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Abstract: Voltage stability in power system is largely 
determined by the characteristics of the load. In order to 
obtain reliable results in voltage stability, the load model 
must be represented as realistically as possible. The issue is 
even more challenging with static voltage stability 
techniques, because dynamic loads must be represented by 
static models. The commonly used static models are 
constant impedance, constant current, and constant power. 
A significant part of the load is made up of induction motors 
that are usually modeled as static constant power loads. 
Under variations of terminal voltage of the motor, this static 
model can approximately represent the active power, but it 
can commit major mistakes when representing the behavior 
of reactive power. Therefore, a new motor static model will 
be developed in this work. 
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1. Introduction 
 It has been widely recognized that electrical loads 
have a significant impact on dynamic performances of 
the wide area power system, and that accurate load 
models are highly important for power system dynamic 
simulation and analysis [1]. Hence their behavior has 
crucial impacts on power system dynamic behavior, 
especially voltage stability and voltage performance [2]. 
Specifically, voltage stability analysis and simulation 
results are greatly affected by the use of different load 
models [3, 8]. In order to obtain reliable results when 
studying this problem with numerical simulations, the 
chosen model to represent the load must represent 
behavior as realistically as possible. The need for 
accurate modeling of loads has risen as a result of a 
number of blackouts that have taken place worldwide [3]. 
The induction motor loads that are considered dynamic 
loads account for a great amount of electric loads, 
especially in large industries and air-conditioning of 
commercial and residential areas [4]. 
 The modeling issue is even more challenging with 
static voltage stability techniques [14] because loads 
with dynamic behavior must be represented by static 
models. Static loads are represented by algebraic 
equations using an exponential model, which depends on 
the load terminal voltage. The commonly used models 

are referred to as: constant impedance, constant current, 
constant power, zip model or exponential model [9]. 
 In conventional static voltage stability studies [6, 7, 
10], constant impedance and constant current models are 
considered as allowing the simulation of a large amount 
of power system loads. Constant power may be 
reasonable for approximate static analysis when a 
significant proportion of the load is motors [11]. 
However, employing a static model for constant MVA 
loads can lead to erroneous and, often, misleading results 
[5]. Large motors can also be modeled by an exponential 
model in which the real power and the reactive power 
depend on voltage and frequency variation [11]. 
However, this model has proven not to be accurate in 
every case. 
 In this work, a new static model of the induction 
motor will be developed, and it will have a behavior 
closer to reality with respect to changes in variables of 
the network to which it is connected. Thus, a fourth-order 
algebraic equation system will be solved so as to obtain 
the motor slip and, from there, the reactive power 
consumed. To represent its behavior, a plotting method 
will be used, also proposed in this work. The method 
relates the power of the motor, the terminal voltage and 
the slip. This plotting method called non-conventional 
PV curves will be used in a case study. For the 
development of this model, data of the steady-state 
equivalent circuit of the motor is needed. 

2. Static model of the induction motor 
 The static model of the induction motor proposed in 
this work can be used for any power electric system in 
which part of the demand consists in induction motors. 
However, in order to simplify the development of this 
topic, the work will be based on a small electric system, 
as shown in figure 1. 

 
Figure 1. Small Power Systems 
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 The synchronous generator G feeds a motor load M 
via two lines of transmission L1 and L2, and a 
transformer T. V is the terminal voltage of the motor, 
while P and Q are the active and the reactive power 
consumed by the motor. By calculating a conventional 
power flow (CPF), the base case for this electric system 
can be obtained. The data of P and Q are input data in the 
study of power flow, while the value of V corresponds to 
the output data. 
 To calculate the slip in those conditions, it is 
necessary to know the steady-state equivalent circuit 
parameters of the motor shown in figure 2. 

 

 
Figure 2. Induction motor equivalent circuit 

 
Where: 
Rs = Stator winding resistance 
Xs = Inductive reactance of the stator winding 
Xm = Magnetizing reactance 
Xr = Rotor Reactance 
Rr = Rotor Resistance 
s = slip 

 
 With these parameters, the motor slip can be 
calculated by solving the following system of equations: 

 
0 = 𝑎𝑎 + 𝑏𝑏 𝑠𝑠 + 𝑐𝑐 𝑠𝑠2 + 𝑑𝑑 𝑠𝑠3 + 𝑒𝑒 𝑠𝑠4 (1) 

 
where the coefficients are the following: 
 
𝑎𝑎 = 𝑃𝑃 𝑅𝑅𝑠𝑠2 + 𝑃𝑃 𝑋𝑋𝑚𝑚2 + 2𝑃𝑃 𝑋𝑋𝑚𝑚𝑋𝑋𝑠𝑠 +  𝑃𝑃 𝑋𝑋𝑠𝑠2 −  𝑅𝑅𝑠𝑠 𝑉𝑉2 (2) 

 
𝑏𝑏 = 2𝑃𝑃 𝑅𝑅𝑠𝑠 𝑋𝑋𝑚𝑚2 −  𝑋𝑋𝑚𝑚2  𝑉𝑉2 (3) 

 
𝑐𝑐 = 𝑃𝑃 𝑋𝑋𝑚𝑚4 + 2𝑃𝑃 𝑅𝑅𝑠𝑠2(𝑋𝑋𝑟𝑟 + 𝑋𝑋𝑚𝑚)2 +  2𝑃𝑃 𝑋𝑋𝑚𝑚2 𝑋𝑋𝑟𝑟(𝑋𝑋𝑟𝑟 +

      𝑋𝑋𝑚𝑚) + 2𝑃𝑃 𝑋𝑋𝑚𝑚𝑋𝑋𝑠𝑠(𝑋𝑋𝑟𝑟 + 𝑋𝑋𝑚𝑚)2 + 2𝑃𝑃 𝑋𝑋𝑚𝑚𝑋𝑋𝑟𝑟𝑋𝑋𝑠𝑠(𝑋𝑋𝑟𝑟 +
      𝑋𝑋𝑚𝑚) + 2𝑃𝑃 𝑋𝑋𝑠𝑠2(𝑋𝑋𝑟𝑟 + 𝑋𝑋𝑚𝑚)2 − 2𝑉𝑉2𝑅𝑅𝑠𝑠 (𝑋𝑋𝑟𝑟 + 𝑋𝑋𝑚𝑚)2 (4) 

 
𝑑𝑑 = 2𝑃𝑃𝑅𝑅𝑠𝑠 𝑋𝑋𝑚𝑚2 (𝑋𝑋𝑟𝑟 + 𝑋𝑋𝑚𝑚)2 − 𝑉𝑉2𝑋𝑋𝑚𝑚2 (𝑋𝑋𝑟𝑟 + 𝑋𝑋𝑚𝑚)2 (5) 

 
𝑒𝑒 = 𝑃𝑃 (𝑅𝑅𝑠𝑠2(𝑋𝑋𝑟𝑟 + 𝑋𝑋𝑚𝑚)4 + 𝑋𝑋𝑚𝑚2  𝑋𝑋𝑟𝑟2(𝑋𝑋𝑟𝑟 + 𝑋𝑋𝑚𝑚)2 +

           2 𝑋𝑋𝑚𝑚 𝑋𝑋𝑟𝑟 𝑋𝑋𝑠𝑠(𝑋𝑋𝑟𝑟 + 𝑋𝑋𝑚𝑚)3 + 𝑋𝑋𝑠𝑠2(𝑋𝑋𝑟𝑟 + 𝑋𝑋𝑚𝑚)4 −
𝑉𝑉2𝑅𝑅𝑠𝑠 (𝑋𝑋𝑟𝑟 + 𝑋𝑋𝑚𝑚)4 (6) 

 
 The values of P and V in the equations (2) to (6) are 
the ones obtained in the base case, which is P = Pbc and 

V = Vbc., when a subscript bc will be assigned for the 
base case. 
 The solution to the system of equations (1) to (6) 
results in four roots. Two of them are complex conjugate 
roots and have no physical meaning for this problem. 
The other two roots represent two possible motor slip 
values. The highest value represents the slip for a state of 
unstable balance, so it must be dismissed. The lowest 
value represents the slip for steady-state conditions, in 
this case, for the base case. 
 The value of reactive power used as input data in 
power flow should be confirmed by the following 
equations: 

 

𝑍𝑍𝑟𝑟 =
𝑅𝑅𝑟𝑟
𝑠𝑠

+ 𝑖𝑖𝑋𝑋𝑟𝑟 (7) 
 

𝑍𝑍𝑚𝑚 = �
𝑖𝑖𝑋𝑋𝑚𝑚  𝑍𝑍𝑟𝑟 
𝑖𝑖𝑋𝑋𝑚𝑚 + 𝑍𝑍𝑟𝑟

� + 𝑅𝑅𝑠𝑠 + 𝑖𝑖 𝑋𝑋𝑠𝑠 (8) 

 

𝑄𝑄𝑏𝑏𝑏𝑏 =
𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖(𝑍𝑍𝑚𝑚)  |𝑉𝑉|2

[𝑟𝑟𝑒𝑒𝑎𝑎𝑟𝑟(𝑍𝑍𝑚𝑚) ]2 + [𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖(𝑍𝑍𝑚𝑚) ]2
 (9) 

 
where i is the imaginary unit, Zr is the rotor impedance, 
and Zm is the motor impedance. If the value of the Qbc 
obtained matches input data, the next step can be 
followed; otherwise, input data should be corrected and 
the base case should be recalculated. 
 In sum, for the base case, the following variables that 
correspond to each motor load: Pbc, Qbc, Vbc, and motor 
slip, sbc are known. 
 Now, a fault will be produced on the electric system 
under study, causing a voltage drop in the network and 
at the motor terminals. This will produce changes in the 
active and the reactive power consumed. However, these 
changes in power will not be reflected in the power flow 
output applied to the faulty network. This must be 
corrected by the following equation: 

 
𝑃𝑃𝑝𝑝𝑝𝑝 = 𝑃𝑃𝑏𝑏𝑏𝑏 𝑉𝑉𝑝𝑝𝑝𝑝0.01  (10) 

where: 
Ppf = Active power of the post-fault motor 
Vpf = Terminal voltage of the post-fault motor 
 
 This empirical equation reflects the variations in 
active power of the induction motor when facing voltage 
variations.  
 With Vpf and Ppf values of each load, the new post-
fault slip value spf can be calculated by equations 1 to 6. 
Then, the new value of reactive power consumed Qpf can 
be calculated by equations 7 to 9. These equations should 
be inserted in the iterative process of the CPF, according 
to the flowchart that outlines the previously described 
process in figure 3. This modification in the CPF can be 
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part of a group of additional changes that model other 
network devices more in detail, so as to achieve a more 
realistic behavior in the face of problems with voltage 
stability when using static calculation techniques.  
 

 
Fig. 3. Flowchart 

3. Case study 
 The electric system shown in figure 4 will be 
analyzed as case study. The generator feeds a large 
induction motor via two transmission lines and one 
transformer. Furthermore, a capacitor bank is also 
connected to the load bus. The voltage and impedance 
values are indicated per unit. 

 

 
Figure 4. Small power systems 

 
 Figure 5 shows the equivalent circuit and the motor 
parameters expressed per unit. 
 

 
Figure 5. Induction motor parameters 

 
 The solution to the base case yields the following 
results related to the induction motor: 
 
V3bc = Terminal voltage = 1∠–11º 
sbc = Motor slip = 0.0088 
Pmbc = Active power consumed = 89 MW 
Qmbc = Reactive power consumed = 45.5 MVAr 
 
 A perturbation consisting in disconnecting one of the 
transmission lines according to the following cases will 
be applied:  

• Case 1: Disconnection without fault of 
transmission line ZL1 

• Case 2: Disconnection without fault of 
transmission line ZL2 

 
In order to solve the case study proposed, three 

different calculation techniques will be applied to 
compare the results obtained, according to the following 
detail: 
a) Conventional static technique, in which the motor 

is modeled as a constant power load. This 
technique will be represented by PV curves that 
relate terminal voltage and the load active power 
with the factor of constant power. 

b) Static technique proposed in this work: This 
technique will be represented by non-
conventional PV curves that relate terminal 
voltage and the active power consumed by the 
motor when its slip varies. 

c) Conventional dynamic technique, in which the 
motor is modeled by differential equations. The 
output curves show terminal voltage variations 
and the active power consumed versus time. 
Therefore, the program PSS/E V 32 by Siemens 
will be used. 

 
3.1 Case 1. 
 In figure 6, conventional PV curves, load curves at 
constant pre-fault and post-fault impedance, and the line 
of Pcte = 0.89 pu are shown. The intersection of the pre-
fault PV curves, pre-fault Zcte and the line of Pcte occurs 
at point A, which indicates a steady state point for the 
base case. After perturbation, the values move according 

Base Case - Power Flow
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to the constant impedance curve until they intersect the 
post-fault PV curve at point B. Then, the power tends to 
recover its pre-fault values until it converges at point C. 
Here, a new steady state point is set at the following 
values:  

 
|V3pf  | = Terminal voltage = 0.9324 pu 
Pmpf = Active power consumed = 0.89 pu 
 

 
Figure 6. Case 1 conventional PV curve 
 

 Figure 7 plots the static technique proposed in this 
work. Pre-fault and post-fault non-conventional PV 
curves, constant slip curves, and the motor active power 
vs terminal voltage curve, obtained by equation 10, can 
be identified. Point A is the intersection of the pre-fault 
non-conventional PV curve, the constant slip curve of the 
base case, and the active power curve of equation 10. 
After perturbation, the values move according to the 
constant slip curve until they intersect the post-fault non- 
conventional PV curve at point B. Then, the power tends 
to recover its pre-fault values until it converges at point 
C. Here, a new steady state point is set at the following 
values:  

 

 
Figure 7. Case 1 non-conventional PV curve 

 
|V3pf| = Terminal voltage = 0.9323 pu 
Pmpf = Active power consumed = 0.89 pu 
spf = Motor slip = 0.0103 

 

 Figure 8 plots the conventional dynamic technique. 
The output curves indicate the behavior of the terminal 
voltage and the active power consumed by the motor 
throughout time. Perturbation is applied to 1 s time. After 
some oscillations, the power and motor voltage are 
stabilized at the following values:  
 
|V3pf| = Terminal voltage = 0.9323 pu 
Pmpf = Active power consumed = 0.89 pu 
 

 
Figure 8. Case 1 Conventional dynamics 

 
As it can be observed, all techniques applied lead 

to the conclusion that the system is stable, and that the 
voltage and power values are similar. 
 
3.2 Case 2. 
 
 Figure 9 plots the conventional PV curves, load 
curves at constant pre-fault and post-fault impedance, 
and the line of Pcte = 0.89 pu are shown. The 
intersection of the pre-fault PV curves, pre-fault Zcte and 
the line of Pcte occurs at point A, which indicates a 
steady state point for the base case. After perturbation, 
the values move according to the constant impedance 
curve until they intersect the post-fault PV curve at point 
B. Then, the power tends to recover its pre-fault values 
until it converges at point C. Here, a new steady state 
point is set at the following values:  
 
|V3pf| = Terminal voltage = 0.827 pu 
Pmpf = Active power consumed = 0.89 pu 
 

 
Figure 9. Case 2 conventional PV curve 
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 Figure 10 plots the static technique proposed in this 
work. As in case 1, pre-fault and post-fault non-
conventional PV curves, the constant slip curve, and the 
motor active power vs terminal voltage curve, obtained 
by equation 10, can be identified. Point A is the 
intersection of the pre-fault non-conventional PV curve, 
the constant slip curve of the base case, and the active 
power curve of equation 10. After perturbation, the 
values move according to the constant slip curve until 
they intersect the post-fault non-conventional PV curve 
at point B. Then, the power tends to recover its pre-fault 
values, but it does not converge, as there is no 
intersection of the post-fault curve and the Pmotor curve. 
Thus, the system loses voltage stability under these 
conditions. 
 

 
Figure 10. Case 2 non-conventional PV curve 

 
 Figure 11 plots the conventional dynamic technique 
for this case. The output curves indicate the behavior of 
the terminal voltage and the active power consumed by 
the motor throughout time. Perturbation is applied to 1 s 
time. It can be observed that, for this case, system voltage 
stability is lost because values collapse to unacceptable 
values. 
 

 
Figure 11. Case 2 Conventional dynamics 

 
 In table 1, the results obtained for voltage and post-fault 
active power for cases 1 and 2 are summarized. 
 

Table 1 

Case  

PV Curve 
Dynamic 

[pu] 
Conven
-tional 
[pu]  

Non-Conven 
tional [pu]  

1 
V3pf 0.9324 0.9323 0.9323 

Pmpf 0.89 0.89 0.89 

2 
V3pf 0.827 Non-

convergence Instability 

Pmpf 0.89 Non-
convergence Instability 

 

4. Conclusions 
 We have shown a static model of induction motor 
which can be applied to any study of static voltage 
stability in order to improve the accuracy of results. The 
model proposed indicates a substantial improvement 
versus the conventional model, as it achieves results 
highly comparable to the ones obtained by dynamic 
techniques of calculation.  
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