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Abstract-- In recent years non-invasive medical 
diagnostic techniques have been used widely in medical 
investigations. Among the various imaging modalities 
available, Magnetic Resonance Imaging is very 
attractive as it produces multi-slice images where the 
contrast between various types of body tissues such as 
muscle, ligaments and fat is well defined. The aim of this 
paper is to describe the implementation of an 
unsupervised image analysis algorithm able to identify 
the body fat tissues from a sequence of MR images 
encoded in DICOM format. The developed algorithm 
consists of three main steps. The first step pre-processes 
the MR images in order to reduce the level of noise. The 
second step extracts the image areas representing fat 
tissues by using an unsupervised clustering algorithm. 
Finally, image refinements are applied to reclassify the 
pixels adjacent to the initial fat estimate and to eliminate 
outliers. The experimental data indicates that the 
proposed implementation returns accurate results and 
furthermore is robust to noise and to greyscale in-
homogeneity. 

Index Terms—MRI, Body fat, Image de-noising, 
Image segmentation, Clustering, Region growing.  

I. INTRODUCTION 
The accurate determination of a person’s total body 
fat is an important issue in medical analysis as obesity 
is a significant contributing factor to a variety of 
serious health problems.  The medical literature 
identifies a wide range of diseases that are closely 
related to obesity including hypertension, coronary 
heart disease, strokes, gout, diabetes, various types of 
cancer and psychological disorders such as depression 
and low self-esteem [5].  
 

In the past the evaluation of total body fat has 
included techniques such as hydro-density, callipers 
and air displacement (Bod Pod). The accuracy of 
these techniques is limited and furthermore the results 
are subject to inter and intra observer variability. 
More recently, new techniques have been developed 
and among them the most important are DEXA, NIR 
and TOBEC (more details about these techniques can 

be found in [5]). In most cases these techniques are 
accurate but the equipment is dedicated and expensive 
and this is a deterring factor for their application in 
current medical investigations. On the other hand 
Magnetic Resonance Imaging (MRI), although 
expensive, is used extensively for many types of 
medical investigations and as such MRI facilities are 
available more readily and widely. 
 

Alternative medical techniques have been used to 
measure the body fat such as Computer Tomography 
(CT) and MRI. As in the past the quality of MRI 
images was limited, CT was widely used to measure 
the total body fat. The results proved to be very 
encouraging but it should be mentioned that due to the 
effect of the ionising radiation involved this technique 
is rendered impractical for serial investigations [8]. 
With the advancement in medical imaging, current 
MRI produces high-resolution volumetric image 
sequences and it becomes an attractive imaging 
modality to measure body fat.   
 

In our investigation we attempt to extract the areas 
representing fat tissues in a sequence of MR images. 
The image segmentation task has to be able to 
accommodate problems such as greyscale in-
homogeneity within the regions representing fat 
tissues and a relatively low signal to noise ratio.  In 
order to address these issues firstly we pre-process the 
input data to reduce the noise level. Then, the pre-
processed data is roughly segmented using an 
unsupervised clustering method. Finally, the result is 
further improved by applying image refinements to 
eliminate misclassified pixels.  
 

This paper is organised as follows. In this section we 
have introduced the problem to be investigated. 
Section 2 details the segmentation algorithm. Section 
3 presents some experimental results and Section 4 
concludes the paper. 



 
 

II. IMAGE SEGMENTATION 

A visual examination of the images contained in the 
data sets reveals that the fat tissues tend to have a 
higher grayscale value than other tissues. But these 
images also indicate that there is quite a high 
grayscale variation within the image regions which 
represent fat tissues and in some situations their 
grayscale values are lower than those associated with 
other tissues such as those representing bones, liver or 
brain. Therefore, accurate segmentation cannot be 
achieved by applying simple methods based on 
thresholding.  

Thus, in order to cope with these problems we have 
devised a three-step segmentation algorithm. The first 
step involves pre-processing the input image in order 
to reduce the level of noise. As a visual examination 
indicates that the imaged fat tissues always have their 
grayscale values higher than 100, we eliminate from 
the input data the information that has grayscale 
values below this threshold. Then, we reduce the level 
of speckle noise by applying a median filter which is 
followed by the application of a feature–preserving 
adaptive smoothing operator. The adaptive smoothing 
operator is applied to eliminate the Gaussian 
distributed noise while preserving the high-gradient 
image information (i.e. image edges). The aim of this 
pre-processing scheme is to achieve a smooth de-
noised image. The next section will briefly introduce 
the adaptive smoothing operator used in this 
implementation.  

A. Adaptive smoothing operator 

The aim of this operation is to remove the additive 
image noise while preserving the image edge 
information.  To this end, we implemented the 
smoothing algorithm described in [2]. This smoothing 
algorithm tries to adapt pixel intensities to the local 
attributes present in the image by evaluating two 
discontinuity measures (i.e. local and contextual) that 
should be preserved during the smoothing operation.  

The local discontinuity is measured using four 
detectors that approximates the image gradients in 
four directions: 
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where Ix,y is the pixel intensity at (x,y). These four 
detectors respond strongly to local edges and a local 
discontinuity measure can be defined as follows: 
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As the local discontinuity evaluates the local gradients 
it is sensitive to image noise. Unfortunately, the MR 
images reveal a high level of noise and as a result the 
local discontinuity is not efficient in distinguishing the 
true local discontinuities from noise. Thus, the local 
discontinuity has to be augmented with a contextual 
discontinuity, which evaluates the attributes of the 
neighboring pixels.  

In this implementation the contextual discontinuities 
are measured by the local variance that is measured in 
a predefined neighborhood (see Eq. 3).  
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where σ2
xy is the measured variance, µR is the mean 

intensity value computed in the square neighborhood 
R.  

The adopted smoothing strategy uses both local and 
contextual discontinuities and for each pixel its 
intensity value is iteratively updated with the 
nonlinear transformation illustrated in Eq. (4).  
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In Eqs. 4 to 6 the parameter t defines the iteration and 
the transformation illustrated in Eq. 4 updates the 
intensity values of each pixel using two weighting 
parameters (η and γ) which measure non-linearly the 
contextual and local discontinuities.  The variables S 
and α are important as they determine to what extent 
the local and contextual discontinuities should be 
preserved during the smoothing operation.  

In our implementation we set these parameters to the 
following values S = 10, α=10, θσ =0.2, window size 
R =2, and the algorithm is run for 2 iterations.  



 
 

Fig 1 illustrates the performance of the adaptive 
smoothing operation. Note that the smoothing 
operation did not affect the edge localization. 
 

 
                          (a)                                               (b) 

Fig. 1. Adaptive smoothing operation. (a) Input image.  

(b) Filtered image. 
 

B. Clustering and Image Refinements 

The second step involves the application of 
unsupervised clustering [3] on the image obtained 
from the first step. For this implementation we have 
used an agglomerative clustering technique [1] where 
the parameters for inter-cluster variation are set to 0.8 
for lower threshold and 1.2 for higher threshold. The 
number of resulting clusters is dependent on the 
complexity of the input image. To extract the data 
clusters associated with body fat tissues we applied a 
threshold operation where the threshold value is set to 
120. As some input images (especially those from the 
beginning and the end of the sequence) show areas 
where the noise signal is amplified (see Fig. 2) we 
have to eliminate the small areas defined by bright 
pixels. It should be noted that some of these pixels 
have been removed by the pre-processing scheme (see 
for example Fig. 3b). 
Experimentation indicated that the image bright areas 
derived from fat tissues will consist of more than 20 
pixels. Thus we have eliminated regions with fewer 
than 20 pixels by applying a label by area operation. 
The algorithm evaluates each labeled image starting 

with the smallest label and those that have less than 20 
pixels are eliminated. 
 

 
 

Fig. 2. Input image showing large image areas defined by noise. 
 

The image resulting from the second step is subjected 
to the application of image refinements as some other 
tissues (e.g. brain and liver) are misclassified as body 
fat. For this purpose the following strategy has been 
employed. Each image pixel (resulting from step 2) 
that has been classified as fat (marked in white) is 
evaluated in its 3x3 neighborhood and the pixels that 
have a grayscale value larger than 150 are counted. If 
inside this 3x3 neighborhood more than half of the 
total number of pixels have values larger than 150 
then the pixel is deemed to have been correctly 
classified. Otherwise the pixel is considered to have 
been misclassified and it is reclassified as background. 
This strategy is the 2D version of that described in [4]. 
The aim of this algorithmic scheme is to eliminate 
significant misclassified areas. 
 
The next step is applied to improve the segmentation 
by reclassifying the pixels adjacent to segmented 
areas. For this strategy we employed a region growing 
technique which is based on the morphological 
dilation operation [9]. This algorithm has two inputs, 
namely the original image and the segmentation result 
obtained after the previous step is completed.  The 
segmented image is in binary form where the fat 
tissues are marked in white while the rest of the 
tissues are background. The algorithm dilates the 
binary image with a 3x3 square structuring element 
and the dilated pixels are reclassified as fat tissue only 
if their grayscale values are above a threshold value 
that has been experimentally set to 130. This strategy 
is iteratively applied until no pixels are reclassified. 
The aim of this operation was to fill the gaps in the 
segmented structure and close the boundary 
discontinuities. 



 
 

III. EXPERIMENTS AND RESULTS 

The algorithm described in Section 2 has been 
implemented using the NeatVision 2.0 Java graphical 
development environment [6]. The segmented data is 
a binary volume where the voxels defined by fat 
tissues are marked in white while the background is 
marked with black.  
The calculation of the total body fat (TBF) involves 
the formula shown in Eq. 8. 

DensityFatDimVoxelNTBF FatVoxels __ ∗∗=     (8) 

where NFatVoxels is the total number of fat voxels 
contained in the dataset, Voxel_Dim is the voxel 
dimension (in cm3), and Fat_Density is the density of 
the fat tissue. The voxel dimension can be extracted 
from the DICOM header and the datasets used in our 
study have a dimension of  2.02 × 2.02 × 8 [mm3]. 
The medical literature indicates that the fat tissue 
density is constant [7] and it has a value of 0.918 
[g/cm3]. The number of fat voxels is determined by 
counting the white voxels contained in the segmented 
data. We normalized these values in order to yield the 
total body fat in kilograms.  
A database of 19 datasets (9 males and 10 females) 
was used to assess the validity of the proposed 
segmentation algorithm. The body mass index (BMI) 

values of these datasets range from 19 to 32.  The 
BMI is a measure commonly used to assess people’s 
level of fitness in terms of anthropometric 
measurements. BMI values are classified into 4 
categories which are listed in Table I. 
 

TABLE I. 
BMI CATEGORIES. 

BMI Category 
<18.5 Underweight 

18.5-24.9 Normal weight 
25-29.9 Overweight 

>30 Obese 
 
A visual examination of the datasets used in this study 
shows a large variation in the grayscale values 
between similar tissues within the same dataset and 
from dataset to dataset. A significant level of noise 
has also been noticed in image areas with a low 
contrast.  As a result we devised a three-component 
segmentation algorithm to identify the fat tissues as 
described in the Section II. Figures 3 to 5 depict the 
segmentation results that were achieved after the 
algorithm was applied to three representative data 
sets. 
 
 

 

    
 

                     (a)                                            (b)                                            (c)                                       (d) 
 

Fig. 3. Experimental data –dataset 1 (slice 4). (a) Input image. (b) Pre-processed image. (c) Image resulting after clustering 
 (d) Image resulting after image refinements is applied. 



 
 

 

 
                      (a)                                                (b)                                              (c)                                                (d) 

 
Fig. 4. Experimental data –dataset 2 (slice 26). (a) Input image. (b) Pre-processed image. (c) Image resulting after clustering. 

 (d) Image resulting after image refinements is applied. 
 

 
                       (a)                                               (b)                                               (c)                                                 (d) 
 

Fig. 5. Experimental data –dataset 3 (slice 17). (a) Input image. (b) Pre-processed image. (c) Image resulting after clustering. 
 (d) Image resulting after image refinements is applied.



 
 

The segmentation results illustrated above indicate the 
performance of the devised algorithm. The 
segmentation results for datasets 1 and 3 demonstrate 
precise fat tissue segmentation. The results obtained 
for dataset 2 indicate small errors where a part of the 
liver has been classified as fat tissue. These errors are 
due to the fact that these tissues have a higher 
grayscale value than that of most fat tissues in the 
dataset.    
The overall performance of this algorithm has been 
evaluated on 19 datasets and the results obtained are 
very encouraging. The algorithm proved to be robust 
to a high level of image noise and the threshold 
parameters required by the clustering algorithm and 
the threshold operations did not need to be readjusted. 
As illustrated in these results we have demonstrated 
that the process of segmenting the body fat is not a 
trivial one. However we have shown that 
identification of body fat tissues in MR data is an 
achievable goal and currently we intend to test the 
segmentation algorithm on more datasets and have its 
performance evaluated by a medical practitioner. 

IV. CONCLUSIONS 

This paper described the development of a robust 
segmentation technique for detection of the body fat 
tissues in a sequence of MR multi-slice images. The 
devised algorithm consists of three main components.  
The first component performs image de-noising, the 
second clusters the image data while the third 
improves the initial segmentation result by applying 
image refinements.  

The developed algorithm proved to be robust in the 
presence of severe grayscale variation within the 

image regions representing fat tissue and against the 
noise introduced in the MR imaging process.  
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