

EMPIRICAL BASED EFFORT ESTIMATION USING MACHINE LEARNING

ALGORITHMS

V. Vignaraj Ananth
1
, Dr.S. Srinivasan

2

1
Assistant Professor,

2
Associate Professor

1
Department of Computer Science and Engineering, Thiagarajar College of Engineering, Madurai, India

1
Department of Computer Science and Engineering, RMD Engineering College, Chennai, India

vignaraj112@gmail.com, ssn.cse@rmd.ac.in

Abstract

 Estimation the budget is one of the major

tasks in project management. There arises a need to

more accurately estimate the required schedule and

resources for the software projects. The software

estimation process includes estimating the size of the

software product, effort needed, development of

project schedules, and estimating the overall budget

of the project. To estimate the budget we need to

consider effort, time and environment. Estimating the

effort is the tedious process. Effort is represented as a

function of size. In this paper, size is represented in

term as Fuzzy number. A new model is approached

in this paper by machine learning algorithms to

estimate the effort required in the software process.

The optimization of the effort parameters is achieved

using the M5P technique to obtain better prediction

accuracy. Furthermore, performance comparisons of

the models obtained using the M5P technique with

Random Forest technique are presented in order to

highlight the performance achieved by each

technique.

Keywords: Lines of Code (LOC), Function Point

Analysis(FPA), Triangular Membership Function

(TAMF), Trapezoidal Membership Function

(TPMF), M5P technique, Random Forest technique.

1. Introduction

 In this paper, we propose a new machine

learning approach, and non-algorithmic problem to

estimate of effort more appropriate in comparison

with other Fuzzy models and algorithmic approaches

like COCOMO Model, Doty Model, Halsted Model,

Walston Felix Model, and Baili-Basili Model.

There are several techniques to estimate

effort, such as, Estimation by Analogy, Top-Down

approach, Bottom-Up approach [1]. A realistic

approach to estimate the effort is algorithmic

approach, which uses mathematical equations to

estimate effort. The mathematical equations are

mostly related to historical, research data and the

inputs based on Lines of Code (LOC). COCOMO

Model [2], which is an open model, to estimate the

number of Person-Months required for the project.

The Effort can be calculated by (1),

Effort = a* , ----- (1)

Where a, b are empirical constants.

In indirect approach, The Function Point

Analysis (FPA) begins by functional decomposition

of the project and uses data functions and

transactional functions to represent the functionality

provided to the user. The data functions are Internal

Logical File (ILF), External Interface File (EIF). The

transactional functions are External Input (EI),

External Output (EO) External Inquiry (EI). The FPA

can be calculated by, FPA= ∑∑Fij*Zij, for j= 1 to 3

and i = 1 to 5, where Zij denotes count for component

i at level (low, average or high) j, and Fij corresponds

to Function Points.

Yet another approach to estimate the effort

is by using one of the machines learning technique,

Fuzzy Logic. Fuzzy Logic is used to find fuzzy

functional points and the corresponding result is

defuzzified using its membership functions. Hence,

the size estimation is in person-months.

2. Need for Effort Estimation

Effective monitoring and control of the

software budget, to verify and improve accuracy of

estimates is required. Success of an effort estimate

method is not necessarily the accuracy of the initial

estimates, but rather the rate at which estimates

converge to the actual cost [3]. Many projects that

have been developed over large distributed systems

have 75 percent of the projects with over budget. 63

percent of the projects cost are more than the initial

estimates. This algorithm provides the list of features

that can be included and reduces the risk by

scheduling costly tasks preliminary. Also, It gives

more number of resources to the costly projects and

assigns well experienced personnel to costly projects.

Sometimes, it is called man-power loading as the

required number of engineering and management

personnel’s are allocated to a project in a given

amount of time.

2.1. Algorithmic models

 In these approaches, The effort is estimated

using direct algorithms like COCOMO, Doty Model,

Halsted Model, Walston Felix Model, and Baili-

Basili Model [4]. By specifying the lines of code, the

effort can be calculated by using these metrics.

COCOMO Model

 Effort= 3.2 * (kloc)
 1.05

Doty Model

 Effort=5.288*(kloc)
 1.047

Halsted Model

 Effort= 5.2 * (kloc)
 1.50

Baili-Basili Model

 Effort=5.5 + (0.73 *(kloc)
 1.16

)

Walston Felix Model

 Effort= 5.2 * (kloc)
 0.91

By using the above mentioned equations,

effort estimation is carried out for the projects.

2.2. Function point analysis

 Function points measure software size based

on the functionality requested by and provided to the

end user.

Function point counting resources includes

in User/analyst interviews, Requirements documents,

Design documents, Data dictionaries, Use cases, User

guides, Screen captures, and Actual software, Entity-

relationship models and Semantic object models.

Function Point represents a logical size such as LOC

[5]. More complex functions contribute higher

number of function points to logical size. Also, it

uses data and transactional functions provided to the

user.FPA is calculated by multipliers as shown in

Fig. 1. Using these characteristics, they are summed

to get an (2) “unadjusted function-point total (ufpt)”.

Fig. 1. FPA calculation

FPA=ufpt*[0.65+ (0.01*Ʃfi)] (2)

Where fi is the complexity adjustment factor varies

from 0 to 14.

By using this metric, LOC can be calculated

and Effort can be estimated for the project. Function

point metrics are logical and comparable across

projects, platforms, and languages.

Table 1. Program Characteristics

 Function Points

Program

Characteristic

s

Low

Complexit

y

Medium

Complexit

y

High

Complexit

y

No. of Inputs 3 4 6

No. of Outputs 4 5 7

Inquiries 3 4 6

Logical

Internal Files

7 10 15

External

Interface Files

5 7 10

2.3. Fuzzy logic

 In this section, we present the Fuzzy Logic

approach. Fuzzy Logic finds the fuzzy functional

points (i.e.) the fuzzy set is characterized by a

membership function with each point in the fuzzy set

being a real number in the interval [0,1] called degree

or grade of membership and a mathematical tool for

dealing with uncertainty. Here the fuzzy functional

points are formed by normalizing all the FPA values

to [0, 1] and the obtained result is defuzzified to get

the functional points and hence, we estimate the

effort in person- months [7].Thus membership in a

set is found to be binary i.e., Whether, the element is

a member of a set or not. It can be indicated as,

χA(x) = { 1, x ∈ A

 0, x ∈! A}

Where χA(x) is the membership of element x in set A

and A is the entire set on the universe.

The Fuzzy Membership function might be

Triangular, Trapezoidal, or Bell shaped Membership

function. Each membership function uses certain

metrics to estimate the effort.

i) Triangular Fuzzy Logic

A triangular fuzzy number (TAFN) is

described by the attributes (α, m, β), where m is the

modal value, α and β are the right and left boundary

respectively [9].

Fig. 2. Triangular Fuzzy Logic

The Triangular Membership Function

(TAMF) (μ(x)) (3)for which is defined as:

0 , x 

x - / m -  x m

µx - x / - m , mx   (3)

0 , x≥

ii) Trapezoidal Fuzzy Logic

A trapezoidal fuzzy number (TPFN) is

defined by its lower limit a, its upper limit d, and the

lower and upper limits of its nucleus or Kernel b and

c respectively.

Fig. 3. Trapezoidal Fuzzy Logic

The Trapezoidal Membership Function

(TPMF) (T(x)) for which is defined as (4):

0 , (x ≤ a) or (x ≥ d)

T(x) = (x - a) / (b-a) , x (a, b)

1 , x (b, c) (4)

(d - x) / (d-c) , x (c, d)

Based on the ratings the domain character

values are fuzzified using TAMF and TPMF [9]. The

value thus obtained is called membership function

output, whose domain is specified, usually the set of

real numbers, and whose range is the span of positive

numbers in the closed interval [0, 1] (i.e.) Binary

values. Each numerical value of the domain is

assigned a specific value and 0 represents the

smallest possible value of the membership function,

while the largest possible value is 1.

2.4. Defuzzification

 Defuzzification refers to the concept of

applying fuzzy to crisp the conversions. The fuzzy

results generated cannot be used as such and hence it

is necessary to convert the fuzzy quantities into crisp

quantities for the estimation of effort. This can be

achieved by using defuzzification process. The

defuzzification has the capability to reduce a fuzzy to

a crisp single-valued quantity or as a set, or

converting to the form in which fuzzy quantity is

present. Defuzzification can also be called as “round

off” method. Defuzzification reduces the collection

of membership function values in to a single sealer

quantity. Defuzzification is the process of producing

a quantifiable result in fuzzy logic, given fuzzy sets

and corresponding membership degrees. It will have

a number of metrics that transforms variables into a

fuzzy result, that is, the result is described in terms of

membership in fuzzy sets. The defuzzification is

applied to the value that had been obtained from the

fuzzification process. The fuzzified output has to be

defuzzified into the real number such that it gives the

effort that has been required for the cost estimation. It

can be calculated by (5),

µ(x)*w1 , 0<c(x)≤1

µ(x)*w1+(1-µ(x))*w2 , 1<c(x)≤2

D(y) = µ(x)*w2+(1-µ(x))*w1 , 2<c(x)≤3.5 (5)

µ(x)*w2+(1-µ(x))*w3 , 3.5<c(x)≤5

µ(x)*w3+(1-µ(x))*w2 , 5<c(x)≤6.5

µ(x)*w3+(1-µ(x))*w5 , 6.5<c(x)≤8

Using this metrics, the fuzzified values are

applied correspondingly to these metrics and are

defuzzified to get a single-valued integer .Thereby

effort is estimated.

3. Proposed work

3.1. Over fitting

In over fitting, a statistical model describes

noise or random error instead of the underlying

relationship [8]. Over fitting occurs when a model is

excessively complex, such as having much more

parameters relative to the number of observations. A

model that has been over fit has poor predictive

performance, as it overreacts to minor fluctuations in

the training data.

3.2. Tree pruning

Pruning is a technique in machine learning

that reduces the size of decision trees by removing

sections of the tree which provide little power to

classify instances. Pruning reduces the complexity of

the final classifier, and hence improves predictive

accuracy by the reduction of over fitting.

3.3. Tree smoothing

It aims to connect the sharp discontinuities

between adjacent linear models at the leaves caused

during pruning.

3.4. Weka Tool

Data mining is software to cluster or to do

regression analysis on the datasets. It is free open

source software. Algorithms discussed in this paper

are executed via this tool.

3.5. Dataset

Dataset is divided into training set and test

set data [6]. A training set is a set of data that is used

to discover potentially predictive relationships. A test

set is a set of data used to assess the strength and

utility of a predictive relationship. Test and training

sets are used in genetic programming and statistics,

machine learning, intelligent systems.

3.6. M5P Algorithm

The M5 algorithm builds a regression trees

by splitting the dataset recursively through tests on a

single variable that reduce variance on the dependent

(target) variable.

Input data

Tree construction

Tree pruning

Tree smoothing

Tree model

Fig. 4. Flow chart M5P Algorithm

3.7. Random Forest Algorithm

The Brieman’s algorithm is popularly used

to implement the RF technique [8]. To obtain an RF

technique-based effort estimation model, the steps

presented underneath are taken into consideration.

These proposed steps help in constructing each tree,

while using RF technique.

1) Let F be the number of trees in the forest and

Dataset of D points (x1 , y1)(x2 , y2)....(xD , yD) is

considered

2) Each tree of the forest should be grown as follows.

Steps from 3 to 9 should be repeated f number of

times to create F number of trees

3) Let N be the no. of training cases, and M be the

no. of variables in the classifier

4) To select training set for the tree ,a random sample

of n cases, from the original data of all N accessible

training cases is chosen. The rest is taken as test

dataset.

5) A RF tree Tf is developed to the loaded data, by

repeatedly rehashing the accompanying steps for

every terminal node of the tree, till the minimum

node size n min is arrived. Keeping in mind the end

goal to make more randomness, distinctive dataset

for each one trees is made.

6) The no. of input variables m is selected to

ascertain the choice at a tree node. The value of m

ought to be substantially short of what M.

7) For each tree node, m variables should be

randomly chosen on which the decision at that node

is based.

8) The best split focused around these m variables in

the training set is calculated. The value of m ought to

be held consistent throughout the development of the

forest. Each tree should be fully grown and not

pruned.

9) Then, the results of ensemble of trees

T1,T2,...,Tf,....,TF are collected.

10) The input vector should be put down for each of

the trees in the forest. In regression, it is the average

of the individual tree predictions.

4. Various criterions for assessment of software

effort estimation models

There are four important criterions for

assessment of software effort estimation models.

1. VAF (Variance Accounted For) (%):

VAF (%) = (1-

2. Mean absolute Relative Error (%):

MAE (%) =

3. Variance Absolute Relative Error (%):

VAR (%) =

4. Pred (n): Prediction at level n((Pred (n)):

VAR (%) =

5. Result and Discussion

 The performance of effort is predicted based

on the MARE and Prediction analysis. The estimated

effort of LOC is compared with the actual effort of

LOC in the Fig. 5. The estimated effort of FP is

compared with the actual effort of FP in the Fig. 6.

The MARE of LOC and FP is compared in the Fig. 7.

It has been clearly identified that Function point

based estimation is better than the LOC estimation.

Fig.5. Variation between the actual and estimated

effort using LOC

Fig.6. Variation between the actual and estimated

effort using LOC in FP

Fig.7. MARE analysis

The Tables 2 – 5 indicates the lines of code with the

actual effort and the estimated effort using the

COCOMO model. Both MARE and Prediction

analysis has been applied to the direct and indirect

approaches. The actual effort is the original effort and

the estimated effort is the one which has been done in

the estimation process using the COCOMO method.

Table 2. LOC based on algorithmic models with

actual effort and the estimate effort

LOC Actual effort Estimated

effort

48 1107.3 1465.83

50 84 145

39 72 112

164 246 510

200 130 625

40.5 82.5 160.7

Table 3. FPA with actual effort and the estimate

effort

LOC in FP Actual effort Estimated effort

15.23 40 52

10.1 12 36

17 50 67

20 60 83

18 52 73

22 90 105

NASA Data set was applied for all

algorithmic and non-algorithmic approaches, and

results are shown below;

Table 4. Comparison table shows the error measures

of RF-M5P, TAMF and TRMF

Fig. 8. Trapezoidal membership functions with

relative error for NASA data set

0

500

1000

1500

2000

2500

3000

1 3 5 7 9

Actual Effort

COCOMO

TAMF

TPMF

The above graph shows the bar chart that

represents comparative analysis of actual effort

with that of the effort estimated using COCOMO,

triangular and trapezoidal membership functions

with relative error for NASA data set.

Fig. 9. M5P Actual Effort vs. Predicted Effort Chart

Fig. 10. Random Forest Actual Effort vs. Predicted

Effort Chart

6. Conclusion

 In this paper, we have proposed a new

approach to estimate the software project effort. This

approach is based on fuzzy logic. In fuzzy logic

approach data is represented by fuzzy sets. In this

investigation it is projected to characterize the size of

the project using Triangular Membership Function

which gives superior transition from one interval to

another. A new fuzzy effort estimation model is

proposed by using trapezoidal function to deal with

the size and to generate fuzzy Membership Function

and rules. After analyzing the results attained by

applying COCOMO, triangular and trapezoidal

Membership Function models, it is observed that the

effort estimation of the proposed model gives more

precise results than the other models. The effort

estimated by means of fuzzifying size using M5P and

RF Function yields better estimate which is closer to

the actual effort..

Reference

1. M. Boraso, C. Montangero, and H. Sedehi,

"Software cost estimation: An experimental

study of model performances", tech. rep., 1996.

2. O. Benediktsson, D. Dalcher, K. Reed, and M.

Woodman, "COCOMO based effort estimation

for iterative and incremental software

development", Software Quality Journal, vol. 11,

pp. 265-281, 2003.

3. T. Menzies, D. Port, Z. Chen, J. Hihn, and S.

Stukes, "Validation Methods for calibrating

software effort models", ICSE '05:Proceedings

of the 27th international conference on Software

engineering, (New York, NY, USA),,pp.587-

595, ACM Press, 2005.

4. Boehm, B., Abts, C., Brown, A. W., Chulani, S.,

Clark, B.K., Horowitz,E., Madachy, R., Reifer,

D. J., Steece,B.Software cost estimation with

COCOMO II. Prentice-Hall,Upper Saddle River,

NJ, February 2000.

5. IFPUG. Function Point Counting Practices

Manual: Release 4.0. International Function

Point Users Group, Princeton Junction, NJ, 1994.

6. Alaa f. sheta," Estimation of the COCOMO

Model Parameters Using Genetic Algorithm for

NASA Software Projects", Journal of Computer

Science ,2(2):118-123,2006

7. Ali Idri, alain Abran and Laila Kijri, "COCOMO

cost modeling using Fuzzy Logic", International

conference on Fuzzy Theory and technology At-

lantic, 7New Jersy, March 2000.

8. Karel Dejaeger, Wouter Verbeke, David

Martens, Bart Baesens, “Data Mining

Techniques for Software Effort Estimation: A

Comparative Study”, IEEE Transactions on

Software Engineering Vol 30 N0.2 March 2012.

9. Anish Mittal, Kamal Parkash, Harish

Mittal,”Software Cost Estimation Using Fuzzy

Logic”, ACM SIGSOFT Software Engineering,

Nov. 2010, Vol. 35, No.1.

10. Shashank Mouli Satapathy , Barada Prasanna

Acharya, Santanu Kumar Rath : “Early stage

software effort estimation using random forest

technique based on use case points”, research

article , The Institute of Engineering and

Technology Jounal.

11. Brandon Heung a, Hung Chak Hob, Jin Zhang a,

Anders Knudbyc, Chuck E. Bulmer d, Margaret

G. Schmidt : “An overview and comparison of

machine-learning techniques for classification

purposes in digital soil mapping “, Geoderma,

265 (2016), pp. 62-77.

12. Cuauhtemoc Lopez-Martina, Alain Abran :

“Neural networks for predicting the duration of

new software projects “, The Journal of Systems

and Software, 101 (2015) , pp.127–135.

13. Aditi Panda, Shashank Mouli Satapathy, Santanu

Kumar Rath : “Empirical Validation of Neural

Network Models for Agile Software Effort

Estimation based on Story Points“, Procedia

Computer Science, 57 (2015), pp. 772 – 781.

14. Wen Zhang , Ye Yang , Qing Wang : “Using

Bayesian regression and EM algorithm with

missing handling for software effort prediction”,

Information and Software Technology, 58

(2015), pp. 58–70.

15. Mohammad Azzeha , Ali Bou Nassifb, “A

hybrid model for estimating software project

effort from the Use Case Points “,Applied Soft

Computing (2016).

16. N.Shivakumar,V.Vignaraj Ananth,” Software

cost estimation using Function Point with Non-

algorithmic Approach”, Global Journal of

Computer Science and Technology, Vol 13, No

8-C (2013): Global Journal of Computer Science

and Technology.

