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Abstract- A robust meta-heurtics optimization technique, 

Simulated Annealing, is applied in this paper for analyzing the 

performance of separate-excited induction generator under 

different speed/load levels. The simulated annealing technique is 

utilized to define the minimum value of excitation capacitor 

required for providing maximum output power from the 

generator under different load types/operating conditions. 

 

Index terms- Induction Generator, Simulated Annealing 

Technique, Critical Capacitance, Magnetizing Reactance. 
  

I. INTRODUCTION 

Induction Generator (IG) is considered the preferred 

option for harvesting electrical power from non-

conventional energy sources, particularly wind. This is 

attributed to the salient features of IG such as: 

robustness, maintenance free, and absence of separate 

DC excitation system [1-9].  

IG could be operated either grid-connected or off-

line; for the case of grid-connected, the reactive power 

requirements for maintaining constant voltage at 

generator terminals under different load/speed 

conditions are supplied by the grid. However, for the 

case of stand-alone operation, which is the case for 

remote and rural locations, the capacitive excitation is 

indispensable to regulate the voltage across the machine 

terminal [5-14]. For example, for fixed excitation 

capacitor and speed, the machine terminal voltage 

decreases/increases with the load increase/reduction. For 

regulating the terminal voltage, the excitation 

capacitance has to vary simultaneously with the load. 

This is costly and complicated solution. However, if the 

terminal voltage is allowed to vary within a narrow 

range, attractive, in-expensive and simple approach is to 

use stepped switched capacitors with the possibility of 

switching them on/off with the loads.   

The principle of self-excitation could also be adopted 

in other research areas as dynamic braking of three-

phase induction motor; therefore, techniques for 

analyzing the behavior of such machines are of 

significant practical interest [2, 4]. In general, there are 

two scenarios for analyzing the steady-state performance 

of self-excited cage induction generator. The first 

scenario is to determine terminal voltage, output power, 

stator and rotor current for given value of capacitance, 

load and speed, while the second is to determine the 

required excitation capacitance for desired voltage at 

given load and speed level [2-6].  

Extensive research efforts were draft in the past 

decades [1-14] for computation of the steady state 

performance of self excited induction generator using 

steady state equivalent circuit of the machine. For 

example, in [5] a mathematical model was developed for 

obtaining the steady state performance of self-excited 

induction generator using equivalent circuit. In this 

approach, the complex impedance is segregated into real 

and imaginary parts. The resulted nonlinear equations 

are arranged for unknown variables such as magnetizing 

reactance (Xm) and frequency (F), while the remaining 

machine parameters and operating variables are assumed 

constants. Numerical techniques as Newton Raphson 

were employed for solving the equations. This approach, 

however, requires sophisticated computation capabilities 

in terms of speed and storage.  

 In [6] an approach for computing steady state 

performance of the self excited induction generator is 

proposed; 4
th
 order polynomial is derived from the loop 

equation of equivalent circuit of the machine. The roots 

of this polynomial are determined to check occurrence 

of self excitation and to get the corresponding value of 

magnetizing reactance. The approach proposed in [6] 

has the advantages of predicting the performance of the 

machine for given capacitance/load/speed level. 

However, the load considered in this approach is pure 

resistive, which has less practical significance.   

A mathematical formula using steady state equivalent 

circuit of the machine was proposed in [8] for computing 

the minimum value of the capacitance required for self 

excitation and the threshold speed below which self 

excitation could not be established. Another 

mathematical formula is proposed in [9] for computing 

the static performance of the induction generator under 

wide range of operating conditions. In [10], the 

performance of separate-excited induction generator is 
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investigated to evaluate the range of different parameters 

as voltage, speed and excitation capacitance, within 

which self excitation is possible.  

Most of the approaches reported in the literature on 

the evaluation of the steady-state performance of self-

excited cage induction generators require splitting the 

equivalent impedance into real and imaginary 

components. Moreover, the model becomes rather 

complicated, if the core losses are included. Accordingly, 

several assumptions are taken to simplify the analysis. 

Furthermore, different models are used for modeling the 

machine with different types of loads/excitation 

capacitor arrangements. The coefficients of the 

mathematical models vary, which complicate the 

problem even further.  

In this paper, a robust optimization technique is 

employed for analyzing the steady-state performance of 

self-excited cage induction generator. The proposed 

technique uses a generic mathematic model for self-

excited IG; this model is used for any load 

type/excitation capacitor arrangement. In simulated 

annealing technique, the complex impedance is 

formulated as the objective function. Two scenarios are 

considered: In the first scenario, the magnetizing 

reactance and frequency are selected as independent 

variables, while in the second, capacitive reactance and 

frequency are taken as independent variables. The 

upper/lower limits of the unknown variables are selected 

to achieve practically acceptable values. The results 

from simulated annealing technique are used for 

predicting the generator performance under different 

load/speed levels.  
 

II. ANALYSIS OF STAND-ALONE IG 

The following analysis is valid for self-excited IG, 

squirrel-cage or wound rotor, provided that the capacitor 

bank is allocated in the stator side. . The equivalent 

circuit of self-excited IG, Figure 1, is normalized to base 

frequency.  

 
Fig. 1: Equivalent circuit of self excited induction generator 

 

Rs and Rr are per phase stator and rotor resistances. 

Xls and Xlr are per phase leakage reactance of stator and 

rotor. The Xm is the magnetizing reactance per phase and 

Xc is the per phase capacitive reactance of the 

capacitance C connected across the machine terminals at 

base frequency. RL is the per phase load resistance. F and 

υ are p.u. frequency and speed.  Is, Ir and I1 are per phase 

stator, rotor and load currents respectively. The 

resistance, reactance, current and voltage of the rotor are 

referred to the stator. Xm, the magnetizing reactance, is a 

function in the air-gap voltage Vg and frequency as,  

                   Xm=3*(1.6275-Vg/F)           

(1) 

Applying loop-impedance method [2] in the 

equivalent circuit, Fig. 1, the following equation results,  

Zt Is = 0                                 (2) 

Zt is given by, 

Zt = Z1 +Zc ZL/ (Zc+ZL) +Z2 Zm/ (ZL+Zm)         (3) 

where Z1 = Rs +jF X1, Zc = -j Xc/F, Z2=Rr F / (F- υ) +jF 

X1 Z L= R L+ j X L  and Zm = jF Xm 

Under steady-state self excitation, Is # 0, thus Zt in 

(1) is equal to zero. 

There are two scenarios for solving (1). 

 

a. SCENARIO 1 

For computation of the performance of the self 

excited induction generator for a given value of 

capacitance, load and speed, the mathematical 

formulation of the problem is, 

                           Minimize │Zt (F, Xc)│                 (4) 

The frequency and excitation reactances are bounded 

such as:  

                               Fl ≤ F≤ Fu                                                      (5) 

                        Xcl ≤ Xc≤ Xcu 

The upper and lower limits of the frequency and 

reactance are chosen to depict practical constraints.  

To fulfill (4), Zt has to be segregated into real and 

imaginary parts; accordingly two nonlinear equations are 

obtained with Xc and F as unknown variables, 

f(Xc,F)  = F
3
 a1+F

2
a2+F( a3Xc+a4)+(a5Xc)       (6) 

g(Xc,F)=F
4
b1+F

3
b2+F

2
(b3Xc+b4)+F(Xcb5+b6)+(b7Xc) (7) 

where the coefficients  a1-a5 and b1-b7 are given in 

appendix A 

 

b. SCENARIO 2 

For given magnetizing reactance, load and speed, the 

performance of the self excited induction generator 

could be predicted; the mathematical formulation of the 

problem under these conditions is given by, 



                               Minimize│Zt(F,Xm)│                     
(8)  

Also for this scenario the frequency and excitation 

reactance are bounded such as:  

                                  Fl ≤ F≤ Fu                                                        (9) 

                                 Xml ≤ Xm≤ Xmu  

Again the upper and lower limits of the frequency and 

reactance are chosen to depict practical constraints.  

The equivalent impedance Zt, after being separated  

into real and imaginary parts is given by, 

f(Xm, F)=F
3
(c1Xm+c2)+F

2
(c3Xm+c4)+F(c5Xm+c6) 

                   +(c7Xm)+c8                                                                    (10) 

 

g(Xm,F)=F
4
(d1Xm+d2)+F

3
(d3Xm+d4)+F

2
(d5Xm+d6)                 

            +F(d7Xm+d8)+d9        (11) 

where the coefficients c1-c8 and d1-d9 are given in 

appendix A 

 For the both scenarios, the optimization problem is 

solved using a meta-heurtics technique, Simulated 

Annealing technique.  

 

III. PROPOSED OPTIMIZATION ALGORITHM 

Simulated annealing is a combinatorial optimization 

technique based on random evaluation of the objective 

function. The simulated annealing has the capability of 

finding global optimum with a high probability even for 

ill-conditioned functions with numerous local optima, 

albeit with large number of function evaluations. In 

general, the simulated annealing method resembles the 

actual cooling process of molten metals through 

annealing [15]. A Detailed description of the technique 

is given in [15], however, the technique could be 

understood from the flowchart below that used for 

solving the problem under concern.  A brief description 

for simulated Annealing is given in the following:  

 Step 1: Set Choose the parameters of the SA method. 

The initial temperature, the temperature reduction 

factor is chosen as c = 0.5, number of iterations n, 

machine data and Xc, F or  Xm,F.  

 Step 2: Evaluate the objective function value at Xc, 

F as f1 or Xm , F as  f1  and set the iteration number 

as i = 1. 

 Step3: Generate a solution from the neighborhood of 

the current solution. Let this solution be f2 = f (Xc2, 

F2) or f2 = f (Xm , F2)  and compute ∆f = f2 − f1.   

 Step4: Since the value of ∆f is positive, we use the 

Metropolis criterion (P [Xc2,F2 ] or P [Xm,F2 ]  = 

e−∆f/t) to decide whether to accept or reject the 

current point. For this we choose a random number 

in the range (0, 1), if random number is smaller than 

Metropolis criterion we accept (Xc2, F2) or (Xm, F2). 

Since ∆f<0, we accept the current point as (Xc3, F3) 

or  (Xm, F3 ) and increase the iteration number to i = 

3. Since i > n, we go to step5. 

 Step 4: Update the iteration number as i = 2.Since 

the iteration number i is less than or equal to n, we 

proceed to step3. 

 Step 5: Since a cycle of iterations with the current 

value of temperature is completed, 

 We reduce the temperature to a new value by (t = 

c*t) and reset the current iteration number as i = 1 

and go to step3. 

 Step 6:   If stop criteria is met, then STOP. Else go 

to Step 3. 

 
Fig.2:  Flow chart of Simulated annealing Algorithm 

 

The number of iteration N in the flowchart is taken 

around 100, which is considered a good comprise 

between the accuracy and computation time.  

 

IV. STEADY-STATE PERFORMANCE OF SELF-

EXCITED INDUCTION GENERATOR 

The steady-state performance of self-excited 

induction generator could be mapped after obtaining Xc, 

Xm and F. Generally the steady-state performance of the 

machine is deduced from the following equations:  



 

Is = Vg/ {F (Zl+ZLC)}   (11) 

I1 = Is.ZC/ (ZL+ZC)   (12) 

Vt=Il.ZL    (13) 

Ir = Is.Zm/ (Z2 +Zm)        (14) 

VAR = 3 Vt
2
 F/Xc    (15) 

Pin = 3 1r
2
.Rr.F/ (F- υ)    (16) 

Po = 3 Vt.11      (17) 

 

a. STUDY CASE 

The steady-state performance of 3.7kW self-excited 

IG is evaluated through Simulated Annealing. The 

machine parameters are given in Table 1.  

                                    
                             Table 1 Parameters of 3.7kW IG 

Induction Machine Data 

Resistances Reactance 

Rs  =0.053 p.u (Xls  =  Xlr)  =0.087  p.u. 

Rr  = 0.061 p.u Impedance 

base=94.5ohm 

4 pole Rated power = 3.7 KW 

Voltage line to line = 415 

Volts 

Frequency  =  50Hz 

Line current =7.6 Amps Delta 

 

The Simulated Annealing has found that self-

excitation is not achievable at all operating 

speeds/excitation capacitors, and if the excitation 

capacitor is reduced than a certain value for speed, the 

generator will not build up irrespective to load type. The 

values of the threshold capacitor could be obtained for 

any load type/operating condition. These values were 

compared with those given in [13]. In this reference, 

analytical expression for the minimum excitation 

capacitance was introduced; however it was only for the 

case of no-load.  

         The variation of the generated voltage with 

excitation capacitance at rated speed for no-load case is 

shown in Figure3.  
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Fig. 3: Terminal voltage versus capacitance at no load and 

rated speed 

 

Fig. 3 shows that for 3.7kW, 15µf is the minimum 

value for the excitation capacitor at rated speed, below 

which the self-excitation is not possible. Moreover, the 

Figure shows that there is upper limit for the excitation 

capacitor above which the machine reverts into 

saturation. In the saturation the increase in the excitation 

capacitor will not produce significant increase in output 

power/generated voltage, which could not overwhelm 

the increase in capacitor size, cost and losses.  

The variation of the minimum, critical, capacitance 

with the speed for different load conditions was shown 

in Fig. 4.  
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Fig. 4 Critical capacitance with speed for no-load (blue), pure resistive (green) 

and inductive load (red) for different loading conditions  

 

Fig. 4 shows that the critical capacitance for 

inductive load is significantly higher than that of 

resistive load and no-load. Because, the excitation 



capacitor has to satisfy the reactive power requirements 

for the load and the generator simultaneously. 

Accordingly, capacitive load requires less capacitance 

than no-load case.   

The critical capacitance is a speed dependent, Fig. 4; 

the capacitance drops nearly by 40% for 25% increase in 

the speed. The critical capacitance for no-load shown in 

Fig. 4 is similar to that obtained from analytical 

expression derived in [13] for no-load.  

For a given speed, the performance of self-excited IG 

is dependent on the excitation capacitance. This is 

shown clearly in Fig. 5, where the terminal voltage of 

the generator is illustrated against output power for 

different load types/capacitor values.  
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Fig. 5: Terminal voltage versus output power at rated   speed 

for pure resistive load and 15µf capacitor (dashed),  inductive 

load and 15µf capacitor (triangle-dotted), and pure resistive 

load and 20µf capacitor (white circled-solid), and inductive 

load and 20µf capacitor (black circled-solid) 

The terminal voltage/output power of IG 

increases/decreases with increase/decrease in the 

excitation capacitor, Fig. 5, provided that saturation is 

not reached. The saturation was included in the above 

analysis through the upper limit of the excitation 

reactance, Xcu. Figure 5 shows that the voltage 

regulation for the inductive load is inferior to that of the 

resistive load; this may be attributed to the function of 

the excitation capacitor in case of inductive load in 

fulfilling the reactive power requirements of the load 

and the generator. 

The dependency of the output power on the 

excitation capacitance is exploited in Fig. 6, where the 

output powers are plotted versus the capacitance for 

constant terminal voltage/speed.  
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Fig.6: Excitation capacitance with output power at rated 

terminal voltage and rated speed 

For constant terminal voltage/speed, the capacitance 

has to increase for an increase in the output power. The 

excitation capacitance in Figs. 4 and 5 is limited to 28µf. 

This is to avoid the operation in saturation.   

The variation of magnetizing reactance Xm, with load 

at rated voltage and speed for two levels of excitation 

capacitance is shown in Fig. 7.  
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Fig. 7 Magnetizing Reactance with output Power at rated 

speed/voltage for pure resistive load and 15µf capacitor 

(dotted-solid), inductive load and 15µf capacitor (triangle-

solid), and pure resistive load and 20µf capacitor (dash), and 

inductive load and 20µf capacitor (solid) 

Fig. 7 shows the magnetizing reactance Xm for 

resistive load is nearly constant.  Also it shows that for 

inductive load there are two values at one load level. The 

high value is at unstable condition. It is observed from 

Figure 5, that the characteristic of self-excited induction 

generator is nearly similar to that of separate-excited DC 

generator. 

V. CONCLUSION 

 The following conclusions can be drawn: 



1. The IG is best option for harvesting electrical power 

from renewable energy sources, due to its salient 

advantages: robustness, maintenance free and 

reduced volumetric dimension/cost.  

2.  Capacitor banks are essential for stand-alone 

operation of IG for supplying the machine with 

reactive power requirements  

3. Simulated Annealing predicts with relatively small 

computation requirements, the minimum capacitor 

required for self excitation under different 

load/speed conditions  

4. For a speed, there is critical capacitance below 

which the self-excitation is not possible.  

5. The terminal voltage of IG increases/decreases with 

increase/reduction in the output capacitance  

6. For constant terminal voltage and speed, the 

excitation capacitance has to vary with the load.   

7. The performance of self-excited induction generator 

is investigated here for different loads/operating 

conditions, which as far as we know is not reported.   
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APPENDIX ( A) 

 

The coefficients of equation (5) 

a1 = - ((2Xm+X1) X1 RL+XL (X1+Xm) (Rr+Rs)) 

a2= (2Xm+X1) X1 RL υ+Rs XL (X1+Xm) υ  

a3= (RL + Rs +Rr) (Xm+X1) + (XL RL), a4= Rs RL Rr 

a5= - (Rs+RL) (Xm+X1) υ 

 

The coefficients of equation (6) 

b1= -X1 XL (X1+2Xm), b2= - B1 υ 

b3= (Xm+X1) (XL+X1)+(X1Xm) 

b4= Rs XL Rr+RL (Xm+X1) (Rs+Rr) 

b5= - ((Xm+X1) (XL+X1) +X1 Xm) υ 

b6= -Rs RL (Xm+X1) υ, b7= - Rr (Rs+RL) 

 

The coefficients of equation (9) 

c1=-XL (Rs+Rr) - (2X1) RL, c2=-XLX1 (Rs+Rr) - (X1
2
) RL 

c3= (2X1RL υ + RsXL υ), c4=X1(RsXL υ +X1RL υ) 

c5=Xc(RL+Rs+Rr), c6=XLXcRr+RsRLRr+X1Xc (RL+Rs+Rr) 

c7=-Xc (RL+Rs) υ, c8=-X1Xc (RL+Rs) υ; 



 

The coefficients of equation (10) 

d1=-2X1XL, d2=-XL(X1
2
), d3=2X1XL υ 

d4=(X1
2
) XL υ, d5= (RsRL+2X1Xc+XLXc+RrRL) 

d6=XL (RsRr+XcX1) + (X1RL) (Rr+Rs) +(X1
2
) Xc 

d7= υ ((-2X1Xc) - (RsRL) - (XcXL)) 

d8=X1 υ (-RsRL-X1Xc-XcXL), d9=-XcRr (Rs+RL) 
 


