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Abstract  

Induction motor drives without direct speed sensors have the features of low cost, high 

reliability, better noise immunity and less maintenance requirements. Therefore, there is a 

great interest in the research community to develop a high performance induction motor drive 

that does not require a direct speed sensor for its operation; that is to develop a speed-

sensorless induction motor drive. The information required for rotor speed estimation is 

extracted from measured stator voltages and currents at the motor terminals. Different speed 

estimation algorithms are used for this purpose. The main concerns regarding speed 

estimation are related to steady state accuracy, dependency on motor parameters, estimation 

bandwidth and dynamic behavior. This paper presents a comprehensive study of the different 

speed estimation techniques and their corresponding merits and demerits as well as their 

feasibility for estimating the rotor speed. The different speed estimation methods are 

compared according to a proposed set of criteria which allow assigning the merits that can be 

used to choose the proper method, depending on the specific application.  
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1. INTRODUCTION 

High performance electric motor drives are considered an essential requirement for 

modern industrial applications. In the past, dc motors have been widely used for this purpose. 

However, large size, heavy weight and frequent maintenance requirements make dc motors 
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an expensive solution. Moreover, mechanical commutator-brush assembly cause undesired 

sparking, which is not allowed in certain applications. These inherent drawbacks of dc motors 

have prompted continual attempts to find out a better solution for the problem. Numerous 

attempts have been made to use induction motors instead of dc ones since they have many 

advantages like simplicity, reliability, low cost and virtually maintenance-free. However, the 

high nonlinearity and time-varying nature of an induction motor drive demands fast switching 

power devices and a large amount of real-time computation [1]. 

Precise speed and torque control of an induction motor is now possible due to the recent 

developments in power electronics and digital signal processors (DSP) using field oriented 

control technique. There are essentially two general methods of field oriented control namely 

the direct and indirect methods. The direct method depends on generating unit vector signals, 

required for flux orientation, from the flux signals obtained by measurement or estimation. 

The indirect field oriented method uses the rotor speed and the slip angular frequency derived 

from the rotor dynamic equations to generate the unit vector signals to achieve flux 

orientation. Although indirect field orientation method is very sensitive to motor parameters, 

such as rotor time constant, it is generally preferred than the direct one. This is because direct 

method requires machine disassembly and modification to insert search coils or Hall-effect 

sensors for flux measurement. Moreover the fragility of flux sensors often degrades the 

inherent robustness of the induction motor drive [1]. 

 

2. SPEED-SENSORLESS CONTROL 

Accurate speed information is always necessary to realize high performance and high-

precision speed control of induction motor drives. Conventionally, a direct speed sensor, such 

as an encoder, is usually mounted to the motor shaft to measure its speed. The use of such 

direct speed sensors implies additional electronics, extra wiring, extra space, frequent 
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maintenance and careful mounting which detracts from the inherent robustness and reliability 

of the drive. Also, it adds an extra cost and the drive system becomes expensive. For these 

reasons, the development of alternative indirect methods becomes an important research topic 

[5]. Therefore, there is a great interest in the research community to develop a high 

performance induction motor drive that does not require a direct speed sensor for its 

operation; in other words, to develop a speed-sensorless induction motor drive. Many 

advantages are expected from speed-sensorless induction motor drives such as reduced 

hardware complexity, low cost, reduced size, elimination of direct sensor wiring, better noise 

immunity, increased reliability, and less maintenance requirements. Speed-sensorless motor 

drives are also preferred in hostile environments and high-speed applications [6] 

The positive features of speed-sensorless systems introduces them as a preferable choice 

for the next generation of commercial motor drives, not only for induction machines but also 

include other electrical machines, such as switched reluctance motors (SRM) and permanent-

magnet synchronous motors [2-4].  

3. SPEED ESTIMATION SCHEMES OF SENSORLESS INDUCTION MOTOR 

DRIVES 

Recently, serious attempts to eliminate direct speed sensor of induction motor drives are 

reported. All these attempts employ motor terminal variables and its parameters in some way 

or another to estimate the speed. The question always arises is to which extent the method is 

successful without deteriorating the dynamic performance of the drive. 

Several methods have been recently, proposed for speed estimation of high performance 

induction motor drives. Some of these methods are based on a non-ideal phenomenon such as 

rotor slot harmonics [5-9]. Such methods require spectrum analysis, which besides being time 

consuming procedures; they allow a narrow band of speed control. Another class of 

algorithms relies on some kind of probing signals injected into stator terminals (voltage 
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and/or current) to detect the rotor flux and consequently, the motor speed [10-14]. These 

probing signals, sometimes, introduce a high frequency torque pulses, and hence speed ripple. 

In some cases a useful data may be distorted due to interference with the high frequency 

probing signals. 

Despite the merits of the above methods of speed estimation near zero speed, they suffer 

from large computation time, complexity and limited bandwidth control. Alternatively, speed 

information can be obtained by using the machine model and its terminal quantities, like 

voltage and current [15-36]. These include different methods such as the use of simple open 

loop speed calculators [6-7]; Model Reference Adaptive Systems (MRAS) [15-19]; Extended 

Kalman Filters [20-22], Adaptive Flux Observer [23-27]; Artificial Intelligence Techniques 

[28-31]; and Sliding Mode Observer (SMO) [32-36]. Model-based methods are characterized 

by their simplicity and good performance at high speeds; however they exhibit lower 

accuracy at low speeds mostly, due to parameter variations. Figure 1 shows a chart of the 

different speed estimation methods for sensorless systems.  

 Speed Estimation 
Methods 

Rotor Slot 
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Signal Injection

Machine Model-
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Direct  
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Filter 
Adaptive 
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Fig. 1 Speed estimation methods of sensorless systems. 

In this paper, different speed estimation techniques of sensorless induction motor drives 

are reviewed and discussed. The object is to classify speed-sensorless schemes with 

emphasizing the merits and demerits for each method. A comparison between different speed 

estimation methods based on a devised set of criteria is introduced. The problems of low 
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speed operation and parameter adaptation associated with speed-sensorless systems are 

introduced. In most cases a tradeoff emerges between the implementation simplicity and the 

overall behavior. However, the result is considered a useful tool to justify a certain scheme 

for a specific application. A brief explanation of speed estimation schemes for sensorless 

induction motor drives is introduced below. 

 
3.1. Rotor Slot Harmonics (RSH) Method 

The method of speed estimation is based on detecting space harmonics induced by rotor 

slots [5-9]. The rotor slots generate space harmonic components in the air gap magneto 

motive force (mmf) that modulate the stator flux linkage at a frequency proportional to the 

rotor speed, and to the number of rotor slots Nr. Since Nr is generally not a multiple of three, 

the rotor slot harmonics induce harmonic voltages in the stator phases 

sl sl r r s

r

ˆv v sin(N ) ,
            where N 3n 1,      n=1, 2, 3, ....

= ω ± ω τ
= ∓

   (1) 

that appear as triplen harmonics with respect to the fundamental stator voltage slv . As all 

triplen harmonics from zero sequence systems, they can be easily separated from the much 

larger fundamental voltage. The zero sequence voltage vo is the sum of the three phase 

voltages in a wye-connected stator winding 

( )o a b c

1v v v v
3

= + +       (2) 

When adding the phase voltages, all non-triplen components, including the fundamental, 

get cancelled while the triplen harmonics add up. To isolate the signal that represents the 

mechanical angular velocity rω  of the rotor, a band pass filter is employed having its central 

frequency adaptively tuned to the rotor slot harmonic frequency 
r r s slN 2ω +ω = π τ  in Eqn. (1).  
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The block diagram of speed estimation based on rotor slot harmonics is shown in Fig. 2. 

The adaptive band pass filter extracts the rotor slot harmonics signal vsl. The filtered signal is 

digitized by detecting its zero crossing instants tz. A software counter is incremented at each 

zero crossing by one count to memorize the digitized rotor position angle ϑ . A slot 

frequency signal is then obtained by digital differentiation in the same way as from an 

incremental encoder. The accurate rotor speed rω  is subsequently computed with reference to 

Eqn. (1) [5].  
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Fig. 2 Block diagram of speed estimation based on rotor slot harmonics. 

As mentioned earlier, this approach needs high precision measurements which increase the 

hardware/software complexity. Also, they suffer from large computation time, complexity 

and limited bandwidth control. 

 

3.2. Frequency Signal Injection (FSI) Method 

Speed estimation scheme in the method is based on signal injection. A high frequency 

voltage signal, superimposed on the fundamental voltage, is typically used to excite the 

anisotropic phenomena of the motor and the rotor position or flux direction is identified from 

the current response. This paid for the presence of significant torque (and, therefore, speed) 

ripple. Also, the signal carrying useful information may be distorted due to interference with 

other signals of the same kind. Furthermore, a common drawback of signal-injection methods 

is that their dynamic response is usually only moderate [10-14]. 
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Figure 3 shows the basic structure of speed estimation using frequency signal injection 

method. An estimated field angle δ̂  is used to perform current control in field coordinates. A 

revolving carrier frequency cω is injected through the voltage signal cj t
c cv v e= ω . The carrier 

frequency components in the measured machine currents are attenuated by a Low Pass Filter 

(LPF) in the feedback path of the current controller. A Band Pass Filter (BPF) extracts the 

carrier generated current vector ic. The rotor speed can be estimated using Phase-Locked loop 

(PLL) [5]. 
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Fig. 3 speed estimation based on signal injection. 

 

3.3. Machine Model (MM) Methods 

A great deal of research interest is given to the third category of speed estimation, which is 

based on machine model, for its simplicity. In this category, the motor terminal variables and 

its parameters are used in some way to estimate its operating speed. This category can be 

classified according to the algorithm used for speed estimation. Some details of machine 

model based methods of speed estimation can be summarized as follows: 

3.3.1. Direct calculation method (DCM) 

Direct calculation method of speed estimation for induction motor is characterized by its 

simplicity and small computational time. Speed estimation scheme is based on a rotor flux 
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estimation process. The procedure of rotor speed estimation can be summarized as follows 

[6-7]: 

First, the rotor flux in stationary reference frame is estimated based on the measured stator 

voltages and currents using Eqn. (3) and Eqn. (4). 

s s
qr qss sr r

qs s qs s
m m

d diL Lv R i L
dt L L dt
λ

σ
⎛ ⎞

= − +⎜ ⎟⎜ ⎟
⎝ ⎠

      (3) 

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠

s s
s sdr dsr r
ds s ds s

m m

d diL Lv R i L
dt L L dt
λ σ       (4) 

1
= + −s s s sm

qr qs r dr qr
r r

Lp i
T T

λ ω λ λ       (5) 

1
= − −s s s sm

dr ds r qr dr
r r

Lp i
T T

λ ω λ λ       (6) 

Second, the angle θe of the rotor flux vector 
r

λ  in relation to the d-axis of the stationary 

frame is defined as follows:  

1tan −= =
s

qr
e e s

dr

t
λ

θ ω
λ

       (7) 

where 

ˆ sin

ˆ cos

⎫= ⎪
⎬

= ⎪⎭

s
qr r e

s
dr r e

t

t

λ λ ω

λ λ ω
        (8) 

2 2

−
= =

+

� �
�

s s s s
dr qr qr dr

e e s s
dr qr

λ λ λ λ
θ ω

λ λ       (9) 

Substituting Eqns. (5) and (6) in Eqn. (9); the estimated rotor speed becomes; 

( ) ( )2

1ˆ ˆ
⎡ ⎤

= − − −⎢ ⎥
⎣ ⎦

� �s s s s s s s sm
r dr qr qr dr dr qs qr ds

rr

L i i
T

ω λ λ λ λ λ λ
λ

     (10) 

where; 2 2 2ˆ = +s s
r dr qrλ λ λ  
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Therefore, given a complete knowledge of the motor parameters, the instantaneous speed 

rω  can be calculated from Eqn. (10). This process is illustrated in the block diagram of Fig. 4. 
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Fig. 4 Block diagram of rotor speed estimation structure based on direct calculation method. 

As shown from the block diagram, the rotor flux estimation is essential for rotor speed 

estimation. There are three problems related to the rotor flux estimation; 

1. The first is the need of ideal integral, 

2. The second one is its sensitivity to parameters variation specially stator resistance RS 

which has large influence at very low speed, and 

3. The third one is the use of the actual stator voltage which is difficult to measure due to the 

PWM and the influence of dead-time.  

These problems become more serious as the frequency speed approaches zero.  

3.3.2. Model reference adaptive system 

Model Reference Adaptive System (MRAS) is one of the famous speed observers usually 

used for sensorless induction motor drives. It is one of many promising techniques employed 

in adaptive control. Among various types of adaptive system configuration, MRAS is 

important since it leads to relatively easy-to-implement systems with high speed of 

adaptation for a wide range of applications. One of the most noted advantages of this type of 

adaptive system is its high speed of adaptation. This is due to the fact that a measurement of 

the difference between the outputs of the reference model and adjustable model is obtained 
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directly by the comparison of the states (or outputs) of the reference model with those of the 

adjustable system. The block ‘‘reference model’’ represents demanded dynamics of actual 

control loop. The block ‘‘adjustable model’’ has the same structure as the reference one, but 

with adjustable parameters instead of the unknown ones as shown in Fig. 5. 

The MRAS speed estimation structure consists basically of a reference model, adjustable 

model and an adaptive mechanism. The reference model, which is independent of the rotor 

speed, calculates the state variable, x , from the terminal voltage and current. The adjustable 

model, which is dependent on the rotor speed, estimates the state variable, x̂ . The error ε  

between calculated and estimated state variables is then used to drive an adaptation 

mechanism which generates the estimated speed, ˆrω , for the adjustable model as shown in the 

block diagram of Fig. 5. 

 
Reference model

Adjustable model

Adaptive mechanism

Actual motor
+ 

- 
dqsv  

ˆ rω

dqsi

ε  

x̂

x

 

Fig. 5 Rotor speed estimation structure using MRAS. 

It should be noted that, speed estimation methods using MRAS can be classified into 

various types according to the state variable. The most commonly used are the rotor flux-

based MRAS, back emf-based MRAS, and stator current-based MRAS. 

1. Rotor Flux-Based MRAS  

In the rotor flux-based MRAS, the rotor flux is used as an output value for the model to 

estimate the rotor speed. As shown, when the rotor flux of the adjustable model (Eqn. (12)) is 

in accordance with that of the reference model (Eqn. (11)), the rotor speed of the adjustable 

model represents the real motor speed [15-16]. 
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ss
s s sr r
s s s s

m

did L v R i L
dt L dt

⎛ ⎞λ
= − − σ⎜ ⎟

⎝ ⎠
       (11) 

s
s s sr m

r r r s
r r

ˆd L1ˆ ˆˆj i
d t T T
λ

= ω λ − λ +       (12) 

Figure 6 shows the block diagram of speed estimation algorithm using rotor flux based 

MRAS. The rotor speed estimated by this method is expressed as; 

( ) ( )s s s s s s s s
r P qr dr dr qr I qr dr dr qr

ˆ ˆ ˆ ˆˆ K K  dtω = λ λ −λ λ + λ λ −λ λ∫      (13) 
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Fig. 6 Rotor speed estimation structure using rotor flux based MRAS. 

In rotor flux based MRAS, the presence of an open integration in the stator leads to 

problems with initial conditions and drift. A low pass filter may be used instead of the pure 

integration; however, it has a degrading effect on speed estimation at low speeds and 

introduces a time delay. 

2. Back emf-Based MRAS  

The model reference adaptive approach, if based on back emf rather than the rotor flux, 

offers an alternative to avoid the problems involved with open integration. The open 

integration is circumvented in this approach and, other than in the MRAS based on the rotor 

flux, there are no low-pass filters that create a bandwidth limit. A more severe source of 

inaccuracy is a possible mismatch of the reference model parameters, particularly of the 

stator resistance [16-18]. 
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s
s s s
s s s s

d ie v R i L
d t

= − − σ       (14) 

( )s s sm
r m s r r r r

r

Lˆ ˆe j L i L i R i
L

⎡ ⎤= ω + −⎣ ⎦       (15) 

The back emf e is calculated from the reference model based on the terminal voltage and 

current, while ê is the back emf estimated from the adjustable model. Figure 7 shows the 

block diagram of speed estimation using back emf based MRAS. The rotor speed estimated 

by this method is expressed as; 

( ) ( )r P q d d q I q d d qˆ ˆ ˆ ˆ ˆK e e e e K e e e e  dtω = − + −∫      (16) 
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Fig. 7 Rotor speed estimation structure using back EMF based MRAS. 

3. Stator Current-Based MRAS  

For the aforementioned reasons, stator current may be used as an output value for MRAS 

speed estimation model. The rotor speed is estimated according to this method using the rotor 

flux which is expressed in terms of the stator voltage, stator current and motor parameters.  

The rotor speed is estimated according to this method using the rotor flux which is 

expressed in terms of the stator voltage, stator current and motor parameters as [19]; 

( )s s s sr
dr ds s ds s ds

m

L v R i dt L i
L

⎡ ⎤λ = − −σ⎣ ⎦∫      (17) 
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( )s s s sr
qr qs s qs s qs

m

L v R i dt L i
L

⎡ ⎤λ = − −σ⎣ ⎦∫       (18) 

Using the rotor flux and motor speed, the stator current is represented as;  

s
s s s dr
ds dr r r qr r

m

d1i T T
L dt

⎛ ⎞λ
= λ + ω λ +⎜ ⎟

⎝ ⎠
      (19) 

s
qrs s s

qs qr r r dr r
m

d1i T T
L dt

⎛ ⎞λ
= λ − ω λ +⎜ ⎟⎜ ⎟

⎝ ⎠
      (20) 

Using Eqn. (19) and Eqn. (20), and estimated speed, the stator current is estimated as;  

s
s s s dr
ds dr r r qr r

m

d1ˆ ˆi T T
L dt

⎛ ⎞λ
= λ + ω λ +⎜ ⎟

⎝ ⎠
     (21) 

s
qrs s s

qs qr r r dr r
m

d1ˆ ˆi T T
L dt

⎛ ⎞λ
= λ − ω λ +⎜ ⎟⎜ ⎟

⎝ ⎠
      (22)  

From the relationship between the calculated stator current and the estimated stator current, 

the difference in the stator current is obtained as; 

( )s s sr
ds ds qr r r

m

Tˆ ˆi i
L

− = λ ω − ω       (23) 

( )s s sr
qs qs dr r r

m

Tˆ ˆi i
L

− = λ ω −ω       (24) 

If Eqn. (23) and Eqn. (24) are multiplied by the rotor flux and added together, then the 

following expression can be obtained; 

( ) ( ) ( ) ( )s s s s s s s 2 s 2r
ds ds qr qs qs dr r r dr qr

m

Tˆ ˆ ˆi i i i
L

− λ + − λ = ω −ω λ +λ    (25) 

As a result of Eqn. (25), the error of the rotor speed can be written as; 

( ) ( )s s s s s s
r r ds ds qr qs qs dr

ˆ ˆˆ n i i i i⎡ ⎤ω −ω = − λ + − λ⎣ ⎦      (26) 
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where, 
( ) ( )

m
2 2s sr d r q r

L 1n
T

=
⎡ ⎤λ + λ⎢ ⎥⎣ ⎦

 

Figure 8 shows a block diagram of the stator current-based MRAS method. From Eqn. 

(26), the speed estimation error is determined from the stator current and rotor flux. This 

error is continuously reduced to zero by using a PI controller with appropriate proportional 

and integral gains. In Eqn. (26), the magnitude of the rotor flux is maintained as constant, as 

in general vector control. On the other hand, this method can produce a fast convergence and 

exact speed estimation, since the stator current error is represented as a function of the first 

degree of the speed estimation error. 
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Fig. 8 Configuration of speed estimation scheme using stator current based MRAS. 

 
In MRAS methods using the rotor flux and back EMF, the relationship between the model 

error and the speed estimation error is unclear; therefore, the MRAS controller gain has a 

nonlinear characteristic. As a result, these methods are difficult to estimate speed in a low 

speed region and at zero-speed owing to the increment of this nonlinear characteristic [15-

18]. Whereas in stator current based MRAS, the stator current error is represented as a 

function of the first degree for the error value in the speed estimation. Therefore, this method 

can produce fast speed estimation and is robust to variations in the parameter error. In 

addition, it offers a considerable improvement in the performance of a sensorless vector 

controller at a low speed [19]. 
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The main advantages of MRAS algorithms are they robustness, fast convergence and small 

computation time. The main drawbacks of MRAS algorithms are their sensitivity to 

inaccuracies in the reference model, and difficulties of designing the adaptation mechanism 

block. Selection of adaptive mechanism gains is a compromise between achieving fast 

response and high robustness against noise and disturbances affecting the system. 

 
3.3.3. Kalman filter approach 

Kalman filter (KF) algorithm is suitable to the system which has many unknown noises 

such as current ripple by PWM, noise by modeling error, measurement error, and so forth. 

Those noises are treated as a disturbance in Kalman filter algorithm. In real system, some 

uncertainties in the model and environment as modeling inaccuracies, disturbances and noises 

should be considered [20-22].  

State equations with random noises can be given as; 

dx(t) Ax(t) Bu(t) G(t)
dt

= + +        (27) 

y( t ) Cx (t ) ( t )ν= +        (28) 

where x(t), u(t), and y(t) represent, respectively, the state variables, the commands variables 

and the output variables, G(t) and (t)ν  are the input noise and output noise, respectively. 

For nonlinear problems, the KF is not strictly applicable since linearity plays an important 

role in its derivation and performance as an optimal filter. The Extended Kalman Filter (EKF) 

attempts to overcome this difficulty by using a linearized approximation where the 

linearization is performed about the current state estimate. This process requires the 

discretization of Eqns. (27) and (28) as; 

x (k 1) A (k )x (k ) B (k )u (k ) G (k )+ = + +      (29) 

y(k ) C(k )x (k ) (k )= + ν           (30) 

The Kalman filter algorithm is given by [20]: 
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{ }P(0) Var x(0)=             (31)  

{ }x̂(0) E x(0)=              (32) 

TP(k 1) A(k)P(k)A (k) Q+ = +            (33) 

ˆ ˆx(k 1) A(k)x(k) B(k)u(k)+ = +            (34) 

1T TK(k 1) P(k 1)C (k) C(k)P(k 1)C (k) R
−

+ = + + +⎡ ⎤⎣ ⎦     (35) 

[ ]ˆ ˆ ˆx(k 1 k) x(k 1) K(k 1) y(k) C(k)x(k 1)+ = + + + − +      (36) 

where Var(x) = the variance of x, E(x) = the expectation of x, K(k+1) = the Kalman gain 

matrix, P(k) = error covariance matrix, y(k) = the estimated output. The matrix Q means the 

disturbances such as the error produced by transforming into sampled data system. The error 

produced by the imperfection of current controller, and modeling error. The matrix R 

describes the noise produced by transforming the estimated output into sampled data model. 

Figure 9 shows a typical structure of a Kalman filtering approach. The inputs to the plant 

are fed into a prediction model. The output of the plant is compared with the output from the 

model, and the resulting error is fed into a correction Kalman gain stage to reduce the error in 

the estimated states from the prediction model.  
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Fig. 9 Kalman filter structure for speed estimation. 

The Kalman Filter approach has some inherent disadvantages, such as the influence of 

computation burden, and the absence of design and tuning criteria. Also, it is relatively 



 17

complicated and requires much more powerful microprocessors. 

3.3.4. Adaptive flux observer 

Adaptive flux observers (AFO) are also used for speed estimation of induction motor 

drives. The structure of an adaptive observer is basically composed of three main parts: an 

induction-motor model, observer’s feedback gains, and a rotor speed adaptation mechanism 

as shown in Fig. 10. The characteristic of the speed estimation is governed by the assignment 

of the observer’s feedback gains and PI gains adaptation mechanism [23-27]. 

An induction motor can be described, in a reference frame rotating with the angular 

velocity, by the following equations:  

s 11 12 s 1 s
s s

r 21 22 r

A A Bd v Ax Bv
A A 0dt

λ λ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤= + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦λ λ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

    (37) 

si Cx=          (38) 

where A11, A12, A21, A22, B1 and C are given in the Appendix. 

The adaptive flux observer, that estimates both stator and rotor fluxes, is given by the 

following equations; 

( )s s s

s

ˆdx ˆˆ ˆAx Bv K i i
dt
ˆ ˆi Cx

= + + −

=
       (39) 

The estimated rotor speed obtained by adaptive flux observer based on Lyapunov theory is as 

follows: 

( ) ( ) ( ) ( )r p qs ds ds ds qs qs I qs ds ds ds qs qs
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ K i i i i K i i i i dt⎡ ⎤ ⎡ ⎤ω = λ ⋅ − −λ − + λ ⋅ − −λ −⎣ ⎦ ⎣ ⎦∫     (40)  
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Fig. 10 Block diagram of the adaptive observer for speed estimation. 

The feedback gain K is chosen to ensure global stability, and robust dynamic performance 

of the closed loop observer. A pole-placement approach is employed, and the choice of the 

desired pole locations is usually a compromise between achieving fast response and retaining 

high robustness against noise and disturbances affecting the system. The adaptation gains are 

selected by trial and error or by considering the root locus of the linearized model. 

Practically, the designer normally needs some guidelines to determine how the adaptation 

gains should be designed to obtain the required specification of tracking performance and 

sensitivity to noises. 

The influence of parameter deviations and the low-speed and standstill operations are the 

most critical aspects affecting the accuracy of this method. Also, the difficulty encountered in 

the design of the feedback gain and the adaptation mechanisms are other problems.  

The methods, based on the machine model, stated earlier exhibit accurate and robust speed 

estimation performance; however they are highly dependent on machine parameters. The 

induction motor is a highly coupled, nonlinear dynamic plant, and its parameters vary with 

time and operating conditions. Therefore, it is very difficult to obtain good performance for 

an entire speed range and transient states using previous methods. For these reasons, 

alternative speed estimation methods based on artificial intelligence techniques are proposed 
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for speed sensorless induction motor drives. These methods may achieve robustness and high 

performance with parameter variations. 

3.3.5. Artificial intelligence techniques 

The use of Artificial Intelligence (AI) to identify and control nonlinear dynamic systems 

has been proposed because they can approximate a wide range of nonlinear functions to any 

desired degree of accuracy. Moreover, they have the advantages of immunity from input 

harmonic ripples and robustness to parameter variations. Recently, there have been some 

investigations into the application of AI to power electronics and ac drives, including speed 

estimation [28-31]. 

Two well-known voltage and current models for rotor flux are necessary to estimate the 

speed of an induction motor using an NN. Since the induction motor voltages and currents are 

measured in the stationary reference frame, it is convenient to express these equations in the 

stationary frame, and they are expressed in Eqns. (41) and (42) as follows [31]: 

0
0

s s s
s sdr ds dsr

s s s
s sqr qs qsm

R L pv iLp
R L pv iL

σλ
σλ

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤+⎡ ⎤
= −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥+⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

     (41) 

1
1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

s s s
dr dr dsr r m
s s s
qr qr qsr r r

iT Lp
iT T

λ λω
λ λω            (42) 

Figure 11 illustrates the structure of the proposed speed estimator of an induction motor 

using NNs. In Fig. 11, the voltage equations and the current equations are defined as Eqns. 

(41) and (42), respectively.  

The voltage equations that do not involve 
rω  is defined as the reference model and the 

current equations involving rω  is defined as the adjustable model. The output of the ANNs is 

defined as the estimated speed rω̂ , which is subsequently used as the input of the adjustable 

model. If the estimated speed deviates from the real speed, an error occurs between the flux 

from the adjustable model (
rλ̂ ) and the flux from the reference model ( rλ ). Then, the error 
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is backpropagated to the ANN and the weights of the NN are adjusted online to reduce the 

error. Finally, the output of the NN follows the real speed.  

Methods based on ANN gives good speed estimation with parameter mismatch however, 

they are relatively complicated and require large computation time. 
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Fig. 11 Structure of the speed estimation using artificial Neural Network. 

 
3.3.6. Sliding mode observer 

Recently, there is a growing interest of using sliding mode observers (SMO) for speed 

estimation of induction motor drives. This observer is based on Variable Structure Control 

(VSC) theory which offers many good properties, such as good performance against un-

modeled dynamics, insensitivity to parameter variations, external disturbance rejection and 

fast dynamic response. These properties are necessary for state estimation of a nonlinear plant 

such as speed estimation of induction motor drives. In spite the positive features of SMO, its 

application for speed estimation of induction motor drives requires chattering problem 

elimination [32-36].  

The induction motor can be represented by its dynamic model expressed in the stationary 

reference frame in terms of the stator current and rotor flux by the following state equations;  

s s
11 12 1 ss s

s ss s
21 22r r

a a bi id u Ax Bu
a a 0dt

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎡ ⎤= + = +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦λ λ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦

    (43) 
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where a11, a12, a21, a22 and b1 are given in the Appendix. 

The SMO for rotor flux estimation can be constructed as:  

( )s s
s 1 s s

ˆdx ˆˆ ˆAx Bu K sgn i i
dt

= + + −       (44) 

Where K1 is a gain matrix which can be arranged in the following general form; 

[ ]T1K K K , K  kI = − =     and k is the switching gain.  

The equation of rotor speed estimation can be written in the following form based on 

Lyapunov theory: 

( ) ( )s s s s s s
r ds ds qr qs qs dr

ˆ ˆˆ ˆˆ k sgn i i sgn i i dt⎡ ⎤ω =− − ⋅λ − − ⋅λ⎣ ⎦∫       (45) 

The structure of the sliding mode speed estimation algorithm is shown in Fig. 12. 
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Fig. 12 Block diagram of sliding mode observer. 

4. SPEED ESTIMATION AT LOW SPEED 

The key problem in sensorless vector control of ac drives is the accurate dynamic 

estimation of the stator flux vector during wide speed range operation using only terminal 

variables (currents and voltages). The main difficulty consists on state estimation at very low 

speeds where the fundamental excitation is low and the observer performances tend to be 
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poor. The reasons are the observer sensitivity to model parameter variations, unmodeled 

nonlinearities and disturbances, limited accuracy of acquisition signals, drifts, and dc offsets. 

The main sources of poor speed estimation at low speed depend on three main problems [37-

40]. 

4.1. Data Acquisition Errors 

Data acquisition errors become significant at low speeds. That is because current sensors 

convert the machine currents to voltage signals which are subsequently digitized by A/D 

converters. Parasitic dc offset components are superimposed to analog signals and appear as 

ac components of fundamental frequency after their transformation to synchronous 

coordinates. They act as disturbances to the current control system, thus generating a torque 

ripple. The effect of unbalanced gains of the current acquisition channels is also another 

problem [5]. 

4.2. Voltage Distortion due the PWM Inverter 

The task of the power inverter is to produce the desired voltage on the stator winding 

using PWM controlled switches. Since the switching times of the existing transistors are not 

infinitely short, the necessary blanking time to avoid short circuiting the dc link during 

commutations must be introduced, which is also known as dead time. This small time delay is 

the most important cause of the inverter nonlinearity and introduces a magnitude and phase 

error in the output-voltage vector. In addition to the dead time, there is also the finite voltage 

drop across the switch during the ON state, which introduces an additional error in the 

magnitude of the output voltage. Taking the inverter model into consideration enables a more 

accurate estimation of the stator flux linkage vector and consequently, good estimated speed 

is achieved [5, 38]. 

4.3. Stator Resistance Drop 

In the upper speed range, the resistive voltage drop is small as compared with the stator 
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voltage; hence the stator flux vector and speed estimation can be made with good accuracy. 

At low speeds the stator frequency is also low. The stator voltage reduces almost in direct 

proportion, while the resistive voltage drop maintains its order of magnitude and becomes 

significant at low speed. The resistive voltage drop greatly influence the estimation accuracy 

of the stator flux vector and hence the speed estimation. On the other hand, considerable 

variations of the stator resistance are encountered when the machine temperature changes at 

varying load. These variations need to be tracked to maintain stability of flux estimation at 

low speed [5, 40]. 

Several methods to improve the low-frequency performance of the voltage model have 

been proposed. For example, the stator voltage and current can be measured more accurately, 

the voltage drop of the inverter can be compensated, and the stator resistance can be 

identified with an adaptive scheme, or the integrator itself can be modified to a low-pass filter 

[38-40].  

5. PARAMETER ADAPTATION 

Although machine model-based methods of speed estimation are characterized by their 

simplicity, one of the problems associated with them is their sensitivity to parameter 

variations. Stator resistance plays an important role and its value has to be known with good 

precision in order to obtain an accurate estimation of the rotor speed in the low speed region 

[41-44]. Since motor heating usually causes a considerable variation in the winding 

resistance, so there is often a mismatch between the actual winding resistance and its 

corresponding value in the model used for speed estimation. This may lead not only to a 

substantial speed estimation error but to instability as well. As a consequence, numerous 

online schemes for stator resistances identification have been proposed, recently [41-44]. The 

available online stator resistance identification schemes can be classified into a couple of 

distinct categories. All these methods rely on stator current measurements and chiefly require 
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information regarding stator voltages as well [45-49]. The most famous methods include 

different types of estimators which often use an adaptive mechanism to update the value of 

stator resistance [45-49]. The stator resistance is determined in [45] by using a reactive power 

based model reference adaptive system (MRAS). The reactive power relies on the accuracy 

of other parameters such as leakage inductance and rotor resistance which are not necessarily 

constant and the result is prone to error. Adaptive full-order flux observers (AFFO) for 

estimating the speed and stator resistance are developed using Popov's and Lyapunov stability 

criteria [46, 47]. While these schemes are not computationally intensive, an AFFO with a 

non-zero gain matrix may become unstable. Model reference adaptive system for estimating 

the speed and stator resistance is developed using Popov's stability criterion [48, 49]. In such 

methods, the stator resistance adaptation mechanism is determined with the difference 

between the measured and observed stator currents. 

A wide speed range, with the maximum required speed that considerably exceeds the motor 

rated speed, is required for many applications such as spindle and gearless traction drives. 

Speed estimation in the field weakening region presents redoubtable difficulties regardless of 

the method used for the speed estimation. The main problem of machine model-based 

approaches in the field weakening region stems from the substantial variation of the 

magnetizing inductance as main flux saturation which is neglected in the model-based speed 

estimation. Therefore, accurate speed estimation in the field weakening region using model-

based approaches is possible only if modifying the speed estimation algorithm in such a way 

that the variation of main flux saturation is recognized within the estimator [50-51].  

A field oriented induction motor operates in the base speed region with constant rated rotor 

flux reference. Therefore, magnetizing inductance can be regarded as constant and equal to 

its rated value. The operation in field weakening region at higher speeds than the rated causes 

that the rotor flux reference has to be reduced below its rated value. Variation of the rotor 
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flux reference implies variable level of the main flux saturation in the machine and 

consequently, magnetizing inductance of the machine is a variable parameter [53-54]. 

Accurate value of magnetizing inductance is of utmost importance for many reasons. The 

first one is the correct setting of the d-axis stator current reference in a vector-controlled drive 

which requires the accurate magnetizing inductance value to be known. The second one is the 

accurate speed estimation, using machine model-based approaches, of a sensorless vector 

controlled drive for operation in the field-weakening region. The third reason is the 

dependency of rotor time constant identification schemes on magnetizing inductance such as 

the method of [53] which utilizes reactive power method. The accurate of rotor time constant 

estimation in the field weakening region requires that the value of the magnetizing inductance 

to be known correctly. 

Many researches have been devoted to improve speed estimation of a field oriented 

controlled induction motor in constant flux operation region. However, the studies of 

magnetizing inductance identification to improve speed estimation in the field weakening 

region are still rarely made. In [52], the nonlinear magnetizing inductance is represented by a 

fitted quadratic polynomial of field current which is composed of three components, namely 

the no-load, the load compensating, and the transient compensating commands to give good 

dynamic response in both steady state and transient states. The method of magnetizing 

inductance identification used in [54] depends on measured stator voltages and currents and 

the magnetizing curve of the machine.  

 

6. FINAL COMMENTS 

Table 1 shows the comparison between the different speed estimation methods according 

to the set of criteria which has been chosen to assign the merits for each presented method. 

The criteria which are used to compare the different speed estimation methods include Steady 
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State Error (SSE), Dynamic Behavior (DB), Low Speed Operation (LSO), Parameter 

Sensitivity (PS), Noise Sensitivity (NS), Complexity (C), and Computation Time (CT). The 

range of merits is graded from 1 to 5, where 1 means the best behavior while 5 means the 

poorest one as shown in Table 2. 

Table 1 Comparison of different speed estimation methods 
              Criteria 
Method SSE DB LSO PS NS C CT 

RST 2 3 1 1 4 5 3 
FSI 2 2 1 1 4 5 3 

DCM 2 3 4 4 4 2 2 
MRAS 2 3 4 3 4 2 3 

KF 2 2 2 2 1 5 5 
AFO 2 1 3 3 2 2 2 
AI 1 1 2 1 2 3 4 

MMM 

SM 1 1 2 1 2 2 2 
 

Table 2 Merits grade of speed estimation methods 
Excellent Very good Good Satisfactory Weak 

1 2 3 4 5 
 

 

The present comparison is based on a comprehensive reading and investigation of the 

previous literature. Figure 13 shows a chart to compare the different speed estimation 

methods according to the adopted set of criteria. It is observed that, rotor slot harmonic and 

frequency signal injection methods are recommended when low speed operation is required. 

In drive systems which have many sources of noise, EKF is preferred since it is designed to 

perform as an optimal filter. Although Artificial Intelligence techniques exhibit good 

performance for most criteria, it suffers from complexity and large computation time. It is 

also noted that, SMO offers good behavior with respect to all proposed set of criteria. 
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RSH FSI DCM MRAS EKF AFO AI SMO  

Fig. 13 Comparison chart for different speed estimation methods. 

 

Some simulation and experimental results are necessary to prove the superiority of SMO. 

The previously mentioned mathematical model of speed estimation based on SMO, shown in 

Fig. 12, is firstly examined by simulation. Sensorless operation is investigated where the 

estimated speed is used instead the actual feedback one. The actual and estimated speeds are 

compared during starting operation. Figure 14 shows the actual and estimated speeds as well 

as speed estimation error during start up at speed command equal to 100 rad/sec. The speed 

estimation error is quite zero soon after 0.025 sec from starting, which illustrates the high 

accuracy and fast convergence of the SMO. The speed observer is also examined during 

starting operation in the low speed region with stator resistance adaptation scheme. Fig. 15 

shows the actual and estimated speeds, and the speed estimation error with speed reference 

set at 1 rad/sec under no load condition. It is observed that, very good speed estimation is 

achieved and the speed estimation error rapidly decays to zero. The speed observer is capable 

of operation at zero speed, provided that the stator resistance in the estimator exactly matches 

the one in the motor. Fig. 16 shows the actual and estimated speeds as well as the speed 

estimation error at zero speed with stator resistance tuning. As shown, the proposed speed 
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observer with stator resistance adaptation achieves good speed estimation. Furthermore, the 

results confirm that due to the accurate stator resistance estimation, the drive does not loose 

stability during operation at very low and zero speeds. The correct value of the stator 

resistance leads to elimination of the speed estimation error and the actual and estimated 

speeds are in very good agreement in steady state.  

Some of tests are performed experimentally in order to verify the accuracy of the speed 

observer. Figure 17 shows the experimentally actual and estimated speeds during start up 

operation for speed command equal to 150 rad/sec. Figure 18 shows the Actual and estimated 

speeds for a reversing transient from 100 to -100 rad/sec. As shown, good estimated speed 

during reversing transient through zero speed is achieved. Persistent operation at zero speed 

is possible experimentally as shown in Fig. 19 with stator resistance adaptation. The 

Experimental results confirm good speed estimation and the drive does not loose stability 

during temporary operation at zero speed with stator resistance adaptation.  

The presented simulation and experimental results show that,  

• No steady state error. 

• Good speed estimation at low speed. 

• Good dynamic behavior. 

• Simple design of SMO and low computation time. 

• Robustness of SMO. 
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Fig. 14 Actual and estimated speeds, and speed estimation error during starting operation at 

speed command of 100 rad/sec.  

 
Fig. 15 Actual and estimated speeds, and speed estimation error during starting operation 

with stator resistance tuning at speed commands of 1 rad/sec. 
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Fig. 16 Actual and estimated speeds, and speed estimation error with stator resistance tuning 

at zero speed. 
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Fig. 17 Actual and estimated speeds during start up operation at 150 rad/sec 

 

Fig. 18 Actual and estimated speed during speed reversal at 100 rad/sec. 
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Fig. 19 Actual and estimated speed at zero speed. 

 

7. CONCLUSION 

A review of different schemes for speed sensorless induction motor drives has been 

presented and classified. The merits and demerits of these schemes are discussed. Many 

factors remain important to evaluate the effectiveness of the different schemes proposed for 

speed estimation. Among them are steady state error, dynamic behavior, noise sensitivity, 

low speed operation, parameter sensitivity, complexity, and computation time. It is concluded 

that, the rotor slot harmonic and signal injection methods are recommended when low speed 

operation is required. Among machine model-based methods, sliding mode observer seems to 

have the best behavior with respect to all the considered criteria. However, in a noisy 

environment, extended Kalman filter has the best behavior, since it is particularly designed to 

perform as optimal filtering. 

Stator resistance plays an important role and its value has to be known with good precision 

in order to obtain accurate very low-speed and zero-speed estimations. In applications that 

requires speeds higher than the rated, accurate value of magnetizing inductance is of utmost 

importance for accurate speed estimation, using machine model-based approaches, in the 

field-weakening region 
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As a final comment, each speed estimation method of sensorless application requires a 

specific design, which takes into consideration the required performance, the available 

hardware and the designer skills.  

 

8. APPENDIX 

A. List of symbols 
Lm  Mutual inductance  

Lr         Rotor leakage inductance 

Ls  Stator leakage inductance  

Rs  Stator resistance 

Tr  Rotor time constant 

ωr  Rotor angular speed 

σ  Leakage coefficient 

[   ]s s s T
s ds qsi i i=  Stator current vector 

ˆ ˆ ˆ[   ]s s s T
s d s q si i i=  Estimated Stator current vector 

s s s T
r dr qr[   ]λ λ λ=  Rotor flux vector 

ˆ ˆ ˆ[   ]s s s T
r dr qrλ λ λ=  Estimated rotor flux vector 

[   ]s s s T
s ds qsv v v=  Stator voltage vector 

ˆ rω  Estimated rotor speed 

p d d t=  Differential operator 

slτ  Filter time Constant 

sω  Slip Angular Frequency 
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