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Abstract—The increase in electronic components and 

sensors of contemporary automobiles raises the complexity 

of network design. The development of automotive 

electronics reinforces the significance of an optimal and 

fault tolerant hybrid network via different communication 

protocols. CAN (Controller Area Network) is globally 

intended for vehicle segments to communicate with 

electronic units like Engine Management System, Stability 

Control Units, Braking Systems, and Door functions. The 

CAN and LIN (Local Interconnect Network) are taken into 

consideration to enable the implementation of hierarchical 

vehicle network gateway for quality fortification and cost 

dwindling of vehicles. The standardization will diminish the 

assorted on hand low-end multiplex solutions among 

development cost, production rate, service fee, and logistics 

charges of vehicle electronics. The proposed hybrid 

architecture leads to the gateway implementation in the 

electronic units. It encompasses the capability to share the 

data between various networking protocols with optimum 

utilization of the available control information. This system 

uses two separate gateways for CAN and LIN which 

efficiently differentiates the high-speed and low-speed 

applications pertinent to critical ECUs in the network.   
 

Keywords—Controller Area Network, Local Interconnect 

Network, Intra-Vehicular Communication, Vehicular Faults. 

I. INTRODUCTION1 

As the number of electronic control units (ECUs) within 

the vehicle increases, it significantly raises the electrical 

complexity on board. i.e., sensors integrated upon ECUs is 

getting upsurge twice of that for every 10 years. Due to the 

evolution of automotive electronics, the number of ECUs in 

a vehicle has surpassed over hundred [1]. Consequently, 

there is a complex electronics system existing within the 

vehicle. Hence the system requires an efficient gateway to 

interact between several ECUs to enable safety, fuel 

efficient, expediency and infotainment. Fig. 1 signifies to 

realize a number of functions that have been incorporated 

within single and multiple ECUs from the 1970s to present.  

In consonance with the user expectation vehicle 

demand to guarantee informations such as traffic 

management, easy maintainance, and effective infotainment 

system. All these are possible with safer roads, driver 

comfort, passenger safety and data exchange between 

nearby vehicles.  
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Fig. 1. Progression of ECUs 

 

Vehicular communication can be categorized as Inter-

vehicular communication which is managed by wireless 

networks and organized by vehicular ad-hoc networks 

(VANETS) pertaining to enable communication with 

neighboring vehicles [2]. By enabling the incessant 

exchange of periodic and event-triggered information, 

intelligent vehicles can enhance road safety and provide 

support for console applications. Nizar Alsharif et.al has 

proposed connectivity aware routing protocol in VANETS 

to increase the routing performance with the aid of selecting 

routing paths in a dynamic manner, data off-loading, 

Internet-based services and less delivery delay. Examples 

are vehicle to vehicle V2V communication, Traffic 

management, and multimedia transmissions. In view of 

Intra-vehicular communication which is managed by wired 

interfaces (LIN, CAN, and FlexRay) for barter of data 

between several ECUs within the vehicle. Examples are 

safety and navigation, chassis, and distributed control 

system based applications, human machine interface (HMI), 

global positioning system (GPS), communication functions 

like radio, antenna etc. A massive amount of sensors as well 

as processors are used in several parts of the vehicle, in 

turn, to handle time critical functions like airbags, 

emergency call, anti-lock brakes, electronic stability 

control.  While camera plays an important role in resolving 

greater challenges like environmental sensing and vehicle 

to vehicle V2V communication. The serial network 

protocols like CAN, LIN, FlexRay and multimedia-oriented 

system transport (MOST) are proposed for In-Vehicle 

Networks (IVNs) [3].  



In the vehicular electronic systems, information from the 

ECU is directed towards the respective field buses. The 

information trail with different automotive devices, field 

buses connected upon, conversion of dissimilar entities, and 

also handles the different bus speed via integrating the 

hybrid gateway. The gateway can recognize an abstraction 

of various physical layers and different protocols. 

Automotive buses (CAN, MOST, LIN, and FlexRay) can 

be added easily owing to the flexible software design. An 

application bus will allow third party application to transmit 

and receive information on the buses by means of hybrid 

gateway [4]. Ethernet controller is used for high bandwidth 

applications like flashing and diagnostics to have the access 

with the hybrid gateway and linked automotive buses as 

shown in Fig. 2.  

The gateways framework provides cutting-edge 

utilities that comprise of fault management, calibration of 

vehicles and software reprogramming [5]. Based on the 

standardized interfaces across manufacturers Automotive 

Open System Architecture AUTOSAR R4.0 complies with 

functional safety standard ISO26262 [6]. In current 

software development environment, software reusability is 

not possible due to transparency with OEM’s was denial. 

Hence AUTOSAR provides a common software 

infrastructure dedicated to automotive applications that 

impact on achieving the goals alike to reduced development 

time and costs, reusability of software increases to 

strengthen the quality and efficiency [7].  
Ethernet 

Controller

Application 

Flash

Hybrid Gateway

LIN Device 1

LIN Device 2

LIN Device 3

FlexRay Device 1

FlexRay Device 2

FlexRay Device 3

MOST 

Device 1

MOST 

Device 2

MOST 

Device 3

3rd Party 

Application CAN Device 1

CAN Device 2

CAN Device 3

CAN Device N

Application Bus

 
Fig. 2. Gateway associated with existing vehicular networks 

 

The main challenges that are faced in Vehicular Adhoc 

Networks are scalability, bandwidth limitation, privacy, and 

safety. As the intricacy in the ECU rises the network should 

be adaptable and the information must effectively distribute 

through the network in dense situations. Therefore 

relevance based techniques will provide a wide-ranging 

concepts that functions on complicated wired networks and 

control the delivery of information where it is necessarily 

required. Since the data sensed by the vehicle is 

communicated to the user which may contain any private 

information. Thus to authenticate in-vehicle report 

pseudonym based approach can be used for avoiding 

anonymous communications. Whereas there will be a 

significant trouble in managing the pseudonym. The wired 

counterparts with in-vehicle scenario are much distributed 

upon vehicular networks. Consequently it adds more 

responsibilities among the nodes for successful data 

delivery along with effective bandwidth utilization among 

the available nodes. The understanding of global 

positioning system and vehicular wired communications 

combined with intra-vehicle computation and information 

sensing capabilities will provide outstanding development 

in safety issues[22]. From the user perspective constantly 

the vehicle was expected to deliver the safety information 

through signaling and voice based communication thereby 

to evade the catastrophic failure. In this work the CAN and 

LIN protocol are taken into account since it diminishes 

wiring and distributed control which enhances the system 

performance. Both protocols will offer the ability to operate 

in various electrical environments and guarantee noise free 

transmission. It present fault free broadcast as every node 

can check for errors during the transmission of information 

and send the error frame. 

The remainder of this paper provides the information on 

the deployment of central network gateway based on CAN 

and LIN to achieve fast and effective communication 

between control modules which could minimize the 

complexity as well. Section II discusses the overview of 

CAN and LIN interfaces related to arbitration and error 

management principles. Section III states the hybrid 

network gateway operating mechanisms and illustrated the 

design flow of CAN and LIN networks using the 

algorithms. Experimental results are presented in section 

IV, and section V concludes this article.  

II. CAN AND LIN OVERVIEW 

A.  Controller Area Network Overview 

CAN network is widely used to transfer the greater part 

of in-vehicle communication signals. It has features like 

multi-master, safety, arbitration, speed, and distance. IVNs 

often use the CAN for node connected sensor based 

applications, which offers a data rate up to 1MBPS [8]. 

Although several networks have been proposed, none of 

them meet the requirements that CAN accomplish. The 

foremost reason for the continuous reach of CAN protocol 

is its relatively low cost. As quite large energy efficient and 

sophisticated CAN transceivers are available in the market, 

the hardware cost of the CAN network has an immense 

downhill. The CAN protocol employs carrier sense multiple 

access with a collision avoidance (CSMA/CA) mechanism 

to arbitrate access to the bus (CIA, 2007). It uses a priority 

mechanism by means of numerical identifiers to overcome 

collision when two or more nodes wish to transmit 

concurrently. It is illustrated from Fig. 3, on the CAN bus a 

dominant bit ‘zero’ is used to update a recessive ‘one’ bit. 

Such that, when there are two nodes Node A and Node B, 

the first node (Node A) transmitting a one while another 

node (Node B) transmitting a zero then the bus results in a 

zero level. When more than one node wishes to transmit, it 

observes the entire bus to ensure if there is any bus activity 

taking place. If there is no activity on the bus, then nodes 

start to transmit their message identifiers (MSB first), prior 

to checking the bus levels. If one node broadcast a recessive 

bit over the bus and another transmits a dominant bit, the 
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bus outcome will be a dominant level. Consequently, the 

node transmitting a recessive bit will notice a dominant bit 

on the bus (state where B loses) and halts the transition of 

any 

 
Fig. 3. Controller Area Network (CAN) Bus Arbitration 

 

additional information in sequence. In this state, the node 

with the lowest message identifier number will gain access 

to the bus and transmit its message. The node which has 

lost through the arbitration process then wait until the bus 

opens before re-transmitting the message. The CAN 

protocol makes use of the bus arbitration method to 

guarantee that the node among the highest priority (lowest 

value in the identifier field) will persist to transmit without 

having to back off the bus. It affirms that CAN have an 

expected behavior and is proficient in its use of the bus 

bandwidth. 

 

B. CAN Error (Fault) Handling & Confinement  

The flexibility of systems can be identified by remotely 

analyzing how the system reacts and processes when an 

error arises. In conventional error detection method, the 

data delivery is ensured when receiver handover an 

acknowledgment (which is commonly the received station 

address) to the transmitting station. In the CAN perception, 

identifier ‘labeling’ message is communicated and received 

by all members through the network, which causes 

mandatory execution of the task for error check in every 

local station extant in the network. To attain this idea, the 

CAN protocol uses a permutation of positive (PACK) and 

negative (NACK) acknowledgments [9] and [10]. Based on 

working out, receiver sends the acknowledgement to the 

master node. A receiver may send either positive or 

negative acknowledgement. A dominant bit in the 

acknowledgement slot represents a positive ACK, whereas 

a recessive level in the slot represents a negative ACK. The 

ACK delimiter will be transmitted always most importantly 

for the purpose of error tracing. As the sender transmits 

both ACK delimiter and ACK slot in accordance with its 

characteristics. To ensure the exactitude of the message 

broadcast to the sender one positive acknowledgement is 

acceptable. If there is not even single positive ACK and the 

recessive ACK slot is not updated by any receiver, the 

processing message transmission will be terminated by 

sending an error flag while sender detects an error ACK. 

This error is either caused due to the sender or when there 

are no receivers on the bus. The PACK is defined by the 

expression:  

 

PACK = ACK + (i) for any value of (i)     (1) 

 

Where, PACK is sent from all the accessible stations (i) 

which received the correct message during a distinct time 

interval (ACK time slot). Thus, PACK gives a sign of at least 

one successful message transfer. The NACK evinces that 

there is a minimum one error exist in the whole system. 

In the beginning, each station should be having two 

separate errors offset (counters), one counter will keep an 

eye on circumstances while the message is being transferred 

and other will execute a related task during the reception. In 

accordance with the error type reported and the station 

working conditions the offsets are incremented to several 

weightings and definite conditions are decremented 

accordingly. The purpose of these offsets is to trace the 

initiating information from all additional stations that are 

sent directly or indirectly. When too many errors are 

acquired in a particular station, then station state may 

switches from ‘error active’ to ‘error passive’ state. In 

which the particular station cannot communicate, whereas 

active forever in the supervision of errors which may 

happen on the network. If there are too many transmission 

errors emerging in the network, then the network could be 

blocked, making all transfer unfeasible. When error gets 

detected, an active error flag is sent using bus link by the 

error-active network node. This is default node-state during 

reset. An error-passive network node has already accrued 

with relatively high transmit or receive error count, hence 

this node monitors a significantly higher error rate over a 

longer period of time. A node in the bus-off state is 

restricted to have any influence on the bus. Fig. 4 illustrates 

the error state diagram of a CAN node. After a reset, a node 

is in the error-active state. If any of the two error count 

crosses the value 127, then the monitor will demand the 

MAC sub-layer and enters into the error-passive state. 

Although node becomes error active again during both 

receive and transmit error count drops below the value 128. 

A node is disconnected from the bus when the transmit 

error count surpasses 255 and this results in the bus-off 

state. From the bus-off state, a node can re-enter into error-

active state after perceiving 128 sequences of eleven 

consecutive recessive bits. Immediately the error count will 

be reconfigured to 0 upon reset. This measure ensures that a 

possibly erroneous reset node cannot disturb conveyance 

again right away after reset. Proportionately up to 128 

further frames can be transmitted without interrupt even at a 

very high busload [11]. 

 



Fig. 4. Controller Area Network (CAN) Bus – Error State Diagram 

 

C. Local Interconnect Network (LIN) Overview 

The LIN protocol is proposed for strong support in 

controlling mechanical-electronic components existent in 

distributed systems of automotive applications. LIN 

exploits the concept of master-slave architecture, where the 

network contains single master and fixed number of slave 

nodes. 
 

 
Fig. 5. Local Interconnect Network (LIN) Bus Arbitration  

 

The LIN frame comprises a frame header and response 

fields. The header contains protected response identifier 

[12]. Once the LIN master sends frame header message, the 

LIN slave respond to it by sending a frame. Data is 

transferred successively as 8 data bits with 1 start and 1 

stop bit without parity, thus 10 bits are transmitted per byte. 

As shown in Fig. 5 data on the bus is separated into 

recessive (logic high) and dominant (logic low). At the 

transmitter the least voltage level should be fewer than 20% 

of the battery voltage (VBattery) or approximately 1Volt, 

henceforth  resulting in logic 0. In contrast, the maximal 

level voltage, which represents logic 1, should be greater 

than 80% of the battery voltage. At the receiver logic, 0 will 

be lesser than 60% of the battery voltage, whereas logic 1 

will be higher than 60% of the battery voltage. Specific 

slave node reacts to the identifier and sends the frame 

response, which holds data and checksum fields. It acts as a 

sub bus for CAN with limited utility, lower cost, bit rate 

and reduced bandwidth in the network. The real-time 

implementation of LIN connection is based on ‘single’ 

wire, which reduces the cost of cabling and connectors than 

in CAN [13]. LIN provides guaranteed transmitted signal 

latency, daisy chain configuration, and ensures the safety of 

transmitted data by adopting CRC and error detection. Thus 

LIN can find the faulty nodes in the network besides with 

reduced complexity compared to conventional UART or 

SCI based systems.  

 

D. LIN Error Signaling & Confinement  

Due to peerless master architecture, LIN is implausible to 

accommodate an error signaling tool. Though the errors are 

identified nearby these error data can be provided on 

request in the type of diagnostic communication messages. 

The LIN nodes are capable of discriminating malfunctions 

from short term to eternal ones and accomplish their own 

confined diagnoses and get counteractive action. 

In this work, proof of concept is carried out using 

Freescale microcontroller which is predominantly used in 

automotive applications. The entire test bench consists of 

single master node and multiple slave nodes. The device 

results were achieved for a frequency of 25MHz, while the 

execution speed may be doubled when over clocking of 

50MHz. The efficiency of the system completely depends 

upon the computation speed, memory and low-speed CAN 

transceiver. To overcome the delay occurred in this device, 

a Tricore controllers can be deployed without utilizing the 

controller bandwidth or resources. Through introducing 

event-triggered messages, average network efficiency can 

be achieved to overcome the performance issues in LIN 

protocol. Whereas the major limitation is that, it impairs the 

worst-case performance and set hurdles network diagnosis 

as well. 

III. EMBEDDED VEHICULAR NETWORK GATEWAY 

Newfangled vehicles are controlled electronically via 

processors in addition to mechanical components. In the 

vehicle, an ECU will be controlling the devices or 

subsystems. In general, the processor in an ECU takes the 

input value from the available sensor then processes the 

data and distributes the same data within the ECU or 

another ECU in few clock cycles to furnish efficient 

performance. The role of ECU contributes in all aspects 

right from simpler tasks such as wiper movement or brake 

light control to time critical functions like airbag control 

and adaptive cruise control. Moreover, the various 

subsystems in the vehicle encompass in operating the task 

of processors in order to control actuators and processing 

sensor values. Precisely in order to fulfill the whole 

requirements, onboard CAN and LIN networks have been 

designed. By the moment the information from several 

ECUs are transferred through the field buses to the hybrid 

gateway, there is a chance for the occurrence of a fault in 

one particular CAN node. On that instance, other nodes will 

be  competent in communicating to the gateway irrespective 

of the particular node. To overcome this issue a switch has 

been employed with the gateway towards field bus 

switching to conquer well-organized data delivery with 

proper diagnostic interface [14].  

The role of the gateway is essential to establish a 

communication between the existing field buses. In future 

Ethernet will play a dominant role on Intra Vehicular 

Networks (IVN) [15], due to low cost, higher bandwidth 

and it can support for vehicle diagnosis and infotainment 

systems. Similarly, the hybrid gateway architecture has 

been replaced by backbone based architecture in which 

every sub-network will be communicating with its own 

domain control unit (DCU). For example, the CAN and 

MOST have got separate DCUs. Therefore, the each DCU 

will act as a dedicated gateway for available sub-networks. 

At this juncture, the major constraints are developing a 

hardware-software platform and it should be easy to setup 

and verify. There should be a different gateway 

implemented for different vehicle models and/or options 
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should be provided to choose the sub-network and its 

appropriate gateway for specific vehicle model. 

A reliable gateway will be able to solve the message 

conversion issues over the existing field buses and will 

focus on implementing efficient gateway mechanism using 

OSEK/VDX environment [16]. Predominantly the hybrid 

gateway cannot oversee the functionalities like dynamic 

routing, parallel reprogramming, security and GUI based 

software configuration and verification in order to reuse the 

same software for different vehicle models. Fig. 6 depict 

the architecture of CAN and LIN protocol working together 

as a hybrid structure to accrue the efficiency of the entire 

automobile system. The time critical functions (EMS, ABS, 

SR) are solely handled by the CAN node and non-critical 

functions (Temperature Control, Wiper, Cluster, and 

Infotainment) are governed by the LIN node [17]. The CAN 

and LIN bus are restrained by a single gateway in which 

CAN node acts a  master that is connected to many LIN 

slaves. 
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Fig. 6. CAN/LIN architecture with single gateway approach 
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Fig. 7. Hybrid configuration handling High/Low-speed Applications 

 

In accordance with single gateway approach, the 

critical and non-critical applications are presided over by a 

single gateway. It represents the hybrid structure, where the 

high/low-speed applications are differentiated. As shown in 

Fig. 7 green lines indicates that, if the CAN node turn out to 

be faulty, the LIN node starts operating and control the 

functions handled by the CAN momentarily until the CAN 

node is fixed. On the other hand, red lines point out that, if 

LIN node fails, the CAN node will perform the utility 

handled by the LIN temporarily until the CAN node gets 

resolved as point out by the red lines. 

In the proposed architecture CAN node is implemented 

using Freescale MC9S12XDP512 16-bit microcontroller in 

code warrior IDE. It uses MC33388 high-speed CAN 

transceiver and furthermore uses MC33661 low-speed LIN 

transceiver. The CAN module is constructed in order to 

simulate and guarantee the data delivery. If any error arises 

at CAN node, the LIN onset functioning momentarily till 

CAN node is resuming back. This architecture has another 

additional feature i.e., LIN node is designed to monitor 

CAN in such a way that it checks nodes availability by 

assigning designated pins which are programmed in the 

microcontroller to check its status while gaining control of 

CANs functionality. The faults in CAN gateway can arise 

due to software gateway failure besides protocol error of 

CAN like bit errors, stuff error, acknowledge error, and 

CRC error [18]. Any of these errors will be identified by the 

CAN gateway all the way through its CAN driver kernel 

coding. Additionally kernel will identify the Transmission 

and Reception errors of CAN which will be monitored by 

the software as well.  
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Fig. 8. Proposed Hybrid Architecture Model 

 

In Fig. 8, the red line indicates the connectivity intended 

for the LIN gateway when the CAN get malfunction due to 

gateway failures or CAN protocol errors. Whereas the 

green lines indicate the connectivity for CAN gateway as 

soon as LIN goes wrong. Due to ease of software design, 

the CAN and LIN gateway together receives the critical and 

non-critical signals from the ECUs to facilitate their own 

functionality unless the fault is identified in either gateway. 

The internal local buffers deliberated in the software of 

CAN and LIN gateway will have the data of both critical 

and non-critical applications. During failure scenario, these 

data buffers will be updated on each occurrence of input 

from CAN or LIN nodes. Henceforth the data mismatch 

will not ensue as both the gateways have dedicated local 

buffers for both applications.  

The performance of the CAN bus during the occurrence 

of wire fault can be examined as follows. Whenever an 

ECU transmits information on the bus, a bit error will be 

detected by the transceiver and goes to the dominant state. 

Consequently there is a voltage drop take place in 

resistance of the wire. In order to detect the fault in wire the 

resistance or voltage drop need to be examined at regular 

intervals. Therefore resistance of the wire is frequently 

measured through four wire kelvin resistance method. This 

method will reduce 20% of the measurement error in 

contrast with two wire resistance measurement method 



[19]. To find out resistance of the wire, initially the voltage 

and current should be measured. Voltage can be determined 

by observing with different positions. Whereas, a low cost 

shunt resistor is exploited to measure the current on the 

CAN Bus. The CAN cable fault is located using Time 

Domain Reflectometry (TDR) method. Based on the 

reflections in the CAN cable (twisted pair), if the cable has 

normal impedance then there will not be any reflections in 

the cable and the same transmitted signal is absorbed at the 

other end. While there is any impedance change in the cable 

then the transmitted signal will be reflected back to the 

source. If the received signal has step increase in 

impedance, the same signal will be reflected back. 

Whereas, the received signal has decrease impedance the 

reflected signal might have decrease impedance [20]. The 

amplitude of the reflection may not only depend on the 

resistance change but also due to cable loss. The change in 

amplitude is considered as fault intensity and the difference 

in reflected signal time is intended as the length of the 

cable. The TDR approach is implemented by means of T 

connector, where one end of the connector will have known 

signal and opposite end will have the cable to be tested. The 

upper end of the connector must be associated to the device 

wherein magnitude and time of the signal is calculated [21]. 

To visualize the result, the CAN protocol error is created 

using the CAN stress hardware from Vector. The error 

frames generated by CAN and TX/RX error count in the 

software will get incremented. Once there is an increment 

in error count, the LIN gateway software will recognize that 

there is some failure in CAN. Gateway of CAN 

immediately checks its internal buffers to ensure which data 

was transmitted during the time of fault occurrence. 

Subsequently, LIN gateway will start transmitting the CAN 

failed message as well as also its own service messages in 

the network. The protocol conversion from CAN to LIN is 

written in software. When the CAN node resumes its 

functionality, the LIN node will send the frame that was 

transmitting at the moment and inform the CAN gateway to 

execute its utility.  

The Fig. 9 shows the flow diagram of gateway module is to 

check for any protocol errors, then consequently to carry 

out the CAN to LIN message conversion for the fault 

tolerant gateway system. The CAN to LIN translation 

algorithm is presented in Algorithm 1. 
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Fig. 9. Flow diagram of gateway module 

 

A. Algorithm 1. CAN to LIN conversion 

1. CAN and LIN device driver software files will be called 

under the main program 

2. Gateway function is implemented in the scheduler part 

(Scheduler is designed as a time slice in the software which 

will run in 10ms, 200ms, 500ms, 1000ms according to the 

clock frequency of the microprocessor. In the proposed 

gateway design the oscillator clock frequency is 25MHZ) 

3. Initialize the CAN and LIN timers for 10ms, 100ms, 

500ms in scheduler and also the interrupts for CAN and 

receive buffers to send and receive the message frames 

respectively 

4. If the timers are getting elapsed as triggered in step 3, 

send the message frames that are required to be sent to the 

CAN buffers which will consign the message frames along 

with the data in the data bus of CAN. The periodicity of the 

message frames of CAN is done by Scheduler. The same 

procedure is followed for the LIN 

5. Check the bus periodically for the messages received 

either on CAN or LIN as well 

6. If the new message is available to move the new message 

that is updated in CAN and LIN buffers into the local 

software buffers 

7. Check whether the CAN to LIN conversion has to be 

done. This decision is made based on the requirements 

whether any new message is received in CAN node. If yes, 

CAN bus will sent the data to the node connected to LIN 

network 

8. If CAN to LIN conversion is required, do it in software 

(Mostly the data received that is moved to the local buffers 

are converted to the LIN data format and sent to the LIN 

network).  
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9. Update the buffers and send on the required network 

10. Check for any protocol errors of CAN. This error 

checking is carried out by means of device driver software 

11. If there are any errors, increment the error detection 

counter, error message is delivered by LIN or CAN either 

has error and send on bus 

12. Step 11 is repeated until the CAN/LIN errors are 

amended. 
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Fig. 10. Flow diagram of LIN module 

 

Fig. 10 illustrates the flow to send and receive the LIN 

message in the LIN network. The data transfer operation of 

LIN is presented in Algorithm 2. 
 

B. Algorithm 2. LIN Data Transfer Operation 

1. Configure the LIN module by giving the required values 

to the data registers of the microcontroller device. The 

values chosen are baud rate, channel selection, data size 

2. LIN employs Master and slave architecture. Thus master 

node and slave nodes are to be selected 

3. Check whether the node is master or not 

4. If node is master node, then configure the LIN in 

transmit mode and extract the information required for 

length, Identifier and check the parity for the ID 

6. Start the LIN communication by synchronizing with the 

Master and Check whether slave or the master needs to 

send the message, If master needs to send the message, 

compute the checksum as per the message protocol format 

and send the data bytes with checksum on the LIN network 

8. If master is not sending the message, then configure the 

LIN in receive mode and obtain all data bytes from the 

slave nodes 

9. After updating the received message in the local LIN 

software buffers, check for the checksum in the received 

message to verify it 

10. If the node is not a master (check for Step 3), configure 

the LIN in slave mode, Make the synchronization and ID 

definition, and receive the message and put into the data 

buffers 

11. Compute the checksum to verify whether the message 

received is correct or not. 
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Fig. 11. Flow diagram of CAN module 

 

Fig. 11 shows the CAN module flow diagram to send and 

receive the data frames over the CAN network. The data 

exchange function of CAN is presented in Algorithm 3. 

 

C. Algorithm 3. CAN Data Transfer Operation 

1. Initialize the CAN buffers for setting the baud rate, 

masking, and filtering of CAN ID registers 

2. Check whether new CAN message has been received or 

not and identify in which CAN buffer in which the new 

message is received 

4. When the buffer is updated with the message forward the 

message to the local CAN data buffer 

5. Check whether the CAN message need to be transmitted 

or not, If any message needs to be transmitted, update the 

transmit buffer and send the data on CAN bus. 

6. Check whether the scheduler is triggered. If scheduler 

has triggered and more message is to be transmitted then 

configure the CAN module in transmit mode. 

7. Initialize the transmit registers with ID, size and data.  

8. Start the transmission and check whether the 

transmission is carried out successfully. 

10. Repeat the step 9 until the transmission completes.  



IV. EXPERIMENTATION  

The time taken for transmission of messages from 

master to slave and vice versa is examined by linking CAN 

buses with Vector CANoe and effectively tested the system 

etiquette. The Vector CANoe monitors the bus for peak 

load, error frames, etc. The CANcaseXL hardware is used 

to link the CAN bus with Vector CANoe and the CAN 

interface is connected to the Freescale development board 

by tapping the CAN High and CAN low pins from the 

channel 2 of the board as shown in Fig. 12. 

 

Vector CANcaseXL Hardware

Display Device

Micro USB 

Power Slot

Freescale MC9S12XDP512 

Microcontroller Device

Power 

Adapter

GPIO Header 

Pins

Secure 

ECU  
Fig. 12. Board connected with Vector CancaseXL for Bus 

monitoring 

 

The fault tolerant and intelligent gateway is examined 

using MC9S12XDP512 Freescale device and outcome is 

accomplished. CANoe development environment is 

exploited for experimentation of automotive serial 

interfaces. Fig. 13 illustrates the CAN-CAN (C2C) gateway 

i.e. The CAN ID 2CC is simulated from IG block of Vector 

CANalyzer and sends to CAN channel 1. The same 

message is received by another channel and transmitted 

back in the CAN ID 100, which can be discerned in the 

trace window of Vector CANalyzer. The Fig. 14 depicts the 

decoding of the CAN message IDs 0x2CC which is shown 

in LECROY wave surfer. The waveform captured ensures 

the decoded CAN frame by means of start of frame, data 

bytes, CRC in line for the end of the frame with bit stuffing. 

Fig. 15 illustrates the LIN transmission with message ID 

0x01. The decoding of LIN frame demonstrates the 

resynchronization, ID number, and bytes of data. Fig. 16 

represent that the CAN gateway failure achieved by fusing 

both the CAN lines (CAN High and CAN Low) thus error 

frames can be generated over the bus. Moreover, protocol 

failure of C2C gateway failure arises as there is zilch 

message acquired in CAN bus during broadcasting. Fig. 17 

portrays the error frame on CAN bus. Fig. 18 shows the 

simulation of the true time simulator (debugger) of the 

Freescale code warrior IDE. Notice the data window the 

transmit error count will get incremented when the CAN 

lines are fused (as outlined in the device driver software of 

CAN). At this instance, LIN gateway will be accomplished 

to retrieve and transmit the CAN messages which stand in 

error state. The gateway of CAN bus in error state and LIN 

bus transmitting the CAN data frames (which will be 

decoded and framed as per CAN data in form of LIN 

message) has experimented on LIN bus in the network as 

shown in Fig. 19. As a result, momentary failure of gateway 

and deterrence of bus is confined. Thus the proposed 

gateway will be constructive in terms of hybrid architecture 

where the CAN and LIN networks have well-built 

communication towards each other with reduced cost and 

high performance. 

V. CONCLUSION 

This paper produces the overview of CAN and LIN 

protocol concepts which are demonstrated with the help of 

Vector CANoe tool and Freescale hardware. During the 

early stage of the development process, the impact of this 

gateway based approach helps in diagnosing the intra-

vehicle networks thereby the significant amount of design 

time has been saved for real-time applications. The ECU 

modules are positioned according to the vehicle gateway 

standards beneficial to avoid data loss due to increased wire 

length and complexity. The gateway brought into this 

article will assist CAN and LIN networks. For the 

experimental analysis as illustrated in previous sections 

rigid effort was effectuated to improve the gateway 

performance and resolve the faults that crop up while 

sharing the data among the protocol. As a part of future 

work the approaches outlined in this article can be extended 

for other intra-vehicular networks like FlexRay and MOST. 

In addition to this, the CAN FD protocol can be utilized for 

higher bandwidth applications with payload of up to 64 

byte, which is more suitable for complex sensor systems 

and bid like benefits. 

 

 
Fig. 13. CAN messages Transmission and Reception (Refer to CAN ID) 

 

 
Fig. 14. CAN Message Frame Captured with LECROY Bus Analyzer 
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Fig. 15. LIN Frame Captured using LECROY Scope 

 

 
Fig. 16. CAN Error Frames Captured using Vector CANalyzer 

 
Fig. 17. CAN Bus Error Frames Captured using LECROY Scope 

 
 

Fig. 18. LIN Message Transmission when CAN Node has Error Frames 

using Real-Time Debugger 

 

 
Fig. 19. LIN Message Transmission when CAN Node has Error Frames 

using LECROY Scope 
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