
 1

An New Methodology on Fault Clearance Technique

for Intra-Vehicular Networks

R.Latha

1
Department of Electrical & Electronics Engineering, KCG CT, Chennai, India.

Abstract—The increase in electronic components and

sensors of contemporary automobiles raises the complexity

of network design. The development of automotive

electronics reinforces the significance of an optimal and

fault tolerant hybrid network via different communication

protocols. CAN (Controller Area Network) is globally

intended for vehicle segments to communicate with

electronic units like Engine Management System, Stability

Control Units, Braking Systems, and Door functions. The

CAN and LIN (Local Interconnect Network) are taken into

consideration to enable the implementation of hierarchical

vehicle network gateway for quality fortification and cost

dwindling of vehicles. The standardization will diminish the

assorted on hand low-end multiplex solutions among

development cost, production rate, service fee, and logistics

charges of vehicle electronics. The proposed hybrid

architecture leads to the gateway implementation in the

electronic units. It encompasses the capability to share the

data between various networking protocols with optimum

utilization of the available control information. This system

uses two separate gateways for CAN and LIN which

efficiently differentiates the high-speed and low-speed

applications pertinent to critical ECUs in the network.

Keywords—Controller Area Network, Local Interconnect

Network, Intra-Vehicular Communication, Vehicular Faults.

I. INTRODUCTION1

As the number of electronic control units (ECUs) within

the vehicle increases, it significantly raises the electrical

complexity on board. i.e., sensors integrated upon ECUs is

getting upsurge twice of that for every 10 years. Due to the

evolution of automotive electronics, the number of ECUs in

a vehicle has surpassed over hundred [1]. Consequently,

there is a complex electronics system existing within the

vehicle. Hence the system requires an efficient gateway to

interact between several ECUs to enable safety, fuel

efficient, expediency and infotainment. Fig. 1 signifies to

realize a number of functions that have been incorporated

within single and multiple ECUs from the 1970s to present.

In consonance with the user expectation vehicle

demand to guarantee informations such as traffic

management, easy maintainance, and effective infotainment

system. All these are possible with safer roads, driver

comfort, passenger safety and data exchange between

nearby vehicles.

In 1970s

Present-day

In 1990s

Vehicle speed

sensor

Mass airflow

sensor

Oxygen

sensor

Throttle

position sensor

Engine speed

sensor

Knock

sensor

CamShaft

position sensor

Crank position

sensor

Engine coolant

temperature

sensor

Electronic

Control Unit

Electronic

Control Unit

ECU-1

ECU-2

Single ECU

= Single

function

Single ECU

=

N function

Multiple

ECU =

N functions

Sensors ECUs Actuators

Fig. 1. Progression of ECUs

Vehicular communication can be categorized as Inter-

vehicular communication which is managed by wireless

networks and organized by vehicular ad-hoc networks

(VANETS) pertaining to enable communication with

neighboring vehicles [2]. By enabling the incessant

exchange of periodic and event-triggered information,

intelligent vehicles can enhance road safety and provide

support for console applications. Nizar Alsharif et.al has

proposed connectivity aware routing protocol in VANETS

to increase the routing performance with the aid of selecting

routing paths in a dynamic manner, data off-loading,

Internet-based services and less delivery delay. Examples

are vehicle to vehicle V2V communication, Traffic

management, and multimedia transmissions. In view of

Intra-vehicular communication which is managed by wired

interfaces (LIN, CAN, and FlexRay) for barter of data

between several ECUs within the vehicle. Examples are

safety and navigation, chassis, and distributed control

system based applications, human machine interface (HMI),

global positioning system (GPS), communication functions

like radio, antenna etc. A massive amount of sensors as well

as processors are used in several parts of the vehicle, in

turn, to handle time critical functions like airbags,

emergency call, anti-lock brakes, electronic stability

control. While camera plays an important role in resolving

greater challenges like environmental sensing and vehicle

to vehicle V2V communication. The serial network

protocols like CAN, LIN, FlexRay and multimedia-oriented

system transport (MOST) are proposed for In-Vehicle

Networks (IVNs) [3].

In the vehicular electronic systems, information from the

ECU is directed towards the respective field buses. The

information trail with different automotive devices, field

buses connected upon, conversion of dissimilar entities, and

also handles the different bus speed via integrating the

hybrid gateway. The gateway can recognize an abstraction

of various physical layers and different protocols.

Automotive buses (CAN, MOST, LIN, and FlexRay) can

be added easily owing to the flexible software design. An

application bus will allow third party application to transmit

and receive information on the buses by means of hybrid

gateway [4]. Ethernet controller is used for high bandwidth

applications like flashing and diagnostics to have the access

with the hybrid gateway and linked automotive buses as

shown in Fig. 2.

The gateways framework provides cutting-edge

utilities that comprise of fault management, calibration of

vehicles and software reprogramming [5]. Based on the

standardized interfaces across manufacturers Automotive

Open System Architecture AUTOSAR R4.0 complies with

functional safety standard ISO26262 [6]. In current

software development environment, software reusability is

not possible due to transparency with OEM’s was denial.

Hence AUTOSAR provides a common software

infrastructure dedicated to automotive applications that

impact on achieving the goals alike to reduced development

time and costs, reusability of software increases to

strengthen the quality and efficiency [7].
Ethernet

Controller

Application

Flash

Hybrid Gateway

LIN Device 1

LIN Device 2

LIN Device 3

FlexRay Device 1

FlexRay Device 2

FlexRay Device 3

MOST

Device 1

MOST

Device 2

MOST

Device 3

3rd Party

Application CAN Device 1

CAN Device 2

CAN Device 3

CAN Device N

Application Bus

Fig. 2. Gateway associated with existing vehicular networks

The main challenges that are faced in Vehicular Adhoc

Networks are scalability, bandwidth limitation, privacy, and

safety. As the intricacy in the ECU rises the network should

be adaptable and the information must effectively distribute

through the network in dense situations. Therefore

relevance based techniques will provide a wide-ranging

concepts that functions on complicated wired networks and

control the delivery of information where it is necessarily

required. Since the data sensed by the vehicle is

communicated to the user which may contain any private

information. Thus to authenticate in-vehicle report

pseudonym based approach can be used for avoiding

anonymous communications. Whereas there will be a

significant trouble in managing the pseudonym. The wired

counterparts with in-vehicle scenario are much distributed

upon vehicular networks. Consequently it adds more

responsibilities among the nodes for successful data

delivery along with effective bandwidth utilization among

the available nodes. The understanding of global

positioning system and vehicular wired communications

combined with intra-vehicle computation and information

sensing capabilities will provide outstanding development

in safety issues[22]. From the user perspective constantly

the vehicle was expected to deliver the safety information

through signaling and voice based communication thereby

to evade the catastrophic failure. In this work the CAN and

LIN protocol are taken into account since it diminishes

wiring and distributed control which enhances the system

performance. Both protocols will offer the ability to operate

in various electrical environments and guarantee noise free

transmission. It present fault free broadcast as every node

can check for errors during the transmission of information

and send the error frame.

The remainder of this paper provides the information on

the deployment of central network gateway based on CAN

and LIN to achieve fast and effective communication

between control modules which could minimize the

complexity as well. Section II discusses the overview of

CAN and LIN interfaces related to arbitration and error

management principles. Section III states the hybrid

network gateway operating mechanisms and illustrated the

design flow of CAN and LIN networks using the

algorithms. Experimental results are presented in section

IV, and section V concludes this article.

II. CAN AND LIN OVERVIEW

A. Controller Area Network Overview

CAN network is widely used to transfer the greater part

of in-vehicle communication signals. It has features like

multi-master, safety, arbitration, speed, and distance. IVNs

often use the CAN for node connected sensor based

applications, which offers a data rate up to 1MBPS [8].

Although several networks have been proposed, none of

them meet the requirements that CAN accomplish. The

foremost reason for the continuous reach of CAN protocol

is its relatively low cost. As quite large energy efficient and

sophisticated CAN transceivers are available in the market,

the hardware cost of the CAN network has an immense

downhill. The CAN protocol employs carrier sense multiple

access with a collision avoidance (CSMA/CA) mechanism

to arbitrate access to the bus (CIA, 2007). It uses a priority

mechanism by means of numerical identifiers to overcome

collision when two or more nodes wish to transmit

concurrently. It is illustrated from Fig. 3, on the CAN bus a

dominant bit ‘zero’ is used to update a recessive ‘one’ bit.

Such that, when there are two nodes Node A and Node B,

the first node (Node A) transmitting a one while another

node (Node B) transmitting a zero then the bus results in a

zero level. When more than one node wishes to transmit, it

observes the entire bus to ensure if there is any bus activity

taking place. If there is no activity on the bus, then nodes

start to transmit their message identifiers (MSB first), prior

to checking the bus levels. If one node broadcast a recessive

bit over the bus and another transmits a dominant bit, the

 3

bus outcome will be a dominant level. Consequently, the

node transmitting a recessive bit will notice a dominant bit

on the bus (state where B loses) and halts the transition of

any

Fig. 3. Controller Area Network (CAN) Bus Arbitration

additional information in sequence. In this state, the node

with the lowest message identifier number will gain access

to the bus and transmit its message. The node which has

lost through the arbitration process then wait until the bus

opens before re-transmitting the message. The CAN

protocol makes use of the bus arbitration method to

guarantee that the node among the highest priority (lowest

value in the identifier field) will persist to transmit without

having to back off the bus. It affirms that CAN have an

expected behavior and is proficient in its use of the bus

bandwidth.

B. CAN Error (Fault) Handling & Confinement

The flexibility of systems can be identified by remotely

analyzing how the system reacts and processes when an

error arises. In conventional error detection method, the

data delivery is ensured when receiver handover an

acknowledgment (which is commonly the received station

address) to the transmitting station. In the CAN perception,

identifier ‘labeling’ message is communicated and received

by all members through the network, which causes

mandatory execution of the task for error check in every

local station extant in the network. To attain this idea, the

CAN protocol uses a permutation of positive (PACK) and

negative (NACK) acknowledgments [9] and [10]. Based on

working out, receiver sends the acknowledgement to the

master node. A receiver may send either positive or

negative acknowledgement. A dominant bit in the

acknowledgement slot represents a positive ACK, whereas

a recessive level in the slot represents a negative ACK. The

ACK delimiter will be transmitted always most importantly

for the purpose of error tracing. As the sender transmits

both ACK delimiter and ACK slot in accordance with its

characteristics. To ensure the exactitude of the message

broadcast to the sender one positive acknowledgement is

acceptable. If there is not even single positive ACK and the

recessive ACK slot is not updated by any receiver, the

processing message transmission will be terminated by

sending an error flag while sender detects an error ACK.

This error is either caused due to the sender or when there

are no receivers on the bus. The PACK is defined by the

expression:

PACK = ACK + (i) for any value of (i) (1)

Where, PACK is sent from all the accessible stations (i)

which received the correct message during a distinct time

interval (ACK time slot). Thus, PACK gives a sign of at least

one successful message transfer. The NACK evinces that

there is a minimum one error exist in the whole system.

In the beginning, each station should be having two

separate errors offset (counters), one counter will keep an

eye on circumstances while the message is being transferred

and other will execute a related task during the reception. In

accordance with the error type reported and the station

working conditions the offsets are incremented to several

weightings and definite conditions are decremented

accordingly. The purpose of these offsets is to trace the

initiating information from all additional stations that are

sent directly or indirectly. When too many errors are

acquired in a particular station, then station state may

switches from ‘error active’ to ‘error passive’ state. In

which the particular station cannot communicate, whereas

active forever in the supervision of errors which may

happen on the network. If there are too many transmission

errors emerging in the network, then the network could be

blocked, making all transfer unfeasible. When error gets

detected, an active error flag is sent using bus link by the

error-active network node. This is default node-state during

reset. An error-passive network node has already accrued

with relatively high transmit or receive error count, hence

this node monitors a significantly higher error rate over a

longer period of time. A node in the bus-off state is

restricted to have any influence on the bus. Fig. 4 illustrates

the error state diagram of a CAN node. After a reset, a node

is in the error-active state. If any of the two error count

crosses the value 127, then the monitor will demand the

MAC sub-layer and enters into the error-passive state.

Although node becomes error active again during both

receive and transmit error count drops below the value 128.

A node is disconnected from the bus when the transmit

error count surpasses 255 and this results in the bus-off

state. From the bus-off state, a node can re-enter into error-

active state after perceiving 128 sequences of eleven

consecutive recessive bits. Immediately the error count will

be reconfigured to 0 upon reset. This measure ensures that a

possibly erroneous reset node cannot disturb conveyance

again right away after reset. Proportionately up to 128

further frames can be transmitted without interrupt even at a

very high busload [11].

Fig. 4. Controller Area Network (CAN) Bus – Error State Diagram

C. Local Interconnect Network (LIN) Overview

The LIN protocol is proposed for strong support in

controlling mechanical-electronic components existent in

distributed systems of automotive applications. LIN

exploits the concept of master-slave architecture, where the

network contains single master and fixed number of slave

nodes.

Fig. 5. Local Interconnect Network (LIN) Bus Arbitration

The LIN frame comprises a frame header and response

fields. The header contains protected response identifier

[12]. Once the LIN master sends frame header message, the

LIN slave respond to it by sending a frame. Data is

transferred successively as 8 data bits with 1 start and 1

stop bit without parity, thus 10 bits are transmitted per byte.

As shown in Fig. 5 data on the bus is separated into

recessive (logic high) and dominant (logic low). At the

transmitter the least voltage level should be fewer than 20%

of the battery voltage (VBattery) or approximately 1Volt,

henceforth resulting in logic 0. In contrast, the maximal

level voltage, which represents logic 1, should be greater

than 80% of the battery voltage. At the receiver logic, 0 will

be lesser than 60% of the battery voltage, whereas logic 1

will be higher than 60% of the battery voltage. Specific

slave node reacts to the identifier and sends the frame

response, which holds data and checksum fields. It acts as a

sub bus for CAN with limited utility, lower cost, bit rate

and reduced bandwidth in the network. The real-time

implementation of LIN connection is based on ‘single’

wire, which reduces the cost of cabling and connectors than

in CAN [13]. LIN provides guaranteed transmitted signal

latency, daisy chain configuration, and ensures the safety of

transmitted data by adopting CRC and error detection. Thus

LIN can find the faulty nodes in the network besides with

reduced complexity compared to conventional UART or

SCI based systems.

D. LIN Error Signaling & Confinement

Due to peerless master architecture, LIN is implausible to

accommodate an error signaling tool. Though the errors are

identified nearby these error data can be provided on

request in the type of diagnostic communication messages.

The LIN nodes are capable of discriminating malfunctions

from short term to eternal ones and accomplish their own

confined diagnoses and get counteractive action.

In this work, proof of concept is carried out using

Freescale microcontroller which is predominantly used in

automotive applications. The entire test bench consists of

single master node and multiple slave nodes. The device

results were achieved for a frequency of 25MHz, while the

execution speed may be doubled when over clocking of

50MHz. The efficiency of the system completely depends

upon the computation speed, memory and low-speed CAN

transceiver. To overcome the delay occurred in this device,

a Tricore controllers can be deployed without utilizing the

controller bandwidth or resources. Through introducing

event-triggered messages, average network efficiency can

be achieved to overcome the performance issues in LIN

protocol. Whereas the major limitation is that, it impairs the

worst-case performance and set hurdles network diagnosis

as well.

III. EMBEDDED VEHICULAR NETWORK GATEWAY

Newfangled vehicles are controlled electronically via

processors in addition to mechanical components. In the

vehicle, an ECU will be controlling the devices or

subsystems. In general, the processor in an ECU takes the

input value from the available sensor then processes the

data and distributes the same data within the ECU or

another ECU in few clock cycles to furnish efficient

performance. The role of ECU contributes in all aspects

right from simpler tasks such as wiper movement or brake

light control to time critical functions like airbag control

and adaptive cruise control. Moreover, the various

subsystems in the vehicle encompass in operating the task

of processors in order to control actuators and processing

sensor values. Precisely in order to fulfill the whole

requirements, onboard CAN and LIN networks have been

designed. By the moment the information from several

ECUs are transferred through the field buses to the hybrid

gateway, there is a chance for the occurrence of a fault in

one particular CAN node. On that instance, other nodes will

be competent in communicating to the gateway irrespective

of the particular node. To overcome this issue a switch has

been employed with the gateway towards field bus

switching to conquer well-organized data delivery with

proper diagnostic interface [14].

The role of the gateway is essential to establish a

communication between the existing field buses. In future

Ethernet will play a dominant role on Intra Vehicular

Networks (IVN) [15], due to low cost, higher bandwidth

and it can support for vehicle diagnosis and infotainment

systems. Similarly, the hybrid gateway architecture has

been replaced by backbone based architecture in which

every sub-network will be communicating with its own

domain control unit (DCU). For example, the CAN and

MOST have got separate DCUs. Therefore, the each DCU

will act as a dedicated gateway for available sub-networks.

At this juncture, the major constraints are developing a

hardware-software platform and it should be easy to setup

and verify. There should be a different gateway

implemented for different vehicle models and/or options

 5

should be provided to choose the sub-network and its

appropriate gateway for specific vehicle model.

A reliable gateway will be able to solve the message

conversion issues over the existing field buses and will

focus on implementing efficient gateway mechanism using

OSEK/VDX environment [16]. Predominantly the hybrid

gateway cannot oversee the functionalities like dynamic

routing, parallel reprogramming, security and GUI based

software configuration and verification in order to reuse the

same software for different vehicle models. Fig. 6 depict

the architecture of CAN and LIN protocol working together

as a hybrid structure to accrue the efficiency of the entire

automobile system. The time critical functions (EMS, ABS,

SR) are solely handled by the CAN node and non-critical

functions (Temperature Control, Wiper, Cluster, and

Infotainment) are governed by the LIN node [17]. The CAN

and LIN bus are restrained by a single gateway in which

CAN node acts a master that is connected to many LIN

slaves.

ECU1 – EMS

(Engine Management

System)

ECU2 – ABS

(Automatic Braking

System)

ECU – SRS

(Supplementary

Restraint System)

GATEWAY

 CAN-LIN

ECU – AC (AC

Control Unit)
ECU Cluster ECU Infotainment

High-Speed

Low-Speed

Fig. 6. CAN/LIN architecture with single gateway approach

ECU1 – EMS

(Engine Management

System)

ECU2 – ABS

(Automatic Braking

System)

ECU – SRS

(Supplementary

Restraint System)

GATEWAY

 CAN-LIN

ECU – AC (AC

Control Unit)
ECU Cluster ECU Infotainment

High-Speed

Low-Speed

Fig. 7. Hybrid configuration handling High/Low-speed Applications

In accordance with single gateway approach, the

critical and non-critical applications are presided over by a

single gateway. It represents the hybrid structure, where the

high/low-speed applications are differentiated. As shown in

Fig. 7 green lines indicates that, if the CAN node turn out to

be faulty, the LIN node starts operating and control the

functions handled by the CAN momentarily until the CAN

node is fixed. On the other hand, red lines point out that, if

LIN node fails, the CAN node will perform the utility

handled by the LIN temporarily until the CAN node gets

resolved as point out by the red lines.

In the proposed architecture CAN node is implemented

using Freescale MC9S12XDP512 16-bit microcontroller in

code warrior IDE. It uses MC33388 high-speed CAN

transceiver and furthermore uses MC33661 low-speed LIN

transceiver. The CAN module is constructed in order to

simulate and guarantee the data delivery. If any error arises

at CAN node, the LIN onset functioning momentarily till

CAN node is resuming back. This architecture has another

additional feature i.e., LIN node is designed to monitor

CAN in such a way that it checks nodes availability by

assigning designated pins which are programmed in the

microcontroller to check its status while gaining control of

CANs functionality. The faults in CAN gateway can arise

due to software gateway failure besides protocol error of

CAN like bit errors, stuff error, acknowledge error, and

CRC error [18]. Any of these errors will be identified by the

CAN gateway all the way through its CAN driver kernel

coding. Additionally kernel will identify the Transmission

and Reception errors of CAN which will be monitored by

the software as well.

LIN Gateway CAN Gateway

Critical Applications

Critical Applications

N
o

n
-C

ri
ti

c
a
l

A
p
p

li
c
a
ti

o
n

s N
o

n
-C

ritic
a
l A

p
p

lic
a
tio

n
s

Fig. 8. Proposed Hybrid Architecture Model

In Fig. 8, the red line indicates the connectivity intended

for the LIN gateway when the CAN get malfunction due to

gateway failures or CAN protocol errors. Whereas the

green lines indicate the connectivity for CAN gateway as

soon as LIN goes wrong. Due to ease of software design,

the CAN and LIN gateway together receives the critical and

non-critical signals from the ECUs to facilitate their own

functionality unless the fault is identified in either gateway.

The internal local buffers deliberated in the software of

CAN and LIN gateway will have the data of both critical

and non-critical applications. During failure scenario, these

data buffers will be updated on each occurrence of input

from CAN or LIN nodes. Henceforth the data mismatch

will not ensue as both the gateways have dedicated local

buffers for both applications.

The performance of the CAN bus during the occurrence

of wire fault can be examined as follows. Whenever an

ECU transmits information on the bus, a bit error will be

detected by the transceiver and goes to the dominant state.

Consequently there is a voltage drop take place in

resistance of the wire. In order to detect the fault in wire the

resistance or voltage drop need to be examined at regular

intervals. Therefore resistance of the wire is frequently

measured through four wire kelvin resistance method. This

method will reduce 20% of the measurement error in

contrast with two wire resistance measurement method

[19]. To find out resistance of the wire, initially the voltage

and current should be measured. Voltage can be determined

by observing with different positions. Whereas, a low cost

shunt resistor is exploited to measure the current on the

CAN Bus. The CAN cable fault is located using Time

Domain Reflectometry (TDR) method. Based on the

reflections in the CAN cable (twisted pair), if the cable has

normal impedance then there will not be any reflections in

the cable and the same transmitted signal is absorbed at the

other end. While there is any impedance change in the cable

then the transmitted signal will be reflected back to the

source. If the received signal has step increase in

impedance, the same signal will be reflected back.

Whereas, the received signal has decrease impedance the

reflected signal might have decrease impedance [20]. The

amplitude of the reflection may not only depend on the

resistance change but also due to cable loss. The change in

amplitude is considered as fault intensity and the difference

in reflected signal time is intended as the length of the

cable. The TDR approach is implemented by means of T

connector, where one end of the connector will have known

signal and opposite end will have the cable to be tested. The

upper end of the connector must be associated to the device

wherein magnitude and time of the signal is calculated [21].

To visualize the result, the CAN protocol error is created

using the CAN stress hardware from Vector. The error

frames generated by CAN and TX/RX error count in the

software will get incremented. Once there is an increment

in error count, the LIN gateway software will recognize that

there is some failure in CAN. Gateway of CAN

immediately checks its internal buffers to ensure which data

was transmitted during the time of fault occurrence.

Subsequently, LIN gateway will start transmitting the CAN

failed message as well as also its own service messages in

the network. The protocol conversion from CAN to LIN is

written in software. When the CAN node resumes its

functionality, the LIN node will send the frame that was

transmitting at the moment and inform the CAN gateway to

execute its utility.

The Fig. 9 shows the flow diagram of gateway module is to

check for any protocol errors, then consequently to carry

out the CAN to LIN message conversion for the fault

tolerant gateway system. The CAN to LIN translation

algorithm is presented in Algorithm 1.

Start

Initialize Timer for Scheduler LIN, CAN and

Interrupts

100ms

Lapsed?

10ms

Lapsed?

500ms

Lapsed?

Send CAN & LIN

Messages Scheduled for

100ms

Send CAN Messages

Scheduled for 10ms

Send LIN Messages

Scheduled for 500ms

Check if new

messages is

received?

Check if new

message to be

converted?

If CAN to LIN

Conversion?

If LIN to CAN

Conversion?

Do protocol conversion

from LIN to CAN

Do protocol conversion

from CAN to LIN

Update the buffers and

send through the bus

End

Check for any

CAN errors

Yes Yes Yes

No

Yes

Yes

Yes
Yes

No No No

No

No

Yes

(CAN

Error)

Yes

(LIN

Error)
Fig. 9. Flow diagram of gateway module

A. Algorithm 1. CAN to LIN conversion

1. CAN and LIN device driver software files will be called

under the main program

2. Gateway function is implemented in the scheduler part

(Scheduler is designed as a time slice in the software which

will run in 10ms, 200ms, 500ms, 1000ms according to the

clock frequency of the microprocessor. In the proposed

gateway design the oscillator clock frequency is 25MHZ)

3. Initialize the CAN and LIN timers for 10ms, 100ms,

500ms in scheduler and also the interrupts for CAN and

receive buffers to send and receive the message frames

respectively

4. If the timers are getting elapsed as triggered in step 3,

send the message frames that are required to be sent to the

CAN buffers which will consign the message frames along

with the data in the data bus of CAN. The periodicity of the

message frames of CAN is done by Scheduler. The same

procedure is followed for the LIN

5. Check the bus periodically for the messages received

either on CAN or LIN as well

6. If the new message is available to move the new message

that is updated in CAN and LIN buffers into the local

software buffers

7. Check whether the CAN to LIN conversion has to be

done. This decision is made based on the requirements

whether any new message is received in CAN node. If yes,

CAN bus will sent the data to the node connected to LIN

network

8. If CAN to LIN conversion is required, do it in software

(Mostly the data received that is moved to the local buffers

are converted to the LIN data format and sent to the LIN

network).

 7

9. Update the buffers and send on the required network

10. Check for any protocol errors of CAN. This error

checking is carried out by means of device driver software

11. If there are any errors, increment the error detection

counter, error message is delivered by LIN or CAN either

has error and send on bus

12. Step 11 is repeated until the CAN/LIN errors are

amended.

Start

Configure LIN module (Baud rate, channel, enable,

data width etc.)

If master

node?

Configure LIN in transmit

mode

Exact length information

from ID, Compute parity

for ID

Send break sequence to

start LIN Communication

Send SYNC byte 0x55 to

synchronize with master

If master send

message?

Compute the checksum

and send bytes with

checksum

Configure LIN in receive

mode and receive all bytes

from slave

Compute checksum verify

it and validate the

message

Compute the checksum of

data and ID

Configure LIN in transmit

mode and transmit all

bytes to slave

Configure LIN in receive

mode

Configure LIN in receive

mode

Break sequence

received?

Receive SYNC and ID

Master sending

message?

Receive all data bytes and

checksum from master

Compute the checksum

and send data bytes with

checksum
End

Yes

Yes

Yes

No

No

No

NoYes

Fig. 10. Flow diagram of LIN module

Fig. 10 illustrates the flow to send and receive the LIN

message in the LIN network. The data transfer operation of

LIN is presented in Algorithm 2.

B. Algorithm 2. LIN Data Transfer Operation

1. Configure the LIN module by giving the required values

to the data registers of the microcontroller device. The

values chosen are baud rate, channel selection, data size

2. LIN employs Master and slave architecture. Thus master

node and slave nodes are to be selected

3. Check whether the node is master or not

4. If node is master node, then configure the LIN in

transmit mode and extract the information required for

length, Identifier and check the parity for the ID

6. Start the LIN communication by synchronizing with the

Master and Check whether slave or the master needs to

send the message, If master needs to send the message,

compute the checksum as per the message protocol format

and send the data bytes with checksum on the LIN network

8. If master is not sending the message, then configure the

LIN in receive mode and obtain all data bytes from the

slave nodes

9. After updating the received message in the local LIN

software buffers, check for the checksum in the received

message to verify it

10. If the node is not a master (check for Step 3), configure

the LIN in slave mode, Make the synchronization and ID

definition, and receive the message and put into the data

buffers

11. Compute the checksum to verify whether the message

received is correct or not.

Start

CAN Initialization (channels, baud

rate, masking etc.)

New message

received?

Identify the buffer in which

new data received

Copy the data from buffer to

local data buffer

Update the status and

increment the status counter

Scheduler

triggered?

New message to

be transmitted?

Configure CAN module in

transmit mode

Initialize the transmit

registers with ID, size and

data

Start the transmission

Transmission

completed?

End

Yes

No

Yes

Yes

No

No

Yes

No

Fig. 11. Flow diagram of CAN module

Fig. 11 shows the CAN module flow diagram to send and

receive the data frames over the CAN network. The data

exchange function of CAN is presented in Algorithm 3.

C. Algorithm 3. CAN Data Transfer Operation

1. Initialize the CAN buffers for setting the baud rate,

masking, and filtering of CAN ID registers

2. Check whether new CAN message has been received or

not and identify in which CAN buffer in which the new

message is received

4. When the buffer is updated with the message forward the

message to the local CAN data buffer

5. Check whether the CAN message need to be transmitted

or not, If any message needs to be transmitted, update the

transmit buffer and send the data on CAN bus.

6. Check whether the scheduler is triggered. If scheduler

has triggered and more message is to be transmitted then

configure the CAN module in transmit mode.

7. Initialize the transmit registers with ID, size and data.

8. Start the transmission and check whether the

transmission is carried out successfully.

10. Repeat the step 9 until the transmission completes.

IV. EXPERIMENTATION

The time taken for transmission of messages from

master to slave and vice versa is examined by linking CAN

buses with Vector CANoe and effectively tested the system

etiquette. The Vector CANoe monitors the bus for peak

load, error frames, etc. The CANcaseXL hardware is used

to link the CAN bus with Vector CANoe and the CAN

interface is connected to the Freescale development board

by tapping the CAN High and CAN low pins from the

channel 2 of the board as shown in Fig. 12.

Vector CANcaseXL Hardware

Display Device

Micro USB

Power Slot

Freescale MC9S12XDP512

Microcontroller Device

Power

Adapter

GPIO Header

Pins

Secure

ECU
Fig. 12. Board connected with Vector CancaseXL for Bus

monitoring

The fault tolerant and intelligent gateway is examined

using MC9S12XDP512 Freescale device and outcome is

accomplished. CANoe development environment is

exploited for experimentation of automotive serial

interfaces. Fig. 13 illustrates the CAN-CAN (C2C) gateway

i.e. The CAN ID 2CC is simulated from IG block of Vector

CANalyzer and sends to CAN channel 1. The same

message is received by another channel and transmitted

back in the CAN ID 100, which can be discerned in the

trace window of Vector CANalyzer. The Fig. 14 depicts the

decoding of the CAN message IDs 0x2CC which is shown

in LECROY wave surfer. The waveform captured ensures

the decoded CAN frame by means of start of frame, data

bytes, CRC in line for the end of the frame with bit stuffing.

Fig. 15 illustrates the LIN transmission with message ID

0x01. The decoding of LIN frame demonstrates the

resynchronization, ID number, and bytes of data. Fig. 16

represent that the CAN gateway failure achieved by fusing

both the CAN lines (CAN High and CAN Low) thus error

frames can be generated over the bus. Moreover, protocol

failure of C2C gateway failure arises as there is zilch

message acquired in CAN bus during broadcasting. Fig. 17

portrays the error frame on CAN bus. Fig. 18 shows the

simulation of the true time simulator (debugger) of the

Freescale code warrior IDE. Notice the data window the

transmit error count will get incremented when the CAN

lines are fused (as outlined in the device driver software of

CAN). At this instance, LIN gateway will be accomplished

to retrieve and transmit the CAN messages which stand in

error state. The gateway of CAN bus in error state and LIN

bus transmitting the CAN data frames (which will be

decoded and framed as per CAN data in form of LIN

message) has experimented on LIN bus in the network as

shown in Fig. 19. As a result, momentary failure of gateway

and deterrence of bus is confined. Thus the proposed

gateway will be constructive in terms of hybrid architecture

where the CAN and LIN networks have well-built

communication towards each other with reduced cost and

high performance.

V. CONCLUSION

This paper produces the overview of CAN and LIN

protocol concepts which are demonstrated with the help of

Vector CANoe tool and Freescale hardware. During the

early stage of the development process, the impact of this

gateway based approach helps in diagnosing the intra-

vehicle networks thereby the significant amount of design

time has been saved for real-time applications. The ECU

modules are positioned according to the vehicle gateway

standards beneficial to avoid data loss due to increased wire

length and complexity. The gateway brought into this

article will assist CAN and LIN networks. For the

experimental analysis as illustrated in previous sections

rigid effort was effectuated to improve the gateway

performance and resolve the faults that crop up while

sharing the data among the protocol. As a part of future

work the approaches outlined in this article can be extended

for other intra-vehicular networks like FlexRay and MOST.

In addition to this, the CAN FD protocol can be utilized for

higher bandwidth applications with payload of up to 64

byte, which is more suitable for complex sensor systems

and bid like benefits.

Fig. 13. CAN messages Transmission and Reception (Refer to CAN ID)

Fig. 14. CAN Message Frame Captured with LECROY Bus Analyzer

 9

Fig. 15. LIN Frame Captured using LECROY Scope

Fig. 16. CAN Error Frames Captured using Vector CANalyzer

Fig. 17. CAN Bus Error Frames Captured using LECROY Scope

Fig. 18. LIN Message Transmission when CAN Node has Error Frames

using Real-Time Debugger

Fig. 19. LIN Message Transmission when CAN Node has Error Frames

using LECROY Scope

REFERENCES

[1] Jihas Khan, "Design of a High-Efficiency In-Vehicle Network with a

Single ECU for a Network (SEN)," SAE Technical Paper, 2014-01-
0246, May 2014.

[2] Azam Ramazani, Tahereh Mohammadi, Wathiq Mansoor Hamed

Vahdat-Nejad, "A survey on context-aware vehicular network
applications," Vehicular Communications, Elsevier Inc., vol. 3, pp.

43-57, January 2016.

[3] Carlos T. Calafatey, Juan-Carlos Canoy, Nasreddine Lagraa, Pietro
Manzoni Chaker Abdelaziz Kerrache, "Trust management for

Vehicular Networks: An Adversary-Oriented Overview," IEEE
Access, no. 99, 2016.

[4] Nizar Alsharif, "iCAR-II: Infrastructure-based Connectivity Aware

Routing in Vehicular Networks," IEEE Transactions on Vehicular
Technology, vol. 66, no. 5, pp. 4231-4244, May 2017.

[5] Martin Glavin, Ciarán Hughes, Edward Jones, Mohan Trivedi, Liam
Kilmartin Shane Tuohy, "Intra-Vehicle Networks: A Review," IEEE

Transactions On Intelligent Transportation Systems, vol. 16, no. 2,

pp.534-545, April 2015.
[6] J.H. Kim, T.Y. Moon, S.H. Hwang, K.H. Kwon, J.W. Jeon S.H. Seo,

"Gateway Framework for In-Vehicle Networks," Science Direct,

IFAC Proceedings, vol. 41, no. 2, pp. 12081-12086, 2008.

[7] Jin Ho Kim et al., "Gateway Framework for In-Vehicle Networks
Based on CAN, FlexRay, and Ethernet," IEEE Transactions on

Vehicular Technology, vol. 64, no. 10, pp. 4472 - 4486, 2015.
[8] Heiko Doerr and Ingo Stuermer, "Managing an ISO 26262 Safety

Case: A Software System Perspective," SAE - Technical Paper 2016-

01-0137, June 2016.

[9] Abdolreza Fallahi - Navistar Inc., David Zhang - Navistar Inc.,
Kumar Kuppam - Navistar Inc. Saleh Mirheidari - Navistar Inc.,

"AUTOSAR Model-Based Software Component Integration of

Supplier Software," SAE Int. J. Commer. Veh. vol.8, no.2 , pp. 544 -
548, September 2015.

[10] M. Farsi, K. Ratcliff, and M. Barbosa, "An Overview of Controller
Area Network," IET Journals & Magazines, vol. 10, no. 3, pp. 113-

120, June 1999.

[11] Dominique Paret, Multiplexed Networks for Embedded Systems
CAN, LIN, Flexray, Safe-by-Wire. Chichester, England: John Wiley

& Sons Ltd, 2007.

[12] Samuel Woo, Hyo Jin Jo, and Dong Hoon Lee, "A Practical Wireless
Attack on the Connected Car and Security Protocol for In-Vehicle

CAN," IEEE Transactions on Intelligent Transportation Systems,

vol. 16, no. 2, pp. 993-1006, April 2015.
[13] Yong Lei, Haibo Xie, Yong Yuan, and Qing Chang, "Fault Location

for the Intermittent Connection Problems on CAN Networks," IEEE

Transactions on Industrial Electronics, vol. 62, no. 11, pp. 7203-
7213, November 2015.

[14] M. Ruff, "Evolution of local interconnect network (LIN) solutions,",

vol. 5, pp. 3382-3389, 2003
[15] Seung-Han Kim et al., "A gateway system for an automotive system:

LIN, CAN, and FlexRay," in 6th IEEE International Conference on

Industrial Informatics, Daejeon, Korea, pp. 967-972, 2008.
[16] Tae-Yoon Moon, Suk-Hyun Seo, Jin-Ho Kim, Sung-Ho Hwang, and

Jae Wook Jeon, "Gateway system with diagnostic function for LIN,

CAN and FlexRay," in Control, Automation, and Systems,
2007.ICCAS '07. International Conference on, Seoul, Korea, pp.

2844 – 2849, 2007.

[17] Weiying Zeng, Mohammed A. S. Khalid, and Sazzadur Chowdhury,
"In-Vehicle Networks Outlook: Achievements and Challenges,"

IEEE Communications Surveys & Tutorials, vol. 18, no. 3, pp. 1552-

1571, Third Quarter 2016.
[18] Jin-Ho Kim, Sung-Ho Hwang, Key Ho Kwon, and Jae Wook Jeon

Suk-Hyun Seo, "A reliable gateway for in-vehicle networks based on

LIN, CAN, and FlexRay," ACM Transactions on Embedded
Computing Systems (TECS), vol. 11, no. 1, March 2012.

[19] Chung Y.C, Lo C., Pendalaya P, and Furse C, "A critical comparison

of reflectometry methods for location of wiring faults," Smart
Structures and Systems, vol. 2, no. 1, pp. 25-46, January 2006.

[20] Furse C. and Gunther J Smith P, "Analysis of spread spectrum time

domain reflectometry for wire fault location," IEEE Sensors, vol. 5,
no. 6, pp. 1469-1478, 2005.

[21] Auzanneau F, Peres F. and Tchangani A Hassen B, "Diagnosis

sensor fusion for wire fault location in CAN bus systems," in
SENSORS, 2013 IEEE, Baltimore, MD, USA, 2013.

[22] A.Bindu, M.Carolin Mabel, and C.Bharatiraja, “A Real-Time

Energy Management Approach And Its Power Converter For PV
Powered Plug-In Electric Vehicle”, in Journal of Electrical

Engineering. vol. 17, no.2, 2017, pp.241-247, 2017

