Kalman filter (EKF) 

can be used, which can provide estimates of the states of a system or of both the states 

and parameters [1,2].  

     The EKF is a recursive filter (based on the knowledge of statistics of both the state 

and noise created by measurement and system modeling), which can be applied to non-

linear time varying stochastic systems. EKF being insensitive to parameter changes and 

used for stochastic systems where measurement and modeling noises are taken into 

account. 

 

     Model of Two Phase PM Synchronous Motor 

 

     The continuous-time electromechanical model of two-phase permanent magnet (PM) 

synchronous motor is fourth order, nonlinear and can be described by:  
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where , and  are the currents through the two windings, andai bi aR L  are the resistance 

and inductance of the windings, θ  and rω are the angular position and velocity of the 

rotor, λ is the flux constant of the motor, and  are the voltages applied across the au bu



two windings,  is the moment of inertia of the rotor and its load, J F  is the viscous 

friction of the rotor, and  is the load torque [3]. LT

However, the system is highly nonlinear and one therefore cannot directly use any 

linear systems tools for estimation. However, if one can linearize the system around a 

nominal (possibly time-varying) operating point then linear system tools could be used 

for control and estimation. We start by defining a state vector as x= [ ]Trrba ii θω  and 

the output vector as y= [ . With this definition, Eq.(1) can be written compactly as ]Tba ii

x& =  [ ]Txxxx 4321 &&&&

     =                                                                                                         (2)  x& MBuAx ++ LT

      y= C x                                                                                                                         (3)  
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The motor Equation (2) is to be discretized for the digital implementation as:  

kkkkkk MuBxAx ++=+1 LT                                                                                           (4) 

kkk xCy =                                                                                                                       (5) 

kA  and are the discretizd systems and input matrices, respectively. They are [1, 3, 4]: kB
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where T is the sampling time and I is an identity )44( × matrix. The above approximation 

is justified due to the small size of sampling time and the presence of increasingly large 

factorials, which further diminishes the magnitude of the higher-order terms. 
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     If the noises ,  have corrupted the inputs  and , respectively, and the noise 

 has been admitted to account for uncertainties in the load torque, then a noise vector 

will arise in Eq.(4) 
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αΔ



kkkk BxAx +=+1
kbb

aa

uu
uu

⎥
⎦

⎤
⎢
⎣

⎡
Δ+
Δ+ + dM )( LL TT Δ+  

dkkkdk MuBxAx ++=+1 LT +                                                                                   (10) kw

where 

       =                                                                                                (11) kw
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Δ−
Δ
Δ

0
)/(

)/(
)/(

L

b

a

TJT
uLT
uLT

Similarly, if the measurements and  are distorted by noises ai bi aiΔ and respectively, 

then Eq.(5) becomes  
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where the vectors  and  are called the process and measurement noises respectively. kw kv

 

The Kalman filter theory and algorithm 

       The aim in all estimation problems is to have an estimator that gives an accurate 

estimate of the true state even though one cannot directly measure it. Two obvious 

requirements should be attained [5]: 

  First, the average value of our state estimate is to be equal to the average value of the 

true state. That is, the estimate has not to be biased one way or another. 



Mathematically, one would say that the expected value of the estimate should be equal 

to the expected value of the state. 

  Second, the requirement a state estimate that varies from the true state as little as 

possible. That is, not only do we want the average of the state estimate to be equal to 

the average of the true state, but also want an estimator that results in the smallest 

possible variation of the state estimate. Mathematically, an estimator with the smallest 

possible error variance is sought. 

It so happens that the Kalman filter is the estimator that satisfies these two criteria. But 

the Kalman filter solution does not apply unless certain assumptions about the noise that 

affects the system under study must be satisfied:  

 

11..  It is firstly to assume that the average value of both and are zero.  kw kv

22..  One has to further assume that no correlation exists between  and . That is, 

at any time k,  and  are independent random variables. Then the noise covariance 

matrices  and are defined as:  

kw kv

kw kv
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Process noise covariance: 

)( T
kkw wwES =                                                                                                               (13) 

Measurement noise covariance:  

)( T
kkv vvES =                                                                                                                 (14) 

where and indicate the transpose of and Tw Tv w v  random noise vectors, and E(.) means 

the expected value.     

     Substituting Eq.(10) into Eq.(13), and Eq.(12) into Eq.(14), one can get the following 

process and measurement noise covariance matrices:   
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If the noises ( ), , (auΔ buΔ LTΔ aiΔ biΔ ) are white, zero mean, uncorrelated, and have known 

variances ,  and , respectively, then the covariance matrices and  will 

become 
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       One may summarize the recursive state estimation of the discrete Kalman filter as 

shown in Fig.(1). In the figure, the superscripts "-1", "T", "+" and "-" indicate matrix 

inversion, matrix transposition, posteriori and priori of variable respectively.  The K 

matrix is called the Kalman gain and the P matrix is called the estimation error 



covariance. The flowchart includes the initialization of state  in the absence of any 

observed data at k=0, and the initial value of the a posteriori covariance matrix  [6].  

0x̂

0P

      The timing diagram of the various quantities involved in the discrete optimal filter 

equations is shown in Fig.(2). The figure shows that after we process the measurement at 

time (k-1), we have an estimate of  (denoted ) and the covariance  1+kx +
−1ˆ kx
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Figure (1) Recursive Algorithm of Discrete Kalman Filter 

 

of that estimate (denoted ). When time k arrives, before we process the measurement 

at time k we compute an estimate of (denoted ) and the covariance of that estimate 

(denoted ). Then the measurement is processed at time k to refine our estimate of . 

The resulting estimate of  is denoted  and its covariance is denoted . 

+
−1kP

kx −
kx̂

−
kP kx

kx +
kx̂ +

kP



 

1−kA 1kQ − kA kQ

kt1−kt

1−kC , 1kR − kC , kR

,,

+
−1kx̂−

−1kx̂

+
−1kP−

−1kP

+
kx̂−

kx̂

+
kP−

kP

time

 

 

 

Figure (2) Timeline showing a priori and a posteriori state estimates and estimation- 

error covariance. 

 

      By substituting error covariance update equation into propagation equation, and the 

state estimate propagation equation into update equation, the algorithm of Fig.(1) will be 

summarized as [3,5,6-10] 
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   Extended Kalman Filter (EKF) 

 

    The state-space model of Eqs.(10) and (12) can be rewritten in the following form: 
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It is clear that  f(x,u,k) is nonlinear. However, to use nonlinear model with the standard 

KF, the model must be linearized about the current operating point, giving a linear 

perturbation model represented by Jacobian matrix ,        ),,( kuxF
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By now, the Jacobian matrix is replaced by  into Eq.s (20) and (21).  kA

 

 Modeling of Motor State Estimation System Using MATLAB/SIMULINK 

 

        SIMULINK is an extension to MATLAB and allows graphical block diagram 

modeling and simulation of dynamic systems. It is easier to develop state estimator using 

this package, as many components of the system are already included in the SIMULINK 

block diagram library.  

          The discretized model of the motor and the state estimation algorithm has been 

entered into a S-function-type of m-file. An m-file is a MATLAB program that allows 

algorithms or equations to be entered in a programming language. An S-function block, 

from the SIMULINK nonlinear library, links this m-file into a graphical block for use 

within the overall state estimation system.    

        Two quadrature sinusoidal waveforms drawn from the SIMULINK library have fed 

both the blocks of motor dynamic system and the state estimator, as shown in Fig.(3). 

The load change has been permitted and the repeating sequence block, from the 



SIMULINK source library, is employed. The S-function block of motor model generates 

the actual states. The state estimator block receives, in addition to inputs ,  and , 

the actual currents  and . The estimator produces the estimated states of the motor.   

au bu LT

ai bi

 

 

 

 

 

 

Figure (3) SIMULINK Modeling of Motor State Estimation System 

Simulated Results 

    The parameters of the motor are listed in Appendix (I). The SIMULINK model of 

Fig.(3) has been run and the estimated and actual states representing stator currents and 

rotor velocity and position has shown in Fig.(4). The system was simulated at sampling 

time (T=2.5 ms). One can easily notice that the EKF estimator could successively 

estimate the motor states and the estimator showed an excellent noise rejection capability. 

However, one can observe that the estimator does hardly estimate the speed and the 

angular position at the motor starting, but there is a perfect overlap at steady state.     

       Figure (5) shows the outputs of the estimator when the sampling time is increased to 

(T=2.95 ms). The performance of estimator will show a great degradation in its 

responses. This unstable behavior of the estimator is attributed to matrix singularity 



problems in the Kalman gain matrix. As this would assign the gain K large values, which   

will reflect directly to updated state estimates.      

     In Figure (6), a mechanical load having the waveform of Fig.(7) has been applied. It is 

clear from the figure that the estimated speed state still well tracks the actual state at 

times of load changes. A nice overlapping between states has been observed. One may 

conclude that the EKF works properly under load conditions.  

In figure (8), the standard deviation of measurement noise has been changed and the trace 

of error covariance matrix, Trace (P), is calculated in each time. Being the covariance 

matrix P is a measure of how we are certain in the measurements; one can expect that the 

trace of matrix will show large values for large values of standard deviation of 

measurement noise. This conclusion has been reported in Fig.(8). 

 

 

 

 

 

 

 

 



 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4) Estimated and actual states of the motor. 

 



 

                

  

  

  

  

  

  

  

 

Figure (5) Estimated and actual states (current and speed) of the motor at sampling time 

(T=2.93 ms) 

 

 

 

 

 

 

 

Figure (6) Estimated and actual states of the motor. 



   

 

 

 

 

 

 

Figure (7) Change of Motor Torque Load 

  

  

  

  

  

Figure (8) Trace of the error state covariance matrix with different standard deviations of 

measurement noises  

 

Conclusion 

           Based on the observations of the simulated results one might highlights the 

following points: 

        Inspection of the figure (8) shows that if the measurement noise is large, so P will be 

large two and we don’t have much certainty about the measurement y when computing 



the next. On the other hand, if the measurement noise is small, so P will be small and 

we will have a lot of certainty to the measurement when computing the next.  

x̂

x̂

��  One can easily conclude that the EKF estimator could successively estimate the motor 

states and the estimator showed an excellent noise rejection capability. 

��  The application of Kalman Filter is restricted by the limitation of sampling period. A 

serious stability problem will arise as the sampling time is increased to a specified 

value. As the Kalman gain K suffers singularity at the increased sampling time.   

��  The EKF estimator shows good tracking performance in spite of load exertion during 

estimation process.     
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Appendix I 

The parameters of two-phase synchronous motor  are listed in Table (1) 

          Table 1: Parameters of two-phase synchronous motor 

Winding resistance  Ω2 

Winding inductance    3 mH 

Motor flux constant   

andard deviation of 

control input noises

  

tandard deviation of 

   load torque noise

    0.05 

 

tandard deviation of

measurement noise

    

  Moment of Inertia J 0.002  

 Frequency f 1 Hz 

 

 

 



Appendix II 

Two-phase Motor S-function-Type m-File Listing 

function [sys,x0]=SfunctionDynamicModel (t,x,u,flag,T) 

global a11 a13 a31 a33 a43 b11; 

global StateNoise MeasNoise; 

if flag==0 

Initial; 

x0=zeros(4,1);     % zero Initial states 

sys=[0,4,4,3,0,0];% zero continous states:four discrete states 

  % four outputs and three inputs. 

elseif flag==2 

U=[u(1);u(2)];    % receive sinusoidal inputs.  

Tl=u(3);               % receive Torque load input. 

% X=A*X+B*U+M*TL+W  :  State equation 

% Y=C*X+V                          :  Output equation 

% where 

%A=[(-Ra/L),0,(lambda/L)*sin(x(4)),0;   

%   0,(-Ra/L),-(lambda/L)*cos(x(4)),0; 

% -(3/2)*(lambda/J)*sin(x(4)),(3/2)*(lambda/J)*cos(x(4))-(F/J),0; 

%   0,0,0,x(3)];    

%   B=[1/L;1/L]; 

%   C=[1 0 0 0;0 1 0 0]; 

%   M=[0;0;0;-1/L]  



W=StateNoise.*randn(4,1); 

V=MeasNoise*randn(2,1); 

% Ad=I+A*T+(1/2)*(A*T)^2+......  

% Ad=[1-(Ra/L)*T,0,(lambda/L)*sin(x(4))*T,0; 

%     0,1-(Ra/L)*T,-(lambda/L)*cos(x(4))*T,0; 

%    -(3/2)*(lambda/J)*sin(x(4))*T,(3/2)*(lambda/J)*cos(x(4))*T, 

%       1-(F/J)*T,0; 

%        0,0,T,1]; 

Ad=[a11,0,a13*sin(x(4)),0; 

    0,a11,-a13*cos(x(4)),0; 

    a31*sin(x(4)),-a31*cos(x(4)),a33,0; 

    0,0,a43,1]; 

% Bd=B*T : Wd=W*T : Cd=C  : D=0  

Bd=[b11 0;0 b11;0 0;0 0]; 

% C=[1 0 0 0;0 1 0 0]; 

Wd=W*T; 

Md=[0;0;0;-T/L]; 

% X=A*X+B*U+W 

Xd=Ad*x+Bd*U+Wd+Md*TL; 

% Y=CX+V 

%Y=C*x+V 

sys=[Xd]; 

elseif flag==3  



 U=[u(1);u(2)];   

 V=MeasNoise*randn(2,1);    

 C=[1 0 0 0;0 1 0 0]; 

 Y=C*x+V; 

 sys=[Y(1) Y(2) x(3) x(4)]; 

else 

    sys=[]; 

end 

Appendix III 

State Estimator S-function-Type m-File Listing 

function [sys,x0]=SfunctionStateEstimator (t,x,u,flag,T) 

global a11 a13 a31 a33 a43 b11; 

global Q R P; 

if flag==0 

Initial2; 

x0=zeros(4,1); 

sys=[0,4,4,5,0,0]; 

elseif flag==2 

U=[u(1);u(2)]; % The quadrature sinusoidal inputs.  

Y=[u(3);u(4)];  % The actual currents inputs. 

TL=u(5);           % Reception of Torque Load. 

xest=x; 

% Compute the partial derivative matrices 



dA=[a11,0,a13*sin(xest(4)),a13*xest(3)*cos(xest(4)); 

    0,a11,-a13*cos(xest(4)),a13*xest(3)*sin(xest(4)); 

   a31*sin(xest(4)),-a31*cos(xest(4)),a33,   

   a31*(xest(1)*cos(xest(4))+xest(2)*sin(xest(4))); 

        0,  0, a43, 1]; 

C=[1 0 0 0;0 1 0 0]; 

% Compute the Kalman gain 

K=P*C'*inv(C*P*C'+R); 

% Update the state estimate 

Ad=[a11,0,a13*sin(x(4)),0; 

    0,a11,-a13*cos(x(4)),0; 

    a31*sin(x(4)),-a31*cos(x(4)),a33,0; 

    0,0,a43,1]; 

Bd=[b11 0;0 b11;0 0;0 0]; 

Md=[0;0;0;-T/J]; 

Xd_est=Ad*xest+Bd*U+Md*TL+K*(Y-C*xest); 

% Update the estimation error covariance 

P=dA*((eye(4)-K*C)*P)*dA'+Q; 

sys=Xd_est; 

elseif flag==3  

 sys=[x(1) x(2) x(3) x(4)]; 

else 

    sys=[]; 

end 


	 

