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Abstract: Traditional vector control structures which include 

proportional-integral (PI) regulator for the speed DFIMs 

driven have some disadvantages such as parameter tuning 

complications, mediocre dynamic performances and reduced 

robustness. Thus, based on the analysis of the mathematical 

model of a DFIM supplied by two direct matrix converters, 

this paper addresses a non-linear control algorithm based on 

fuzzy logic and second order sliding mode. The conventional 

sliding mode control has large chattering on the 

electromagnetic torque developed by the DFIM. In order to 

solve this problem, the second order sliding mode technique 

with fuzzy logic functions is used. The simulation results show 

the effectiveness of the proposed method especially in 

chattering-free behavior, response to sudden load torque 

variations and robustness against machine parameters 

variations. 
 

Key words: Doubly fed induction machine (DFIM); matrix 

converter; second order sliding mode; fuzzy logic. 
 
1. Introduction 
 The doubly fed induction machine (DFIM) is a 

very interesting solution for variables speed 

applications such as wind energy conversion systems 

and electric vehicles [1,2]. Therefore, it covers all 

power ranges. Obviously, the requested variable 

speed domain and the desired performances depend 

on the application types [3]. 

 The DFIM has several different advantages 

compared to the usual squirrel-cage machine. The 

DFIM can be controlled from the stator or rotor by 

different possible combinations [4]. 

 In [5], a study on a DFIM with constant stator fre-

quency and vector control is described. DFIM stator 

is directly supplied by the grid, and a cyclo-converter 

feeds the rotor windings. The main drawback of this 

configuration is the speed operating range limited to 

20%-25% of the nominal speed. 

 A novel high-power inverter drive system is 

exposed in [6,7]. Principles and experimental 

investigations are presented and discussed. The 

authors used a DFIM configuration that is supplied 

by pulse width modulation (PWM) inverters that are 

linked with current controllers. In this configuration, 

each side of the machine is fed by a dc-link ac/ac 

inverter. The stator and the rotor windings do not 

have the same voltage rating; a step-down 

transformer between the ac network and the three-

phase rectifier of the rotor winding supply is added. 

This drive can be used in industrial applications, such 

as steel rolling mill or marine propulsion systems. 

 Currently the three phase matrix converters have 

received considerable attention because they may 

become a good alternative to voltage-source inverter 

Pulse Width-Modulation (PWM) topology. This is 

because the matrix converter provides bi-directional 

power flow, nearly sinusoidal input/output 

waveforms, and a controllable input power factor [8]. 

Furthermore, the matrix converter allows a compact 

design due to the lack of dc-link capacitors for 

energy storage. Consequently, in this work, a novel 

high-power bi-converter structure to supply a doubly 

fed induction machine (DFIM) is presented. Two 

matrix converter (MC) feed the stator and rotor 

windings. The outputs of the two MCs are combined 

electro-mechanically in the machine, and as a result, 

novel features can be obtained. For example, for high 

power drive applications, this configuration use two 

MCs dimensioned for a half of the DFIM power. 

 A lot of works have been presented with diverse 

control diagrams of DFIM. These control diagrams 

are usually based on vector control notion with 

conventional PI controllers.  

 Recently, the sliding mode control (SMC) method 

has been widely used for robust control of nonlinear 
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systems. Several papers have been published based 

on (SMC) of DFIG [9,10].  

 The SMC achieves robust control by adding a 

discontinuous control signal across the sliding 

surface, satisfying the sliding condition. 

Nevertheless, this type of control has an essential 

disadvantage, which is the chattering phenomenon 

caused by the discontinuous control action. To treat 

these difficulties, several modifications to the 

original sliding control law have been proposed, the 

most popular being the boundary layer approach [11, 

12]. 

 Fuzzy logic is a technology based on engineering 

experience and observations. In fuzzy logic, an exact 

mathematical model is not necessary because 

linguistic variables are used to define system 

behavior rapidly. One way to improve sliding mode 

controller performance is to combine it with fuzzy 

logic to form a fuzzy sliding mode controller 

(FSMC). The design of a sliding mode controller 

incorporating fuzzy control helps in achieving 

reduced chattering, simple rule base, and robustness 

against disturbances and nonlinearities. 

 The paper is structured as follows: the matrix 

converter modeling is discussed in Section 2. In 

Section 3, the doubly fed induction machine (DFIM) 

model and the vector control strategy are presented. 

Session 4 shows the synthesis of the different 

controllers applied on the speed control of the DFIM. 

The effectiveness of the proposed controller 

(FSOSMC) verified by simulation is presented in 

section 6. Finally, the main conclusions of the work 

are drawn. 

 

2. The matrix converter model 
 The matrix converter performs the power 

conversion directly from AC to AC without any 

intermediate dc link. It is very simple in structure and 

has powerful controllability. The converter consists 

of a matrix of bi-directional switches linking two 

independent three-phase systems.  Each output line is 

linked to each input line via a bi-directional switch. 

 Figure 1 shows the basic diagram of a matrix 

converter. 

 The switching function of a switch Smn in figure 1 

is given by :
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 The mathematical expression that represents the 

operation of the matrix converter in figure 1 can be 

 
 

Fig. 1. Schematic representation of the matrix converter. 

 

 written as [12,13]: 
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 To determine the behavior of the matrix converter 

at output frequencies well below the switching 

frequency, a modulation duty cycle can be defined 

for each switch. 

 The input/output relationships of voltages and 

currents are related to the states of the nine switches 

and can be expressed as follows : 
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With : ,10  mnk

   

m = A, B, C,   n = a, b, c           (6) 

The variables kmn are the duty cycles of the nine 

switches Smn and can be represented by the duty-

cycle matrix k. In order to prevent a short circuit on 

the input side and ensure uninterrupted load current 

flow, these duty cycles must satisfy the three 

following constraint conditions : 

kAa + kAb + kAc = 1                                                  (7) 

kBa + kBb + kBc = 1                                                  (8) 

kCa + kCb + kCc = 1                                                  (9) 



 

 The high-frequency synthesis technique 

introduced by Venturini (1980) and Alesina and 

Venturini (1988), allows a control of the Smn switches 

so that the low frequency parts of the synthesized 

output voltages (Va, Vb and Vc) and the input currents 

(iA, iB and iC) are purely sinusoidal with the 

prescribed values of the output frequency, the input 

frequency, the displacement factor and the input 

amplitude.  
 The output voltage is given by : 
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Where :
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 The running matrix converter with Venturini 

algorithm generates at the output a three-phases 

sinusoidal voltages system having in that order 

pulsation ωm, a phase angle θ and amplitude δ.Vs        

(0 < δ < 0.866 with modulation of the neural) 

[14,15]. 

 

3. The DFIM model 
 Its dynamic model expressed in the synchronous 
reference frame is given by : 

RR
R

RRR

SS
S

SSS

φjω
dt

φd
IRV

φjω
dt

φd
IRV





                                      

(11)          

 IMILφ

 IMILφ

SSRRRR

RSRSSS





                                            

(12) 

From (11) and (12), the state-all-current model is 

written as : 
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This electrical model is completed by mechanical 

equation : 

dt

dω
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4. Control strategy of the DFIM  

A. Rotor flux orientation 

 In this section, the DFIM model can be described 

by the following state equations whose axis d is 

aligned with the rotor flux vector (see figure 2) [16] : 

RdRRq φφφ     ;   0                                                 (16) 

So, using equation (12) we can write :   

Sq

R
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Rq .I
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M
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Fig. 2. Rotor field orientation on the d-axis. 

 

Two methods can be used for motor magnetization 

[16] : 

 Work with a unit power-factor in the stator or the 

rotor, which implies that one of the two currents, 

ISd or IRd, will be equal to zero,  

 Divide the magnetizing current to equality 

between the two converters as follows :  

2
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Choose IRd = 0 give the same expression to the 

stator and air-gap flux [16]. Moreover, the flux 

expression depends only on MSR and the rotor power-

factor will be equal the unit. 

 

B. The current loops design 

In order to obtain a decoupling between d and q 

axis, let us define new voltages as [16] : 
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Using equations (12), (16) and (19), we can write : 
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Thus:  

 

V
dt

dI
σLIRVVV

V
dt

dI
σLIRVVV

V
dt

dI
σLIRVVV

V
dt

dI
σLIRVVV

tRqc

Rq

RRqRtRqctRqctRq

tRdc
Rd

RRdRtRdctRdctRd

tSqc

Sq

SSqStSqctSqctSq

tSdc
Sd

SSdStSdctSdctSd


























11

11

11

11

 

    (21) 

This method gives the same transfer function 

between the currents and voltages of the same axis as 

shown by the following equation : 
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Fig. 3. Decoupling and regulation of the currents. 

The current references are given by : 
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Thus, figure 3 shows the control structure of the 

currents. 

 

C. The  speed regulation  

Basing on relation (16) and the assumption to 

work with IRd equal to zero, the electromagnetic 

torque can be written as : 

RqemRqRdem IKIp φC 
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Substituting (24) in (13), it results : 
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Where Kem is the torque constant. 

Thus, the speed transfer function can be expressed 

by: 
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Cr(s) is a disturbing input, while ISq(s) is main input.  

Consequently, the block diagram of the speed 

regulation is given by figure 4. 

 
 

Fig. 4. Block diagram of the speed control. 

 

5. Speed controllers synthesis  

In this section, we have chosen to compare the 

performances of the DFIM with four different 

controllers : Proportional integral (PI), conventional 

sliding mode (SMC), second order sliding mode 

(SOSMC) and fuzzy second order sliding mode 

(FSOSMC). 

 

A. Sliding mode controller (SMC) 

The sliding mode technique is developed from 

variable structure control to solve the disadvantages 

of other designs of nonlinear control systems. The 

sliding mode is a technique to adjust feedback by 

previously defining a surface. The system which is 
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controlled will be forced to that surface, then the 

behavior of the system slides to the desired 

equilibrium point [17]. 

The main feature of this control is that we only 

need to drive the error to a switching surface. When 

the system is in sliding mode, the system behavior is 

not affected by any modeling uncertainties and/or 

disturbances. The design of the control system will 

be demonstrated for a nonlinear system presented in 

the canonical form [18] : 

x = f(x,t)+B(x,t)V(x,t), xR
n
, V R

m
,ran(B(x,t)) = m                                                        

                                                                               (27) 

with control in the sliding mode, the goal is to keep 

the system motion on the manifold S, which is 

defined as : 

S = {x : e(x, t)=0}                                                  (28) 

e = x
*
 - x                                                                 (29) 

Here e is the tracking error vector, x
*
 is the desired 

state, x is the state vector. The control input u has to 

guarantee that the motion of the system described in 

(27) is restricted to belong to the manifold S in the 

state space. The sliding mode control should be 

chosen such that the candidate Lyapunov function 

satisfies the Lyapunov stability criteria : 
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Here η is strictly positive.  

Essentially, equation (30) states that the squared 

“distance” to the surface, measured by e(x)
2
, 

decreases along all system trajectories. Therefore 

(31), (32) satisfy the Lyapunov condition. With 

selected Lyapunov function the stability of the whole 

control system is guaranteed. The control function 

will satisfy reaching conditions in the following 

form: 

U
com

 = U
eq

 + U
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Here U
com

 is the control vector, U
eq

 is the equivalent 

control vector, U
n 
is the correction factor and must be 

calculated so that the stability conditions for the 

selected control are satisfied. 

U
n
 = K sat((S(x)/δ)                                                (34) 

sat((S(x)/δ) is the proposed saturation function, δ is 

the boundary layer thickness. In this paper we 

propose the Slotine method [19]: 
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Here, e is the tracking error vector, λ is a positive 
coefficient and n is the relative degree. 
 In our study, we choose the error between the 

measured and reference speed of the DFIM as sliding 

mode surface, so we can write the following 

expression : 
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The first order derivate of (29), gives : 
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Substituting the expression of Ω equation (26) in 

equation (30), we obtain: 
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Iqr will be the component of the control vector used 

to constraint the system to converge to S=0. The 

control vector Ueq is obtain by imposing 0S  so the 

equivalent control components are given by the 

following relation :   
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 To obtain good performances, dynamic and 

commutation around the surface, the control vector is 

imposed as follows [18]: 

)sign(SKUU eq 

                                             

(40) 

 The sliding mode will exist only if the following 

condition is met :  
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B. Second order sliding mode controller (SOSMC) 

 Sliding mode control (SMC) is one of the most 

interesting nonlinear control approaches. 

Nevertheless, a few drawbacks arise in its practical 

implementation, such as chattering phenomenon and 

undesirable mechanical effort [20]. In order to reduce 

the effects of these problems, second order sliding 

mode seems to be a very attractive solution [21]. 

 This method generalizes the essential sliding 

mode idea by acting on the higher order time 

derivatives of the sliding manifold, instead of 



 

 

influencing the first time derivative as it is the case in 

SMC, therefore reducing chattering and avoiding 

strong mechanical efforts while preserving SMC 

advantages [22]. 

 In order to ensure the DFIM’s speed convergence 

to their reference, a second order sliding mode 

control (SOSMC) is used. Considering the sliding 

mode surface given by (29), the following expression 

can be written: 
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Where Y(t,x) and Λ(t,x) are uncertain functions which 

satisfy: 
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 Basing on the super twisting algorithm introduced 

by Levant in [23], the proposed high order sliding 

mode controller contains two parts [24]: 
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 In order to ensure the convergence of the sliding 

manifolds to zero in finite time, the gains can be 

chosen as follows [24]. 
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C. Fuzzy second order sliding mode controller 

(FSOSMC) 
 As mentioned in the previous section, the main 

disadvantage of the SMC is the chattering 

phenomenon. Among all the solutions used 

nowadays to decrease the effect of this phenomenon 

on the DFIM control, the second order sliding mode 

technique seems very interesting. Indeed, this method 

has proven in several studies and research 

applications its effectiveness in minimizing this 

undesirable phenomenon which is mainly due to the  

 
 

Fig. 5. Fuzzy sets and its memberships functions. 

 

presence of a discontinuous control term containing 

the sign function.  

 In order to improve the SOSMC of the DFIM and 

more and more decrease the adverse effect caused by 

the sign function, we propose in this paper to use the 

fuzzy second order sliding mode control (FSOSMC). 

 For the proposed FSOSMC, the universes of 

discourses are first partitioned into the seven 

linguistic variables NB, NM, NS, EZ, PS, PM, PB, 

triangular and trapezoidal membership functions are 

chosen to represent the linguistic variables for the 

inputs and outputs of the controllers. 

 The fuzzy labels used in this study are negative 

big (NB), negative medium (NM), negative small 

(NS), equal zero (EZ), positive small (PS), positive 

medium (PM) and positive big (PB). 

 These choices are described in figure 5. 

 

6. Simulation results and discussions   

 In this section, simulations are realized with a 1.5 

KW motor coupled to a 220V/50Hz grid. The bloc 

diagram of the proposed control scheme of the DFIM 

is given by figure 6. Parameters of the machine are 

given in appendix. In the aim to evaluate the 

performances of the four controllers: PI, SMC, 

SOSMC and FSOSMC, three categories of tests have 

been realized: pursuit test, sensitivity to the load 

torque variation and robustness against machine 

parameter variations. 

 

A. Pursuit test 
 The objective of this test is the study of the four 

controllers’ behavior in reference tracking, while the 

load torque is considered equal to zero. The 

simulation results are presented in figures 7 and 8. As 

it’s shown by figure 7, for the four controllers, the 
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mechanical speed tracks almost perfectly their 

reference but with an important response time for the 

PI controller compared to the other controllers. 

Therefore it can be considered that the three types of 

sliding mode controllers have a very good 

performance for this test. On the other hand, figure 8 

shows the harmonic spectrum of the electromagnetic 

torque of the DFIM obtained using Fast Fourier 

Transform (FFT) technique for the three controllers. 

It can be observed that the total harmonic distortion 

(THD) is clearly reduced for FSOSMC (THD = 

22.86%) when compared to SOSMC (THD = 

45.78%), SMC (THD = 49.62%) and PI (THD = 

45.13%). Therefore it can be concluded that the  

 
 

Fig. 6. Block diagram of the proposed control scheme of 

the DFIM. 

 

     
 

Fig. 7. Reference tracking test.  
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Fig. 8. Spectrum harmonic of the electromagnetic torque for (a) PI, (b) SMC, (c) SOSMC, (d) FSOSMC. 
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Fig. 9. Sensitivity to the load torque variation. 

 

 
 

Fig. 10. Robustness test (J=2*Jn).  

 
proposed controller (FSOSMC) is the most effective 

in eliminating chattering phenomenon. However, we 

note that despite the use of FLSOSMC, THD torque 

remains fairly high. This is principally due to the use 

of two power converters, which represents one of the 

major disadvantages of such configuration of DFIM. 

 

B. Sensitivity to the load torque variation 
 The aim of this test is to analyze the influence of 

the load torque variation on the DFIM response for 

the four controllers. For this objective and in the in 

the time interval t = 0.15s and t = 0.35s, the load 

torque is kept equal to its nominal value Crn =10 

N.m. The simulation results are shown in figure 9. 

This figure express that the effect produced by the 

load torque variation is very clear on the speed curve 

of the system with PI controller, while the effects are 

almost negligible for the system with the three other 

controllers. It can be noticed that these last have a 

nearly perfect speed disturbance rejection, indeed; 

only very small speed variations can be observed 

(fewer than 2%). This result is very attractive for 

speed control applications to ensure stability when 

the load torque is varying. 

 

C. Robustness 

 In order to test the robustness of the used 

controllers, the machine inertia has been doubled. 

The results presented in figure 10 show that inertia 

variation presents a clear effect on the speed 

responses (in the error curves) of all used controllers 

and that the effect appears more significant for PI 

controller than that with the three other ones. Thus it 

can be concluded that these last are robust against 

this parameter variation. 

 

7. Conclusion   

 A new robust control method based on variable 

structure technique and fuzzy logic of a DFIM 

supplied by two matrix converters has been presented 

in this paper. In the first step, we started with a study 

of modeling on the matrix converter controlled by the 

Venturini modulation technique. In second step, we 

adopted a vector control strategy in order to make the 

behavior of the DFIM like a DC motor, i.e. a 

decoupling between the magnetic flux and the 

electromagnetic torque. Four types of controllers are 

synthesized and compared in the third step in the 

goal to control the speed of the DFIM. The various 

results obtained in simulation show the FSOSMC 
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robustness to the system and load parameters 

disturbances. In addition the speed follow without 

overshooting, decoupling, stability and equilibrium 

convergence are ensured on the entire variation 

interval. The results obtained with this FSOSMC are 

very interesting compared to the other types of the 

sliding mode controllers especially in eliminating of 

the chattering phenomenon. The static inverter and 

the control nature with variable structure introduce 

high frequency undulations which appear on the 

torque level. However, with the use of second order 

sliding mode and a high modulation index, we can 

reduce the couple fluctuations considerably. 

Moreover this control has the advantage of being 

easily implemented by a program control. 
 
Appendix 

Table 1. Nomenclature.  

Symbol Significance 

S, R Rotor and stator indices, 

d, q Direct and quadrate indices for orthogonal  

components, 

x  Variable complex such as: 

   xj xx ImRe   
with j

2
 = -1.  

x  it can be a voltage asV , a current as I or a 

field as φ , 

RS, RR Stator and rotor resistances, 

LS, LR Stator and rotor inductances, 

MSR Mutual inductance, 

p Number of pairs poles, 

θ Absolute rotor position, 

θS, θR Stator and rotor flux absolute positions, 

σ Leakage flux total coefficient 

)1(
2

RSSR LLMσ  , 

ωS Stator current frequency (rad/s), 

J Inertia (Jn nominal value of J) , 

f Coefficient of viscous frictions, 

Cr Load torque, 

Cem Electromagnetic torque. 

 

Table 2. The DFIM parameters.  

Parameters Value IS-Unit 

Stator voltage 220  V 

Rotor voltage 130  V 

Stator/rotor frequency 50  Hz 

Stator resistance 1.75  Ω 

Rotor resistance 1.68  Ω 

Stator inductance 0.295  H 

Rotor inductance 0.104  H 

Mutual inductance 0.165  H 

Inertia 0.01 Kg.m
2
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