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Abstract— This work presents the development of a
MLD (Mixed Logical Dynamical) model for a boost
converter. The boost converter, as well as any other
switched device in power electronics, is a system suited
to be characterized as a MLD system due to the presence
of the switch, introducing a binary input to the system,
and the dynamical evolution depending on if-then-else
rules. The classical approach to describe switched-mode
power electronic devices is via ”averaging” techniques. A
comparison of the simulation results obtained with two
models, hybrid and real, is also presented.

Index Terms— DC-DC converters, hybrid systems,
modelling

I. I NTRODUCTION

DC-DC converters have been the object of sustained
interest in the last decades. They are extensively used
in power supplies for electronic equipment in order
to control the energy flow between two DC systems.
Although a typical DC-DC converter circuit requires
few components and, from a theoretical point of view,
is simplistic to operate, all DC-DC converters require
control circuitry in order to account for load variations,
component tolerances, system aging and input source
voltage variations.

Due to their time-varying characteristic and to their
inherent nonlinear feature, DC-DC converters are a
traditional benchmark for testing advanced controllers.
Lately, the emerging control strategies compute the
control signal, in order to improve the overall quality
of control, based on a model of the process.

The modelling and control of DC-DC converters can
be formulated in two different ways, depending on
whether the switching signalq(t) (Fig. 1) is directly
manipulated - hybrid system approach - or an auxiliary
pulse width modulation (PWM) circuit is necessary in
order to determine the switch position. While many
control applications are available in literature for the
latter case, based on the availability of the averaged
model, few results are available in the case of hybrid
systems to which the MLD (Mixed Logical Dynamical)
formulation belongs. Among the PWM-based control
strategies reported in literature to provide improved
closed loop behavior and disturbance rejection, the

following methods can be listed: sliding mode con-
trol strategies [1], nonlinear PI controllers based on
the method of extended linearization [2], nonlinear
H∞ controllers [3], passivity-based controller [4] and
model-based predictive controller [5], [6].

On the other hand, MLD formalism is a versatile
approach of describing hybrid systems, allowing to
state and solve control problems in a systematic way,
using for example a model-based predictive control
strategy. Real-life applications that can be naturally
modelled within the MLD framework are presented in
[7], [8], [9] and [10].

In this work a MLD model for a boost converter is
developed, the control - in the predictive control frame-
work - being approached in a subsequent publication.
The paper is structured as follows. The next section
describes the DC-DC system dynamics. Section 3 deals
with the MLD formalism, while Section 4 provides a
step-by-step development of the boost converter MLD
model. A comparison between the simulation results
obtained by using the MLD model and the real model
is given in Section 5. Finally, some conclusions are
drawn.

II. PROCESS DESCRIPTION

The boost converter, represented in Fig. 1, is a ”step-
up” converter, which produces a higher DC output
voltageVd than the one supplied by the external voltage
sourceVg. The differential equations describing the
circuit are given by:

ẋ1(t) =
[
−(1− q(t))

1
L

x2(t)+

1
L

Vg

]
g(x1(t), q(t))

ẋ2(t) = (1− q(t))
1
C

x1(t)− 1
RC

x2(t) (1)

where

g(x1(t), q(t)) =





1, if q(t) = 1
1, if q(t) = 0 andx1(t) 6= 0
0, if q(t) = 0 andx1(t) = 0

(2)
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Fig. 1. Boost converter circuit

The variables appearing in model (1) are defined as
follows:

• x1(t) - input inductor currentiL(t);
• x2(t) - output capacitor voltageVd(t);
• Vg - nominal value of the external voltage source;
• R - nominal value of the output resistance;
• q(t) - switch position function, which takes values

in the discrete set{0, 1}.
As model (1) shows, the dynamic behavior of the

boost converter is driven by the switch position with a
binary value and evolves according to if-then-else rules
summarized in (2), the boost converter being classified
in this way in the hybrid systems category.

Before proceeding further with the development of
the MLD model, a short analysis of the boost con-
verter behavior is considered. When the switch is ON
(q(t) = 1), the input inductor currentiL increases and
the capacitorC discharges on the resistorR according
to the relations:

L
diL
dt

= Vg (3)

C
dVd

dt
= −Vd(t)

R
(4)

In this situation the converter is said to function in state
S1. Alternatively, when the switch is OFF (q(t) = 0),
the variations of the input inductor currentiL and of the
output capacitor voltageVd are described respectively
by:

L
diL
dt

= Vg − Vd(t) (5)

C
dVd

dt
= iL − Vd(t)

R
(6)

and the operational state is denoted byS2. While
working in stateS2, the currentiL will constantly
decrease and, possibly, will become negative. However
the presence of the diode in the circuit represented in
Fig. 1 prevents that the current flows in the opposite
direction, thusiL is limited to zero and a transition to
stateS3 takes place.

Consequently, the operational states of the boost
converter can be rigourously defined, in terms of state

variables and switching function, as:

S1 : q(t) = 1
S2 : q(t) = 0 & x1(t) 6= 0 (7)

S3 : q(t) = 0 & x1(t) = 0

and the functioning of the DC-DC system is described
by the finite state automaton illustrated in Fig. 2.

The transitions between the states can occur only in
the orderS1−S2−S3−S1 or S1−S2−S1, a direct
transition fromS1 to S3 being impossible due to the
fact that inS1 the input inductor current is continuously
increasing, at the end of this state reaching its highest
value, and will never become instantaneously zero
when the switch is open to allow for a transition toS3.
Similarly, a transition fromS3 to S2 is not possible, the
inductor current can not decrease more (phenomenon
characteristic to stateS2) starting from its zero value
in stateS3. However, it can happen that the system
does not enter stateS3, if the switch is not kept open
a long enough time.
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Fig. 2. State evolution

III. H YBRID SYSTEMS IN MLD FORMULATION

Hybrid systems refer to processes that evolve ac-
cording to continuous dynamics, discrete dynamics and
logic rules.

Several modelling formalisms have been developed
to describe hybrid systems [11], each approach having
its own tools for analysis, depending on the adopted
mathematical description.

The MLD description, introduced by Bemporad and
Morari [7], is capable of modelling a broad class of
systems arising in many applications: linear hybrid dy-
namical systems, hybrid automata, nonlinear dynamic
systems where the nonlinearity can be approximated by
a piecewise linear function, some classes of discrete-
event systems, linear systems with constraints, etc.

The MLD formulation is based on the idea of
transforming logic relations, expressed by logic propo-
sitions and describing the dynamic evolution of the
system, into mixed-integer inequalities, i.e. inequalities
involving continuous and binary variables.

Using standard notation [7], [12], capital letters
Xi are adopted to represent statements of the form



TABLE I

TRANSLATION OF LOGIC INTO MIXED INTEGER INEQUALITIES

Relation Logic
Mixed integer

inequalities

and (∧) X1 ∧X2
δ1 = 1

δ2 = 1

or (∨) X1 ∨X2 δ1 + δ2 ≥ 1

not (∼) ∼ X1 δ1 = 0

imply (⇒) X1 ⇒ X2 δ1 − δ2 ≤ 0

equivalent(⇔) X1 ⇔ X2 δ1 − δ2 = 0

X3 ⇔ X1 ∧X2

−δ1 + δ3 ≤ 0

−δ2 + δ3 ≤ 0

δ1 + δ2 − δ3 ≤ 1[
aT x ≤ 0

]
⇒ [δ = 1] aT x ≥ ε + (m− ε)δ

[δ = 1] ⇒
[
aT x ≤ 0

]
aT x ≤ M −Mδ

[
aT x ≤ 0

]
⇔ [δ = 1]

aT x ≥ ε + (m− ε)δ

aT x ≤ M −Mδ

product z = δ · aT x

z ≤ Mδ

−z ≤ −mδ

z ≤ aT x−m(1− δ)

−z ≤ −aT x + M(1− δ)

”x(t) > 0” or ”Temperature is hot”, referred to as
literals that can have either atrue or a false value.
Logic propositions are obtained by combining literals
in statements, by means of connectives: ”∧” - and, ”∨”
- or, ”∼” - not, ”⇒” - implies, ”⇔” - equivalent, ”⊕” -
exclusive or. Connectives satisfy several properties that
allow transformation of logic statements into equiv-
alent statements involving different connectives and
simplify complex statements. Thus the propositional
logic governing the dynamic evolution of a system can
be formulated as a collection of statements of the form:

X1 ∨X2

X1 ∧X2 ⇒ X3
(8)

Basically, the derivation of the MLD form of a
hybrid system involves three steps [7], [9].The first
step is to associate with each literalXi a logical
variable δi ∈ {0, 1} (δi = 1 if Xi is true or δi = 0
otherwise). Consequently, complex statements resulted
from combinations of elementary statements via the
boolean operators introduced above can be represented
as linear inequalities over the corresponding binary
variablesδi. Some basic equivalent translations of logic
propositions into linear constraints are given in Table I.
On one hand these relations can be extended to involve
an arbitrary number of literals/logical variables, on the
other hand new entries can be appended to Table I
to cover the equivalency between more complex logic

propositions and their corresponding integer inequali-
ties.

The second stepconsists in representing the product
between linear functions and logical variables by in-
troducing an auxiliary variablez = δaT x. The mixed
integer inequalities corresponding to the auxiliary real
variables involve the lower and upper bounds on con-
tinuous quantities:

M = maxx∈R(aT x),m = minx∈R(aT x) (9)

and a small toleranceε, typically the machine preci-
sion, introduced to replace the strict inequalities by
non-strict ones. Auxiliary real variables are uniquely
specified by the mixed integer linear inequalities listed
on the last row of Table I.

The third stepis to include auxiliary binary and con-
tinuous variables defined above in a LTI discrete-time
dynamic system in order to define, in a unified model,
the evolution of the continuous and logic components
of the system. The general MLD form of a hybrid
system is

x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k)

y(k) = Cx(k) + D1u(k) + D2δ(k) + D3z(k) (10)

subjected to the inequality constraint

E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5 (11)



where x ∈ Rnc × {0, 1}nl are the continuous and
binary states,u ∈ Rmc × {0, 1}ml are the inputs,y ∈
Rpc×{0, 1}pl are the outputs andδ∈ {0, 1}rl , z ∈ Rrc

represent respectively auxiliary binary and continuous
variables. The matrix inequality (11) comprises all the
constraints imposed on the states, inputs andz and δ
variables. Although the description (10)-(11) seems to
be linear (in the state variablesx and auxiliary binary
and continuous variablesδ andz), system nonlinearity
is hidden in the inequality constraints over the binary
variables.

IV. B OOST CONVERTERMLD MODEL

DEVELOPMENT

Once the continuous and discrete variables have
been identified and the logic governing the process
functioning has been stated, one can proceed develop-
ing the MLD model of the system. The boost converter
described by (1) and ruled by (2) has two continuous
variables - the states of the system - namely the input
inductor current and the output capacitor voltage and
one binary variable - the system input - that is the
switch position.

In order to apply the three-steps procedure for MLD
model development presented in the previous section,
literals are associated first with statements derived
from (2) as follows:

X1 : q(t) = 1 (12)

X2 : ”System in state S2” (13)

X3 : ”System in state S3” (14)

X4 : x1 6= 0 (15)

While (12) and (15) introduce basic statements that
can not be represented by combination of any other
meaningful statements, (13) and (14) can be decom-
posed in terms of the literalsX1 andX4, according to
the system functioning principles detailed in Section II
and summarized by (7), as:

X2 ⇔∼ X1 ∧X4 (16)

X3 ⇔∼ X1∧ ∼ X4 (17)

The propositional logic expressions involving the
literalsXi can be translated into a mathematical repre-
sentation by associating to each literal a binary variable
δi ∈ {0, 1} (the first step of the procedure). IfXi is
true, thenδi = 1, elseδi = 0. With this association, the
logic expressions (16)-(17) become in terms of integer
variables:

[δ2 = 1] ⇐⇒ [δ1 = 0] ∧ [δ4 = 1] (18)

[δ3 = 1] ⇐⇒ [δ1 = 0] ∧ [δ4 = 0] (19)

Note that literals where replaced by their associated
binary variables in the logic propositions in order to

illustrate the smooth transition from logic to integer
variables.

Further (18) and (19) are translated into two sets of
mixed integer inequalities (Table I) as follows:





δ2 ≤ 1− δ1

δ2 ≤ δ4

δ2 ≥ (1− δ1) + δ4 − 1
(20)





δ3 ≤ 1− δ1

δ3 ≤ 1− δ4

δ3 ≥ (1− δ1) + (1− δ4)− 1
(21)

In light of the newly introduced concepts and trans-
formations, the functiong in (2), selecting the opera-
tional state of the converter, can be rewritten as:

g(x1(t), q(t)) = δ1 + (δ2 + δ3)δ4 (22)

Combination (22) has been determined according to
the following two observations:

1) At a certain time instantt, the boost converter
can be in only one of the possible three states,
this condition translating - in terms of integer
variables - into:

δ1 + δ2 + δ3 = 1 (23)

2) Out of the two variables (input inductor current
and switch position) used for describing statesS2

and S3, only the value of the inductor current
(consequently the logical variableδ4) is useful
for discriminating between the two states.

Assuming the discrete-time representation of the
boost converter, obtained by sampling the continuous
model (1) with a small sampling periodT , making use
of the knowledge stated by relationship (22) and keep-
ing in mind thatδ1 is the logic variable associated with
the switch position, the model of the boost converter
becomes:

x1(k + 1) =
[
x1(k)− T

L
x2(k) +

T

L
x2(k)δ1(k)+

TVg

L

]
{δ1(k) + [δ2(k) + δ3(k)] δ4(k)}

x2(k + 1) =
T

C
x1(k)− T

C
x1(k)δ1(k) + (24)

(
1− T

RC

)
x2(k)

wherek is an integer number of sampling periods.
Expanding model equations (24) one can immedi-

ately notice the occurrence of product terms of logical
variables and of continuous and logical variables. Pro-
cedures to transform these product terms exist, however
they introduce auxiliary variables [7], [12].



Four new logical variables are introduced, with the
following definitions:

δ5 = δ2 · δ4 (25)

δ6 = δ3 · δ4 (26)

δ7 = δ1 · δ5 (27)

δ8 = δ1 · δ6 (28)

and the associated propositional logic:

[δ5 = 1] ⇐⇒ [δ2 = 1] ∧ [δ4 = 1] (29)

[δ6 = 1] ⇐⇒ [δ3 = 1] ∧ [δ4 = 1] (30)

[δ7 = 1] ⇐⇒ [δ1 = 1] ∧ [δ5 = 1] (31)

[δ8 = 1] ⇐⇒ [δ1 = 1] ∧ [δ6 = 1] (32)

which transforms to linear mixed integer inequalities:




−δ2 + δ5 ≤ 0
−δ4 + δ5 ≤ 0

δ2 + δ4 − δ5 ≤ 1
(33)





−δ3 + δ6 ≤ 0
−δ4 + δ6 ≤ 0

δ3 + δ4 − δ6 ≤ 1
(34)





−δ1 + δ7 ≤ 0
−δ5 + δ7 ≤ 0

δ1 + δ5 − δ7 ≤ 1
(35)





−δ1 + δ8 ≤ 0
−δ6 + δ8 ≤ 0

δ1 + δ6 − δ8 ≤ 1
(36)

Aside the four new logical auxiliary variables, seven
auxiliary continuous variables are defined (second step
of the procedure):

z1(k) = x1(k)δ1(k)
z2(k) = x1(k)δ5(k)
z3(k) = x2(k)δ5(k)
z4(k) = x2(k)δ7(k) (37)

z5(k) = x1(k)δ6(k)
z6(k) = x2(k)δ6(k)
z7(k) = x2(k)δ8(k)

which satisfy:

[δ1 = 0] ⇒ [z1 = 0] , [δ1 = 1] ⇒ [z1 = x1]
[δ5 = 0] ⇒ [z2 = 0] , [δ5 = 1] ⇒ [z2 = x1]

...

[δ8 = 0] ⇒ [z7 = 0] , [δ8 = 1] ⇒ [z7 = x2](38)

To transform the propositional logic involving the
continuous auxiliary variableszi into linear inequalities
(see last row of Table I), lower and upper limits are
imposed on the state variablesxi, i.e. the input inductor

current and the output capacitor voltage. Assume that
the input inductor current is allowed to vary between 0
andImax, while the output capacitor voltage varies in
the range[Vmin, Vmax]. Under these assumptions, the
logic constraints in relationships (38) corresponding to
z1 andz3 are equivalent to:





z1 ≤ Imaxδ1

z1 ≥ 0δ1

z1 ≤ x1 − 0 (1− δ1)
z1 ≥ x1 − Imax (1− δ1)

(39)

and 



z3 ≤ Vmaxδ5

z3 ≥ Vminδ5

z3 ≤ x2 − Vmin (1− δ5)
z3 ≥ x2 − Vmax (1− δ5)

(40)

Similar sets of constraints are obtained in the same way
also for the other variables.

To represent the hybrid model in form (10) (third
step of the procedure), variables - binary and continu-
ous - are grouped in matrices. Defining

x(k) =
[

x1(k) x2(k)
]T

,

δ(k) =




δ1(k)
δ2(k)
δ3(k)
δ4(k)
δ5(k)
δ6(k)
δ7(k)
δ8(k)




, z(k) =




z1(k)
z2(k)
z3(k)
z4(k)
z5(k)
z6(k)
z7(k)




the system matrices become:

A =
[

0 0
T
C 1− T

RC

]
, B1 = 0,

B2 =
[

TVg

L 0 0 0 TVg

L
TVg

L 0 0
0 0 0 0 0 0 0 0

]
,

B3 =
[

1 1 −T
L

T
L 1 −T

L
T
L

1 0 0 0 0 0 0

]

C =
[

0 1
]
, D1 = 0, D2 = 0, D3 = 0.

For matrices appearing in the inequality con-
straint (11), the following partition has been chosen,
according to the origin of the conditions:

E2 =
[

E2δ
E2z

]
, E3 =

[
E3δ
E3z

]
,

E4 =
[

E4δ
E4z

]
, E5 =

[
E5δ
E5z

]

where
E2δ ∈ R12×8, E3δ ∈ R12×7,
E4δ ∈ R12×2, E5δ ∈ R12×1,



while

E2z ∈ R28×8, E3z ∈ R28×7,
E4z ∈ R28×2, E5z ∈ R28×1.

E2z =




E2x1
O4×3 0 0 0 0

0 O4×3 E2x1
0 0 0

0 O4×3 E2x2
0 0 0

0 O4×3 0 0 E2x2
0

0 O4×3 0 E2x1
0 0

0 O4×3 0 E2x2
0 0

0 O4×3 0 0 0 E2x1




,

E2δ =




0 −1 0 0 1 0 0 0
0 0 0 −1 1 0 0 0
0 1 0 1 −1 0 0 0
0 0 −1 0 0 1 0 0
0 0 0 −1 0 1 0 0
0 0 1 1 0 −1 0 0
−1 0 0 0 0 0 1 0
0 0 0 0 −1 0 1 0
1 0 0 0 1 0 −1 0
−1 0 0 0 0 0 0 1
0 0 0 0 0 −1 0 1
1 0 0 0 0 1 0 −1




,

E3δ = zeros(12, 7), E4δ = zeros(12, 2),

E3z = diag
(

E
′

3z

)
,

E4z =




E
′

4z O4×1

E
′

4z O4×1

O4×1 E
′

4z
O4×1 E

′

4z
E
′

4z O4×1

O4×1 E
′

4z
O4×1 E

′

4z




, E5z =




E5x1

E5x1

E5x2

E5x2

E5x1

E5x2

E5x2




,

E5δ =
[

0 0 1 0 0 1 0 0 1 0 0 1
]T

,

E2x1
=




−Imax

0
0

Imax


, E2x2

=




−Vmax

Vmin

−Vmin

Vmax


,

E
′

3z =




1
−1
1
−1


, E

′

4z =




0
0
1
−1


,

E5x1
=




0
0
0

Imax


, E5x2

=




0
0

−Vmin

Vmax


.

V. SIMULATION OF THE BOOST CONVERTER

At the implementation stage an important issue
is that the resulting MLD model has to becom-
pletely well-posed, that is at each time instant the pair
(x(k), u(k)) should generate single-valuedz(k) and
δ(k), otherwise the simulation is not feasible. Usually
this property of the hybrid system is guaranteed by the
way the inequalities (11) are generated [8]. For a for-
mal demonstration of this property, the values ofz(k)
andδ(k) can be determined by solving aMixed-Integer
Feasibility Testwith respect to the constraints (11).
This test can be done efficiently by usingbranch and
boundalgorithms [13], [14].

The MLD boost converter model was implemented
and simulated in Matlab. In order to verify the repre-
sentation accuracy, the output of the MLD model is
compared with the output of the real model (1).

The real model of the boost converter was im-
plemented in Simulink. The parameters of the boost
converter used in simulations are:

L = 1mH, C = 100µF ,
R = 200Ω, Vg = 230V .

Figs. 3 and 4 present respectively the variations
of the output capacitor voltageVd and of the input
inductor currentiL when the position of the switch
was modified every10µsec (this corresponds to a duty
cycle of 0.5). The two figures are obtained via the MLD
model. However, the real model of the boost converter
provides approximatively the same result, illustration
of both curves on the same graphic being meaningless
for the chosen time span.
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Fig. 3. Output capacitor voltage

A detail of the output capacitor voltage is provided
in Fig. 5. The output of the MLD model is represented
by the continuous line, the output of the real model is
depicted by the dashed line, the maximum difference
between the two representations being of half a volt.
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Fig. 4. Input inductor current
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Fig. 5. Detail of the output capacitor voltage - MLD model
(continuous), real model (dashed)

0 0.01 0.02 0.03 0.04 0.05 0.06
200

300

400

500

600

700

800

Time (sec)

O
ut

pu
t c

ap
ac

ito
r v

ol
ta

ge
 (V

)

0.03010.03020.03030.03040.03050.0306

386

387

388

389

390

A
AU

Fig. 6. Output capacitor voltage for various switching patterns-
MLD model (continuous), real model (dashed)

Fig. 5 verifies also the characteristic of the DC-DC
converters that the output oscillates with a frequency
equal to the switching frequency. Although the detail
represented in Fig. 5 is taken from the transient re-
sponse of the boost converter, a pattern that repeats
every20µsec can be observed. However the amplitude
of this oscillation is very small when compared toVd

range of variation, which makes practically the ripple
not noticeable in Fig. 3.

Fig. 6 illustrates the good correspondence between
the MLD and the real model for different operating
regions. The switching patterns have been modified
every0.02sec and they respectively correspond to duty
cycles of0.5, 0.4 and0.6.

In Fig. 7 the transitions between the three states
defined in Section II is shown. StateS1 is represented
in the top subgraph,S2 is represented in the second
subgraph andS3 is represented in the bottom subgraph.
The transitions between the three states occur as de-
scribed in Section II. The data plotted in this figure
was collected during the transient response of the boost
converter, when stateS3 occurs.
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Fig. 7. State transitions

VI. CONCLUSION

In this paper a MLD model was developed for a
boost converter. The MLD representation accuracy was
verified against the response obtained from the real
model of the boost converter. The simulation results
show a very good correspondence between the two
models.

From the complexity point of view, the real model
consists in two differential equations involving two
state variables and one integer input variable for each
of the three possible working situations, while the
MLD model described in this paper has 8 integer
variables, 7 continuous variables and 40 inequality
constraints. In this light, building minimal MLD mod-
els is of great importance. However, in spite of the



high complexity that MLD development could lead
sometimes to, it provides a unified framework for mod-
elling and control of hybrid systems which explicitly
takes into account all possible functioning modes of
the system rather than controlling them separately and
interpolating between them.
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