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Abstract:- This paper presents the robust 

optimal shifting of eigenvalues control design and 

application for load frequency control. A method for 

shifting the real parts of the open-loop poles to any 

desired positions while preserving the imaginary parts 

is constant. In each step of this approach, it is 

required to solve a first and second-order linear 

matrix Lyapunov equation for shifting one real pole or 

two complex conjugate poles respectively. This 

presented method yields a solution, which is optimal 

with respect to a quadratic performance index. Load-

frequency control (LFC) of a single and two area 

power systems was evaluated. The objective is to 

minimize transient deviation in frequency, tie-line 

power control and achieve zero steady-state errors in 

these quantities.  The attractive feature of this method 

is that it solved the complex problem without any non-

linear algebraic Riccati equation. The control law 

depends on finding the feedback gain matrix and then 

it was synthesized by multiplying the state variables of 

the power system with determined gain matrix. The 

gain matrix is calculated once and it works over wide 

range of operating conditions. To validate the power 

of the proposed optimal pole shifting control, a 

linearized model of a single and two interconnected 

area load frequency control were simulated.  
 
Keywords:  Optimal pole shifting controller; Load 

frequency control; Pole placement control. 

 

1. Introduction 
 

Design a feedback freedom may be used to 

achieve additional advantageous control properties. 

One of such desirable properties for feedback is the 

optimally for a quadratic performance index. 

Robustness properties of this optimal feedback gain 

have been presented. A problem has been considered 

for converted into reduced-order linear problems. In 

each of these problems, a first-order or a second-order 

linear Lyapunov equation is to be solved for shifting 

one real pole or two complex conjugate poles, 

respectively [1]. Power system oscillation is usually in 

the range between 0.1 Hz to 2 Hz. Improved dynamic, 

stability of power system can be achieved through 

utilization of supplementary excitation control signal [ 

2,3]. The method is based on the mirror-image 

property. The problem of designing a feedback gain 

that shifts the poles of a given linear multivariable 

system to specified position has been studied 

extensively in the past decade [4 ,5]. Many control 

strategies have been proposed based on classical linear 

control theory. However, because of the inherent 

characteristics of the change loads, the operating point 

of a power system may change often during a daily 

cycle. The dynamic performance of power systems are 

usually affected by the influence of its control system 

[6-8]. It has been recognized that the complexity of a 

large electric power system has an adverse effect on 

the systems dynamic and transient stability, and its 

stability can be enhanced by using optimal pole 

shifting control. Further, the two area power system, 

composed of steam turbines controlled by integral 

control only, is sufficient for all load disturbances, and 

it does not work well. Also, the non-linear effect due 

to governor dead zones and generation rate constraint 

(GRC) complicates the control system design. Further, 

if the two area power system contains hydro and 

steam turbines, the design of LFC systems is 

important. There are different control strategies that 

have been applied, depending on linear or non-linear 

control methods [9-10].  

In this paper a comparison between pole placement 

control and proposed optimal pole shifting controller 

is presented in single and two-area load frequency 

control.  

 No Eigenvalues should have a multiplicity 

greater than the number of inputs.           Calculate the 
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feedback gain matrix K such that the single and two 

input system  

                                                        (1) 

The feedback control law:   

                                               (2) 

Applied to Eqn.(1) a closed-loop system will be 

obtained in the form 

         
With 

                                                      (3) 

Consider                   .to be a closed-loop 

pole of Eqn.(3). and                    is open-

loop poles of Eqn. (1) for any    and   , which satisfy 

the optimality condition of,    [1] can be given : 

   
                

 
                        (4) 

Where     is a positive real constant scalar. R is a 

positive definite symmetric matrix.  Then, the 

following matrix algebraic equation [1]:  

                                                   
                                                                  (5) 

There exists a positive semi-definite real symmetric 

solution    satisfying  

           
Therefore, according to[1]: 

                 

With I = 1,2,……, n and          . Further, the 

feedback control law  

           Minimizes the following quadratic 

performance index: 

          

               
 

 
    

 

With     Q=2αP          

 

2. Load Frequency Control Models 
 

2.1. Single area model 
 

The load-frequency control plays an important 

role in power system operation and control. It 

makes the generation unit supply sufficient and 

reliable electric power with good quality. Fig. 1 

shows the block diagram of single area load 

frequency control. The model considered here can 

be written in state equations form as follows: 
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Fig. 1: Block diagram of single area load frequency 

control 

 

2.2. Two-area model: 
 

     The system investigated comprises an 

interconnection of two areas load frequency 

control. The model is steam- hydraulic 

turbines. The linearized mathematical models 

of the first order system are represented by 

state variables equations as follows [4]: 

For steam turbine area : 
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For hydro turbine area: 
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The tie line power as: 
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 The overall system can be modeled as a multi-

variable system in the form of  

)()()( tLdtButAxx 


      (19) 

 

Where A is system matrix, B and L are the input and 

disturbance matrices. 

 

 )( and )( ),( tdtutx  are state, control  and load 

changes disturbance vectors, respectively. 
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Fig. 2: Two-Area (Steam-Hydraulic Turbines) 

load frequency control 
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TT  
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pT  

speed regulation due to governor 

action 
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3.   Optimal Pole Shifting Control 

 

3.1. Shifting one real pole 
 A real pole λ = γ is to be shifted to the new 

position     [3] which satisfies the optimality 

condition        . The first-order model to be used 

is defined by: 

      and                                                                                                     

Where     is the left eigenvector of     associated 

with λ, if the positive scalar α is: 

  
      

 
                                       (23)                                                                                        

Then an explicit solution for the above reduced-other 

problem can be obtained by solution of the first-order 

Lyapunov equation. 

                                  (24)  

Is given by       
  

      
  where: 

                                                         (25)  



Then the required parameters          can be 

calculated as                       and     

      then, the parameter rewritten as: 

    
     

  
,        

       

  
     and      

     
      

  
                              (26) 

3.2. Shifting a complex pole 

  A complex conjugate pair of poles λ,      
   of Eqn.(3) is to be shifted to the new positions S; 

      , which satisfy the optimality condition:                 
        . 

 Let positive scalar α as:                 
      

 
                                                                  

The second- order model   to be used is defined as: 

      
   

   
               and  

     
  

 

  
                                            (27) 

Where    
     

   is the left eigenvector of A 

associated with the pole           and the left 

eigenvector satisfied the equation: 

                                              (28) 

By solving the following second-order linear 

Lyapunov Equation of   Eqn. (24) 

 

                              (29) 

           

 The parameters             of the second-order optimal 

problem are obtained 

 

           ,   

            

                                                       (30) 

Therefore, the feedback controller      can be 

calculated from: 

 

                                                (31) 

Where: 

                                                                             (19) 

                                                                           (20) 

3.3. Shifting several poles 
 Problem of shifting several poles may be 

solved by the recursive applications of the following 

reduced order optimal shifting problem 

  
                                      (32) 

                
                                                        (22) 

        
   

      
     

 

 
                                                 (23) 

With : 

  
        

            
                                                 (24) 

And 

             

     
     

                                                                (25) 

 

From Eqn. (31), the feedback matrix   can be 

constructed by the summation of the optimal feedback 

matrix   .  Also the resulting matrices Q and P can be 

constructed as shown by the summation of the 

matrices     and     , respectively.[1] 

  

         ,      ,and                 (33)             

 

Where : 

     
     

   , 

             
  ,   and     

           

4.  Pole Placement Control 

      By using full-state feedback can shift the poles to 

the left hand side by (10-15)%. We could use the 

Matlab function  place to find the control vector gain 

K, which will give the desired poles.  

                                                (34) 

Where: 

    A: system matrix. 

    B: input vector. 

    P: pole shifting vector. 

    K: control gain. 

A state feedback matrix K such that the Eigenvalues 

of         are those specified in vector P.  The 

feedback law of           has closed loop poles at 

the values specified in vector P. 

                 

5. Digital Simulation Results  

    

5.1. Simulation of Single Area 
        The normal parameters of single area power system 

are:  
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The A and B matrices of single area model are 

calculated as: 

    

           
         

         
      

   

The dominant poles can be rewrite as: 

                 

                

Where; 

  : damping coefficient 

  : Frequency 

                                      (35)                                                                 

                             
 The settling time   =72.7 sec. the desired 

value of the damping coefficient can be choosing as ζ 

= 0.82 to damping the oscillation of speed and 

constant imaginary part. The closed loop poles are 

specified as: 

ζ = 0.82 and                 

 From Eqn. (35) , calculate the          the 

new dominant eigenvalues can be calculated as 

follows 

                            

The complete new poles are become as: 

                        

          

            

And calculate the settling time decreased (  ) from 

72.7 to 1 sec. 

 

Shifting complex poles      to     , it can get:  

 

    
               

 
 1.7040 

 

  
 : left eigenvector which satisfy the Eqn (27) 

               

   
   

                   
                      

   

 

Form Eq. (27)       
      
     

         
      

   

From Eqns. (28-29) 

     
      
      

   

      
    

        
     
    

   

 

Therefore, the solution of the corresponding second 

order Lyapunov equation is found  

From Eqn. (29) 

     
              
              

   

From Eq. (30) 

 

                
    

             
                 

   

                  
   

                    

                     
             
                 

   

From Eqns. (31-33), the feedback controller gain 

matrix can be calculated as: 
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Also, another shifting real pole from -0.0296  to -15 

Calculate K2, P2 and Q2 as last. 

               

   
     
                                          
   From Eqn. (33) the    total, P total and Q total are 

calculated as follows: 

K =K1 +K2  , P=P1+P2   , Q=Q1+Q2 as follows: 
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The total control signal K is: 

             

                       

     
                                        
   

 Pole placement Control Design  

From Eqn.(34), desired vector P as:  P=[ -7.0811,  -

0.6780 + 2.0534i,  -0.6780 - 2.0534i,  -2.296]. The 

gain matrix K =place (        

                   -27.4982   -1.1708   -0.7619  -

95.9647] 

 

 Figure 3 shows the frequency deviation response due 

to 10% load disturbance of single area with and 

without controller. Fig. 4 depicts the frequency 

deviation response due to 10% load disturbance of 

single area with pole-placement and proposed optimal 

pole-shifting control. Fig. 5 displays the root-locus of 

the system without control. Fig. 6 shows the root-

locus of the system with optimal pole-shifting control. 

Fig. 7 depicts the frequency deviation response due to 

10% load disturbance of single area with pole-

placement and proposed optimal pole-shifting control 

at 50% increase in Tt and Tg.  Also, Fig. 8 shows the 

frequency deviation response due to 10% load 

disturbance of single area with pole-placement and 

proposed optimal pole-shifting control at 50% 

increase in Tp and Kp.  Table 1 displays the 

eigenvalues calculation with and without controller. 

Table 2 depicts the settling time calculation at 

different load conditions. 

 

 

 

 

 

 

 

Fig. 3: Frequency deviation response due to 10% load 

disturbance of single area with and without controller. 

 

 

Fig. 4: Frequency deviation response due to 10% load 

disturbance of single area with pole-placement and 

proposed optimal pole-shifting control. 
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Fig. 5: Root-locus of the system without control  

 

Fig. 6: Root-locus of the system with optimal pole-shifting control  

 

 

Fig. 7: Frequency deviation response due to 10% load disturbance of single area with pole- 

placement and proposed optimal pole-shifting control at 50% increase in Tt and Tg. 
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Fig. 8: Frequency deviation response due to 10% load disturbance of single area with pole-placement and 

proposed optimal pole-shifting control at 50% increase in Tp and Kp. 

 

Table 1:   Eigenvalues calculation with and without controller. 

Operating 

point 

Without controller Pole-placement 

controller 

Optimal pole-shifting 

Normal 

condition 

   -6.0811           

  -0.4780 + 2.0534i 

  -0.4780 - 2.0534i 

  -0.0296        

-7.0811           

  -0.6780 + 2.0534i 

  -0.6780 - 2.0534i 

  -2.2960         

-20.9998           

  -6.0811           

  -2.3821 + 1.8658i 

  -2.3821 - 1.8658i 

Increased 

50% of Tt, 

Tg 

-4.2808           

  -0.2115 + 1.6617i 

  -0.2115 - 1.6617i 

  -0.0296     

-5.3678           

  -0.7661 + 1.9001i 

  -0.7661 - 1.9001i 

  -1.4996         

-20.1695           

  -5.0664           

  -2.1407 + 0.7094i 

  -2.1407 - 0.7094i 

Increased 

50% of 

Tp, kp 

-6.1699           

  -0.4252 + 2.1711i 

  -0.4252 - 2.1711i 

  -0.0298      

-7.3832           

  -0.7409 + 2.1134i 

  -0.7409 - 2.1134i 

  -2.3099   

- -23.4841           

  -5.9806           

  -2.4271 + 1.8637i 

  -2.4271 - 1.8637i 

 

 

Table 2: Settling time calculation at different conditions. 

 Case Without 

Control 

Pole-

placement 

controller 

Optimal pole-

shifting 

Settling Time Normal 

condition 
  7 Sec. 1.3 Sec. 

Increased 50% 

of Tt, Tg 
  6 Sec. 2 Sec. 

Increased 50% 

of Tp, kp 
  5 Sec. 2 Sec. 
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5. 2. Simulation of two-area model 
 

To validate the effectiveness of the proposed optimal 

pole shifting controller, the power system under study 

is simulated and subjected to different parameters 

changes. The power system frequency deviations are 

obtained. Further a various types of turbines (steam, 

and hydro) are simulated. Also a comparison between 

the power system responses using the conventional 

pole-placement control and the proposed optimal pole 

shifting controller is studied as follows and the 

system parameters are: 

Nominal parameters of the hydro-thermal system 

investigated [4], 

f=60 HZ  R1=R2=2.4HZ/per unit MW 

Tg1=0.08 s  Tr=10.0s      Tt=0.3s 

TR=10 s  D1=D2=0.00833 Mw/HZ 

T1=48.7s  T2=0.513s, Tg2=0.08s  

Tt1=Tt2=0.3s Kr1=Kr2=1/3,  

Pd1=0.05p.u.MW,B1=B2=0.425 

 Pd2=0.0,Tr1=Tr2=20s, T12=0.0707s,  The integral 

control gain Ki=1 pu. 

The A and B matrices of two- area model are 

calculated as: 

 

  

 
 
 
 
 
 
 
 
 
                           

                           
                     

                         
                          
                            
                           
                       

                       
 
 
 
 
 
 
 
 

,    

  

 
 
 
 
 
 
 
 
 
   
  
  
  
   
  
  
  
   

 
 
 
 
 
 
 
 

 

 

Choosing ζ = 0.82 to damping the oscillation of speed 

and keep constant imaginary part. The closed loop 

poles are specified as: 

ζ = 0.82 and                   

From Eqn. (35) , calculate the             

The new dominant eigenvalues can be calculated as 

follows 

                             

 

    
              

 
 1.878 

   
      
      

          
      

   

From Eqn. 31, the control signal calculated as 

follows: 

 

K1 = [  -0.5304    0.5748   -0.4447   -0.0179    0.3254    0.1813   -0.3899   -0.3712   -1.1782 

             0.8987   -0.9871    0.7571    0.0294   -0.5506   -0.3046    0.6683    0.6279    2.0182] 

 



Second complex pole (-2.0048 + 0.1867i)   shifted to 

(-3.0048 + 0.1867i), the control signal gain K2 can be 

calculated as in Eqn. 18 as follows: 

 

K2=[    0.1765   -3.7233    1.9848    0.0338    0.1275    0.1391    0.5495   -3.3969    0.0123 

            -0.7047   15.3609   -8.1609   -0.1318   -0.5098   -0.5542   -2.1648   13.8678   -0.031]  

Also, another shifting real pole from -0.0359 to 10 

  Control signal gain K3 is calculated as last. 

 

 

K3=  10000 *[   0.0002    0.1340   -0.0648    0.0006    0.0001    0.0001   -0.0002   -0.4154    0.0060 

                       -0.0005   -0.3751    0.1815   -0.0016   -0.0004   -0.0002    0.0007    1.1630   -0.0167] 

 

   From Eqn. (33) the    total, P total and Q total are 

calculated as follows: 

 

  =K1 +K2 +K3 , 

 P=P1+P2+p3 , 

 Q=Q1+Q2+Q3  as follows: 

The total control signal gain K from optimal pole-

shifting controller is: 

          

 
     

  
                                                                  
                                                            

  

 

The pole-placement gain Kx as: 

  

  
                                                                           

                                                                      
  

 

Figure 9 shows the frequency deviation response of 

area-1 due to 5 % load disturbance with and without 

controller of two-area load frequency control model. 

Fig. 10 displays the frequency deviation response of 

area-2 due to 5 % load disturbance with and without 

controller of two-area load frequency control model. 

Fig. 11depicts the frequency deviation response of 

area-1 due to 5 % load disturbance with and without 

controller at 50% increase in Tt and Tg of two-area 

load frequency control model. Fig. 12 shows the 

frequency deviation response of area-2 due to 5 % 

load disturbance with and without controller at 50% 

increase in Tt and Tg of two-area load frequency 

control model. Fig. 13 depicts the frequency 

deviation response of area-1 due to 5 % load 

disturbance with and without controller at 50% 

increase in Tp and Kp of two-area load frequency 

control model. Fig. 14 shows the frequency deviation 

response of area-2 due to 5 % load disturbance with 

and without controller at 50% increase in Tp and Kp 

of two-area load frequency control model. Table 3 

displays the Eigenvalues calculation with and without 

controller of two-area model. Table 4 describes the 

Settling time calculation at different load conditions 

of two-area load frequency control model. 

 



 
Fig. 9: Frequency dev. Response of area-1 due to 5 % load disturbance with and without controller of two-area 

load frequency control model. 

 
Fig. 10: Frequency dev. Response of area-2 due to 5 % load disturbance with and without controller of two-area 

load frequency control model. 
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Fig. 11: Frequency dev. Response of area-1 due to 5 % load disturbance with and without controller at 50% 

increase in Tt and Tg of two-area load frequency control model. 

 
Fig. 12: Frequency dev. Response of area-2 due to 5 % load disturbance with and without controller at 50% 

increase in Tt and Tg of two-area load frequency control model. 
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Fig. 13: Frequency dev. Response of area-1 due to 5 % load disturbance with and without controller at 50% 

increase in Tp and Kp of two-area load frequency control model. 

 
Fig. 14: Frequency dev. Response of area-2 due to 5 % load disturbance with and without controller at 50% 

increase in Tp and Kp of two-area load frequency control model. 
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Table 3: Eigenvalues calculation with and without controller of two-area model. 

Operating 

point 

Without controller Pole-placement 

controller 

Optimal pole-shifting 

Normal 

condition 

-12.9116           

  -5.1552           

  -0.2571 + 2.7673i 

  -0.2571 - 2.7673i 

  -2.0048 + 0.1867i 

  -2.0048 - 0.1867i 

  -0.4375 + 0.0603i 

  -0.4375 - 0.0603i 

  -0.0359    

-14.0001           

  -7.1552           

  -0.4571 + 2.7675i 

  -0.4571 - 2.7675i 

  -2.5048 + 0.1866i 

  -2.5048 - 0.1866i 

  -0.3590           

  -0.6375 + 0.0604i 

  -0.6375 - 0.0604i 

-21.5740           

 -10.5404           

  -5.0341 + 1.1554i 

  -5.0341 - 1.1554i 

  -1.7651 + 2.1250i 

  -1.7651 - 2.1250i 

  -0.3938           

  -2.0065           

  -1.8743 

Increased 

50% of Tt, 

Tg 

-8.7231           

  -5.1547           

  -0.1299 + 2.7517i 

  -0.1299 - 2.7517i 

  -2.2448           

  -0.7321 + 0.3963i 

  -0.7321 - 0.3963i 

  -0.3412           

  -0.0358       

-9.7908           

  -7.1388           

  -0.2046 + 2.8483i 

  -0.2046 - 2.8483i 

  -2.3751 + 0.2174i 

  -2.3751 - 0.2174i 

  -0.3598 + 0.1749i 

  -0.3598 - 0.1749i 

  -0.6268 

-24.5457           

  -9.2482           

  -0.6510 + 5.5860i 

  -0.6510 - 5.5860i 

  -5.2643           

  -1.8383           

  -1.6392           

  -0.4360 + 0.2785i 

  -0.4360 - 0.2785i 

Increased 

50% of Tp, 

kp 

-12.9111           

  -5.1563           

  -0.2477 + 2.7672i 

  -0.2477 - 2.7672i 

  -2.0111 + 0.1909i 

  -2.0111 - 0.1909i 

  -0.4236 + 0.1112i 

  -0.4236 - 0.1112i 

  -0.0361          

-13.9984           

  -7.1501           

  -0.4441 + 2.7695i 

  -0.4441 - 2.7695i 

  -2.5038 + 0.1888i 

  -2.5038 - 0.1888i 

  -0.3570           

  -0.6392 + 0.0664i 

  -0.6392 - 0.0664i 

-21.5307           

 -10.5522           

  -5.0214 + 1.1508i 

  -5.0214 - 1.1508i 

  -1.7744 + 2.1179i 

  -1.7744 - 2.1179i 

  -0.3703           

  -2.0126           

  -1.8965           

 

 

Table 4: Settling time calculation at different conditions of two-area model. 

 Case Without 

Control 

Pole-placement 

controller 

Optimal pole-

shifting 

 

 

Settling Time 

Normal 

condition 

18 Sec. +SS 12 Sec. 6 Sec. 

Increased 50% 

of Tt, Tg 

20 Sec. +SS 18 Sec. 6.3 Sec. 

Increased 50% 

of Tp, kp 

18 Sec. +SS 14 Sec. 7 Sec. 

 

6.   Conclusion 
 The present paper introduces a new controller 

for damping quickly the power system frequencies 

and tie line power error oscillation and reducing their 

errors to zero. The problem of shifting the real parts 

of the open-loop poles to desired locations, while 

preserving the imaginary parts has been constant. 

Load-frequency control (LFC) of a single and two 

area power systems is evaluated.  It has been shown 

that the shift can be achieved by an optimal feedback 

control law with respect to a quadratic performance 

index. However, this has been done without solving 

non-linear algebraic Riccati equation. The merit of 

the presented approach is that it requires only the 

solution of a first and second-order linear algebraic 

Lyapunov equation for shifting one real pole or two 

complex conjugate poles respectively. Moreover, the 

power system is subjected to different disturbances, 

and also, a comparison between the power system 

responses using the conventional pole-placement 

controller and the proposed optimal pole-shifting 

controller were presented and obtained. The digital 

simulation result shows the power of the proposed 

optimal pole shifting controller than conventional 



pole-placement controller in sense of fast damping 

oscillation and small settling time. Moreover, the 

optimal pole shifting controller has less overshoot 

and under shoot than pole-placement control.  
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