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Abstract: In this article, a new fault classification and 

location method for medium voltage direct current 

(MVDC) shipboard power systems is presented. Smooth 

and uninterrupted power supply in MVDC shipboard 

power systems requires an efficient fault classification and 

location method. A parametric technique called 

autoregressive (AR) signal modeling is used to extract 

features from the current signal for full cycle duration at 

the point of measurement. The AR coefficients of the 

modeled current signal are used as input for the fault 

classifier and fault locators. The proposed fault classifier 

and fault locators are designed using machine intelligent 

technique based on extreme learning machine (ELM). The 

proposed fault classifier and fault locator has been tested 

with 8640 and 6480 cases respectively with wide variation 

in system parameters. Test results indicate that the 

proposed method is simple, reliable, effective, and 

accurate than the existing method in fault classification 

and location for MVDC shipboard power systems. 

Keywords: Autoregressive (AR) signal modeling; Fault 

detection, Fault classification, Fault location, Extreme 

learning machine (ELM) 

 

1. Introduction 

Medium voltage direct current (MVDC) zonal 

distribution architecture is proposed as a new 

distribution system for the all-electric ships in which 

the presence of power converters is pervasive [1-2]. 

These power electronic devices can significantly 

simplify the system by providing more available 

space, possible cost reduction, higher efficiency, 

higher safety, and variable control to achieve self-

healing and survivability [3]. However fault 

classification and location in MVDC shipboard 

power systems is a challenging task.   

A traveling wave based fault locator is presented 

for accurate fault location on distributed overhead 

lines and underground cables [4]. Here, travelling 

time of the high-frequency voltage signal with a 

sampling rate of 200 MHz is used to determine the 

fault distance. However, the MVDC power system is 

of small scale, making it difficult to measure with 

enough accuracy the time difference of the traveling 

wave. Moreover in practical, real effect, such as 

cable terminations, junctions and terminal 

connections may impact the performance of the 

method. Artificial neural network (ANN)–based fault 

classification and location in MVDC shipboard 

power systems is presented in [5]. It is found to be 

efficient in detecting the type and location of direct 

current (DC) cable faults. However, it needs large 

training sets and the learning process is consuming 

time. A discrete wavelet transform based real-time 

detection of DC-link short-circuits faults have been 

employed in DC transit systems [6]. Here, fault 

detection is being carried out using a self-organizing 

neural network for which an extracted feature vector 

from current waveform is given as input.  

Fault identification and classification of short 

medium voltage underground cables using ANN is 

presented in [7]. Here, voltage and current signals for 

a complete full cycle have been used to detect the 

fault. In [8], an application of wavelet transform to 

digital distance-protection of transmission lines is 

presented. The wavelet transform method uses a 

multi-resolution analysis of the line currents to 

calculate different wavelet coefficients that help in 

detecting the type of fault. An application of wavelet 

transform and ANN to MVDC shipboard power 

systems is presented in[9]. The network is trained 

and tested with only a few cases. The use of high-

frequency components of the fault-generated 

transient signals was studied for fault protection [10] 

and this method enables accurate fault detection 

unaffected by power swings.  
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A fault location scheme using impedance-based and 

voltage matching method for unbalanced power 

distribution system in the presence of the distribution 

generation is presented in [11]. This scheme uses pre 

fault and during fault voltages and currents. The 

estimated error using this scheme lies between 

0.001% and 0.1%.  An active impedance estimation 

based fault location scheme is presented for a 

modern DC marine power distribution system [12]. 

Here, triangular current spikes are injected into the 

system once a short-circuit fault is detected. A fault 

location method for inter-line and grounded fault 

using one-terminal information based on distributed 

parameter model of double-circuit transmission line 

is presented in [13]. A traveling-wave-based method 

for wide-area fault location in multi terminal DC 

systems is presented in [14]. The first surge arrival 

time alone is needed for this method and it resulted 

with a maximum error of 0.176%. The location of 

DC line-faults in HVDC system is predicted based 

on traveling-wave natural frequency using half cycle 

current data from the single end [15]. This method 

has achieved an accuracy of less than 0.3% error 

under different fault conditions. An automated 

analysis approach using synchronized samples 

during transients from both the ends of the 

transmission line to locate transmission line faults is 

presented in [16]. This method can locate a fault with 

3% accuracy. An analytical method based on only 

the voltage data of both ends of the faulted circuit is 

used for calculating the fault location for double-

circuit transmission line [17]. The estimated error is 

less than 0.3% for different test cases using the 

voltage data. A fault location estimation algorithm 

based on analysis of measurements of voltage and 

current during discrete system states of single-phase 

and three-phase auto reclose scheme is presented in 

[18]. The fault location estimation error is less than 

0.3% for this algorithm. A linear regression 

technique using the sample number at which wavelet 

coefficient details is greater than threshold is used 

for locating the transmission line faults [19]. The 

maximum estimation error associated with this linear 

regression technique is 0.75%.  

     The fault location estimation error lies between 

0.001% and 3% for all the schemes discussed above.  

All these recent fault locators [11-19] motivate the 

researchers to design a fault locator with less % 

error. SVM based fault classifiers are used for fault 

detection and classification in electrical machines 

[20-21]. A number of practical applications of 

intelligent techniques using support vector machine 

for power system transient analysis have been 

reported [22–24]. Thus, it is necessary to develop a 

signal pattern analysis-intelligence technique based 

method for fault classification and fault location in 

MVDC shipboard power systems. The main 

objective of this work is to design a fault classifier 

with high classification accuracy and fault locator 

with less % error. In this paper, autoregressive-

extreme learning machine (AR–ELM) is proposed 

and developed to classify and locate the fault in the 

MVDC shipboard power systems, thus supporting 

the decision on mitigating actions. 

     The rest of the article is organized as follows. 

Section 2 gives a brief description about the MVDC 

shipboard power system architecture. Section 3 

introduces the proposed method. Section 4 presents 

auto regressive signal model. Section 5 presents brief 

review on extreme learning machine. Section 6 

describes the fault classification and location in 

detail. Section 7 presents the results and discussion. 

Section 8 contains the conclusion of the paper. 

 

2. MVDC Shipboard power system architecture 

Fig. 1 shows the MVDC ship board architecture. 

A port distribution bus and star distribution bus are 

the two buses that run longitudinally along the ship. 

The network is distributed as five zones. There are 

two generators G1, G2 that are connected to Zone 1 

and 2 through power electronic converters and circuit 

breakers. Zone 3 and 4 supplies vital and non vital 

loads respectively. Zone 5 consists of a radar load 

which is supplied from either of the MVDC buses 

through power electronic rectifier.  The three types 

of DC fault that can occur in MVDC shipboard 

power system are (i) positive-rail-to-ground fault 

(PR–G), (ii) negative-rail-to-ground fault (NR–G) 

and (iii) rail-to-rail fault (R–R) [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1. Architecture of MVDC shipboard power system. 
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Fig. 2. Simulated equivalent MVDC shipboard power 

system. 

 

An equivalent MVDC shipboard power system is 

shown in Fig.2. It is simulated using MATLAB to 

perform the proposed fault classification and location 

method. The developed MVDC power system is 

shown in Fig. 2. AC voltage source is converted into 

DC voltage ( )12V  using an uncontrolled diode 

rectifier (AC/DC converter). It supplies the load 

through the RL cable whose length is 1 km. 1I  and 

2I represent the current on the DC lines. The 

parameters of the system are shown in Table I. 
TABLE I 

Parameters of simulated MVDC shipboard power system 

AC voltage source 5.5 kV 

Resistance of each cable 0.002 Ω  

Inductance of each cable 40 µH 

Load 5 Ω 

   The information obtained from the current 

waveforms ( )21 I,I at the point of measurement is 

used to perform the fault classification and location 

task in the MVDC shipboard power system. Current 

waveform ( )1I  at the point of measurement when a 

positive rail to ground (PR-G) fault occurs at 0.2 s 

with duration of the fault equal to five cycles is 

shown in Fig. 3.  The current value rises quickly to a 

value greater than the value observed under the 

normal condition. The current signal for one cycle 

duration is modeled by the autoregressive signal 

modeling and the autoregressive coefficients are 

used to classify and locate the fault in MVDC 

shipboard power system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Current waveform under normal and fault 

condition. 

 

3. Proposed AR-ELM Method 

The block diagram of the proposed method is 

shown in Fig. 4. A parametric method called the AR 

modeling is used to extract features from current 

signal of one cycle duration at the point of 

measurement. The AR coefficients of the fault 

current for one cycle duration are calculated after the 

occurrence of fault. These calculated AR coefficients 

are used as input for the fault classifier and fault 

locators. The fault classifier is designed to classify 

the four types of faults. They are AC fault (source 

fault) and the possible three DC faults (PR-G, NR-G, 

and R-R). When the output of the fault classifier is 

AC fault, then proper mitigating action should be 

taken on the source side. When the fault is classified 

as any one of the possible three DC faults (PR-

G/NR-G/R-R), then the corresponding fault locator 

will be selected. The output of the fault locator is the 

fault distance from the point of measurement. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Block diagram of the proposed AR-ELM method. 
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The prerequisite of the proposed AR-ELM method is 

that the fault should be detected. For detection of 

faults, a number of approaches have been proposed 

by different researchers [6-10]. Hence, a priori 

knowledge of accurate fault detection has been taken 

for granted. 

 

4. Autoregressive signal modeling  

The most commonly used methods for spectral 

analysis are nonparametric, such as fast Fourier 

transform (FFT) and discrete wavelet transform 

(DWT). FFT is characterized by poor spectral 

estimation. However, DWT has high frequency 

resolution but it cannot extract correct signal features 

during noisy conditions. DWT requires additional 

preprocessing to suppress noise. This section 

describes the basic theory for parametric modeling of 

signals using AR method. The AR signal modeling 

has found wide applications in the analysis of 

biomedical signals [25], fault detection and location 

in rotating machines due to bearing failure [26]. It is 

recently used as a powerful tool for power system 

disturbances analysis such as low frequency 

oscillations estimation [27] and islanding detection 

[28]. The AR modeling of the current signal ( )ti  
can 

be represented as the response of a linear time 

invariant system with white noise ( )te  as input, 

where the system is modeled by a finite number of 

poles. The AR(p) model of the current signal ( )ti at 

time t  is defined as: 

( ) ( ) ( )∑
=

+−−=
p

j
j tejtiati

1
                                

(1) 

where ja is the AR coefficients, ( )jti − is the 

current signal ( )ti  delayed by j  samples and p
 
is 

the number of pole. The AR coefficients are 

estimated using the traditional Yule-Walker method 

with the Levinson-Durbin recursion. Equation (1) 

can be expressed as a linear filter in the z-transform 

domain as: 

( ) ( ) ( )zEzazIzI
p

j

j
j +−= ∑

=

−

1
 

                           (2) 

Where ( )zI  and ( )zE are the z-transforms of ( )ti  
and ( )te , respectively. The transfer function of all-

pole system is:  

( ) ( )
( )

∑
=

−+
==

p

j

j
j za

zE

zI
zH

1
1

1
                             (3) 

       The pole jp  can be calculated from the roots of 

the AR coefficient polynomial in the denominator of

( )zH . Each pole jp
 
has a phase jφ  

and a magnitude 

jr
  

, which is the distance of pole from the origin. 

The pole which moves closely to the origin is the 

critical pole [26]. The spectral power jP
 
of the pole 

jp
 

is calculated by multiplying real part of the 

residue term with the variance of the driving AR 

time series 2σ  and the scale factor n . 

( ) ( )
jpzjj zHpzzr

=
− −= 1

  
                             (4) 

( )
jpzjj rRenP

=
= 2σ      (5) 

   The AR model gives compressed data with smooth 

frequency spectrum without loss of essential features 

from the current signal. Fig. 5 shows the power 

spectrum density estimate (PSD) obtained using FFT 

and AR model of the current signal at the point of 

measurement for PR-G fault.  Fig. 6 shows the AR 

coefficients of the current signal under normal and 

different fault conditions. The difference between 

coefficients for different types of fault and normal 

condition is apparent such that these coefficients can 

be given as input for fault classifier and fault locator 

to perform their task. This makes AR modeling as a 

proper feature extraction tool which leads to better 

classification and location accuracy. 

 
 

 

 

 

 

 

 

 

Fig. 5. Periodogram versus PSD estimation of the current 

signal for PR-G fault. 

 

 

 

 

 

 

 

 

 
Fig. 6. AR coefficients of the current signal under normal 

and fault condition.  



 

5. Extreme learning machine 

Extreme learning machine (ELM) is a single 

hidden-layer feed forward neural network (SLFN) 

which provides efficient unified learning solutions 

for the applications of feature learning, clustering, 

regression and classification in engineering problems 

[29-31]. The learning speed of ELM is faster than the 

traditional feed-forward network learning algorithm 

like back propagation algorithm while obtaining 

better generalization performance. The architecture 

of ELM model is shown in Fig. 7. ELM randomly 

chooses and fixes the weights between input neurons 

and hidden neurons based on continuous probability 

density function, and then analytically determines the 

weights between hidden neurons and output neurons 

of the SLFN [32-34]. For N samples ( ){ } ,t,x
N

kkk 1=  

where input vector [ ]Tknkkk x,...,x,xx 21= and target 

vector [ ]Tkmkkk t,...,t,tt 21= a standard SLFN with 

~

N hidden neurons and activation function ( )xg is 

mathematically modeled as: 

         
( ) N,...,,k,Obxwg kiki

~
N
i i 211 ==+⋅∑ = β        

(6) 

where [ ]Tiniii w...,,w,ww 21= is the weight vector 

connecting the thi  hidden neuron and the input 

neurons, [ ]Timiii ,...,, ββββ 21= is the weight vector 

connecting the thi hidden neuron and the output 

neurons, [ ]Tknkkk O,...,O,OO 21= is the output vector 

of the SLFN and ib  is the threshold of the thi hidden 

neuron. ki xw ⋅  denotes the inner product of iw  and 

kx . These N equations can be written compactly as:  

OH =β                    (7) 
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Here, H is called the hidden layer output matrix. 

        

 

The number of hidden neurons required to 

achieve a good generalization performance is much 

less. The resulting training error might not approach 

to zero but can be minimized by solving the 

following problem: 
2

11 T)b,...,b,w,...,w(Hmin ~
N

~
N

−β
β

              (10) 
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    ELM randomly assigns and fixes the input weights 

iw  and bias ib
 
based on some continuous probability 

distribution function in the case of learning a 

structured function, only leaving output weights iβ  

to be adjusted according to: .THmin
2

−β
β  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.  Architecture of Extreme learning machine 

 

The above problem is linear system optimization 

problem. Its unique least-squares solution with 

minimum norm is given by  

THˆ †=β ,                  (12) 

where †H is the Moore-Penrose generalized inverse 

of matrix H . The solution produced by ELM in (12) 

not only achieves the minimum square training error 

but also the best generalization performance on novel 

patterns. ELM can perform direct classification for 

multi-category problems in a fast and efficient 

manner. 
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6. Fault classification and location 

A. Training and testing data set generation  

     To study the effectiveness of the proposed 

method under different conditions, different 

combinations of parameters have been considered. 

The training patterns are generated for three different 

types of fault (PR-G, NR-G, R-R) on the DC bus 

with ten locations, six fault resistances, two fault 

inception angles and two load resistances. Thus a 

total of 3 × 10 × 6 × 2 × 2 =720 cases have been 

generated for training.  The training patterns are 

generated for 10 different types of AC fault for ABC 

phases (A-G, B-G, C-G, A-B, B-C, A-C, A-B-G, B-

C-G, A-C-G and A-B-C) on the source side with two 

source impedances, two load resistances, three fault 

resistances, two load angles and one fault inception 

angle. Thus a total of 240 cases of AC side faults 

have been generated for training. The duration of the 

fault has been assumed to be five cycles. Therefore, 

the fault classifier is trained with 960 cases. They are 

720 cases of DC fault and 240 cases of AC fault. 

      The testing patterns are generated for three 

different types of fault (PR-G, NR-G, R-R) on the 

DC bus with 90 locations, six fault resistances, two 

fault inception angles and two load resistances. Thus 

a total of 6480 cases for all the three DC faults have 

been generated for testing. The testing patterns are 

generated for 10 different types of AC fault on the 

source side with three source impedances, two load 

resistances, six fault resistances, three load angles 

and two fault inception angles. Thus a total of 2160 

cases of AC faults on source side have been 

generated for testing. Therefore, the fault classifier is 

tested with 8640 cases. They are 6480 cases of DC 

fault and 2160 cases of AC fault.   

    Each of the three fault locators is trained with 240 

cases and tested with 2160 cases of DC fault. Hence, 

a total of 6480 cases are tested using the three fault 

locators. The parameter values that have been chosen 

for training and testing are given in Table II & III. 
TABLE II 

Details of training and testing patterns for DC faults 

Parameters Training Testing 

Fault location 

( )FL  

at distances of 

10,20,…100% of 

DC bus length   

at distances of 

11,12,…100% of 

DC bus length 

Fault 

resistance ( )fR  
0.01, 0.2, 2, 5, 6, 

10Ω 

0.01,0.1,1,10,25, 

50 Ω 

Fault inception 

angle ( )FIA   
0º,90º 36º,72º 

Load 

resistance ( )LR  
1, 5Ω  1, 10 Ω 

TABLE III 

Details of training and testing patterns for AC faults 

Parameters Training Testing 

Source impedance  

( )sZ  
100%, 50% 

75%, 100%, 

125% 

Load resistance ( )LR  1, 5Ω  1, 10 Ω 

Fault resistance ( )fR  0.01, 1,10Ω 
0.01,0.1,1,10,25, 

50 Ω 

Load angle  ( )δ  0º, 90º 0º, 60º, 90º 

Fault inception angle

( )FIA   
0º 36º,72º 

 

B. AR-ELM based fault classifier and fault locator 

    The current signals I1, I2 at the point of 

measurement sampled at a rate of 1 kHz for full 

cycle duration is modeled using AR signal modeling. 

The signal window of 20 ms and model order p = 13 

are used for the AR coefficients calculation. The 

model order is selected using common rule that AR 

order should be around one third of the data window 

size [28]. The calculated thirteen AR coefficients are 

given as input to the ELM classifier which makes the 

number of input nodes equal to thirteen. AR-ELM 

fault classifier is a multiclass classifier that consists 

of four classes. Classes 1 to 3 correspond to DC 

faults (PR-G, NR-G, and R-R), and class 4 

corresponds to AC fault. Therefore, number of 

output nodes is equal to four. The output of the fault 

classifier belongs to a particular class when the 

weight of that output node is greater than the other 

three nodes. The proposed fault classifier is able to 

discriminate source side AC fault from DC fault with 

the current at the point of measurement on the DC 

cable. The parameter to be selected for the AR-ELM 

fault classifier is the number of hidden nodes. The 

number of hidden nodes is increased from one by a 

step of one during training until the optimal number 

of nodes is selected based on cross-validation with a 

training accuracy equal to one. The number of 

hidden nodes obtained when AR-ELM classifier is 

trained with 960 cases is 72 for sigmoid activation 

function. Fig. 8 shows the selection of number of 

hidden nodes for AR-ELM classifier. The 

performance evaluation criterion for fault classifier is 

the classification accuracy and it is given by: 

100×=
casestestofNumber

tionclassificafaultTrue
accuracytionclassifica%

         

(13) 

      Based on the output of the fault classifier, any 

one of the fault locator will be selected. The thirteen 

AR coefficients of the fault current signal are given 

as input to the fault locator modules. AR-ELM fault 

locator considers the fault location task as a 



 

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

Number of hidden nodes

T
ra

in
in

g
 a

c
cu

ra
cy

 

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

Number of hidden nodes

T
ra

in
in

g
 R

M
S

E

 

 

PR-G fault

NR-G fault

R-R fault

regression case. Therefore, the number of output 

node is equal to one. The weight of the output node 

gives the distance of the fault from the point of 

measurement. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8. Training accuracy vs. number of hidden nodes. 

The parameter to be selected for the AR-

ELM fault locator is the number of hidden nodes. 

The number of hidden nodes is increased from one 

by a step of one during training until the optimal 

number of hidden nodes is selected based on cross-

validation with the root mean square error (RMSE) 

equal to 0.0005. The number of hidden nodes 

obtained when AR-ELM fault locator is trained with 

240 cases is 88, 96, and 116 for sigmoid activation 

function.  Fig. 9 shows the selection of number of 

hidden nodes for AR-ELM fault locators. 

The criterion for evaluating the performance of the 

fault locator is defined as 

100×
−

=
cableDCtheoflengthTotal

locationfaultActualoutputlocatorFault
error%

   

(14) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9. RMSE vs number of hidden nodes 

7. Results and Discussions 

The AR-ELM fault classifier is tested with 8640 test 

cases. An overall classification accuracy of 99.7% 

has been obtained by the proposed method. Table IV 

depicts the performance of the proposed fault 

classification method for different types of faults. It 

is inferred from Table IV that the proposed method 

gives highly accurate results for all the types of 

faults.  
TABLE IV 

Fault classification accuracy for different fault types 

Fault 

Type 

No. of 

test 

cases 

No. of 

misclassification 

No. of true 

classification 

Accuracy 

(%) 

PR-G 2160 - 2160 100 

NR-G 2160 - 2160 100 

R-R 2160 26 2134 98.8 

AC 2160 - 2160 100 

Total 8640 26 8614 99.7 

 

The breakup of the classification results obtained 

during testing is given in Table V. The diagonal 

elements represent the correctly classified faults and 

the off-diagonal elements represent the 

misclassification. The total true fault classification is 

8614 test cases. The overall classification accuracy 

of the AR-ELM fault classifier is 99.7%. 
TABLE V 

Classification results of AR-ELM fault classifier 

Fault 

Type 

PR-G NR-G RR-G AC 

PR-G 2160 - - - 

NR-G - 2160 - - 

R-R 16 - 2134 10 

AC - - - 2160 

 

From Tables IV & V it is observed that even with a 

small training data (which is roughly 11% of the test 

data), the classification accuracy of the proposed 

method is high. Of the total 2160 R-R fault test 

cases, 16 are misclassified as PR-G fault and 10 are 

misclassified as AC fault. The details of the 26 

misclassified test cases are given in Table VI. The 26 

misclassified test cases have fR =0.01Ω. But, all the 

test cases of PR-G, NR-G, and AC faults with fault 

resistance fR =0.01Ω have been classified correctly. 

For the test cases 1-10 given in Table VI, the output 

of node 4 is greater than other three nodes.  Hence, 

the output of fault classifier is AC fault.

 

 



TABLE VI 

Details of the misclassified test cases of the AR-ELM fault classifier 

S.No 

Fault 

location 

(p.u) 

Fault 

resistance 

(Ω) 

Load 

resistance 

(Ω) 

Fault 

Inception 

angle  

Output 

of  node 

 1 

Output 

of  node 

2 

Output 

of   node 

3 

Output  

of    node 

4 

Predicted  

fault type 

1 0.12 0.01 1 36º -4.3922 -4.2463 2.8212 3.8178 AC 

2 0.12 0.01 1 72º -4.3921 -4.2462 2.8215 3.8172 AC 

3 0.13 0.01 1 36º -4.8024 -4.5998 3.1201 4.2826 AC 

4 0.13 0.01 1 72º -4.8023 -4.5997 3.1205 4.2819 AC 

5 0.14 0.01 1 36º -5.018 -4.6891 3.3369 4.3706 AC 

6 0.14 0.01 1 72º -5.0179 -4.689 3.3374 4.3699 AC 

7 0.15 0.01 10 36º -4.9976 -4.5408 3.4149 4.1239 AC 

8 0.15 0.01 10 72º -4.9975 -4.5406 3.4154 4.1231 AC 

9 0.16 0.01 1 36º -4.7266 -4.193 3.3227 3.5973 AC 

10 0.16 0.01 1 72º -4.7265 -4.1928 3.3232 3.5965 AC 

11 0.21 0.01 10 36º 0.2625 -0.4818 -0.1606 -1.6201 PR-G 

12 0.21 0.01 10 72º 0.2626 -0.4805 -0.1626 -1.6195 PR-G 

13 0.22 0.01 1 36º 1.049 0.0932 -0.0726 -3.0698 PR-G 

14 0.22 0.01 1 72º 1.049 0.0934 -0.0718 -3.0708 PR-G 

15 0.22 0.01 10 36º 1.44 -0.0565 -1.2965 -2.0871 PR-G 

16 0.22 0.01 10 72º 1.4401 -0.0547 -1.2988 -2.0867 PR-G 

17 0.23 0.01 1 36º 1.6171 0.5015 0.0234 -4.1423 PR-G 

18 0.23 0.01 1 72º 1.6177 0.5019 0.0233 -4.1432 PR-G 

19 0.23 0.01 10 36º 2.5866 0.414 -2.4408 -2.5599 PR-G 

20 0.23 0.01 10 72º 2.587 0.4159 -2.4448 -2.5583 PR-G 

21 0.24 0.01 10 36º 2.313 0.2237 -1.8436 -2.6932 PR-G 

22 0.24 0.01 10 72º 2.32 0.2289 -1.8561 -2.693 PR-G 

23 0.25 0.01 10 36º 1.2763 -0.326 -0.5326 -2.4179 PR-G 

24 0.25 0.01 10 72º 1.2827 -0.3209 -0.5433 -2.4186 PR-G 

25 0.26 0.01 10 36º 0.4483 -0.7244 0.3016 -2.0257 PR-G 

26 0.26 0.01 10 72º 0.454 -0.7197 0.2927 -2.0272 PR-G 

For test cases 11-26, the output of node 1 is greater 

than the other three nodes. Hence, the output of the 

fault classifier is PR-G fault. In all the 26 test cases, 

the output of node 3 should have been greater than 

the other three nodes to classify these test cases as R-

R fault. The misclassified test cases belong to the 

fault location that lies between 12 to 16% and 21 to 

26% of the cable length. This indicates the severity 

of the short kilometric fault affecting the accuracy of 

the AR-ELM fault classifier from achieving 100%. 

Each of the three fault locators is tested with 

2160 test cases. The output of the fault locator is the 

distance of the fault from the point of measurement 

in per unit. The performance of the fault locators are 

evaluated using equation (14). Table VII gives the 

test results of the AR-ELM fault locators for 

different fault cases of the system. These ten cases 

correspond to descending order of % error of the 

fault locators in the total 6480 test cases. The 

minimum, maximum, mean error and standard 

deviation for the three fault locators are given in 

Table VIII.  The maximum error of the PR-G and R-

R fault locator corresponds to the first two test cases 

of Table VII. The maximum error of the PR-G fault 

locator is 0.04219% which is less than maximum 

error of 4.86% of the artificial neural network based 

fault locator reported in [5]. 
 

TABLE VII 

Test results of the AR-ELM fault locators 

Fault 

Type 

Fault 

Location 
(p.u.) 

Fault 

Resistance 
(Ω) 

Load 
Resistanc

e 

(Ω) 

Output of 
fault 

locator 

(p.u) 

% error 

of fault 
locator 

PR-G 0.1 0.1 10 0.10042 0.04219 

R-R 0.68 0.01 10 0.68033 0.03345 

PR-G 0.52 0.01 1 0.52027 0.02759 

R-R 0.54 0.01 1 0.53973 0.02677 

PR-G 0.52 0.01 1 0.52026 0.02618 

PR-G 0.5 0.01 1 0.49974 0.02610 

PR-G 0.1 1 1 0.10025 0.02544 

PR-G 0.5 0.01 1 0.49975 0.02520 

R-R 0.88 0.01 10 0.88025 0.02512 

R-R 0.53 0.01 1 0.52977 0.02262 
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TABLE VIII 

Performance of the AR-ELM fault locators 

Type of 

locator 

Minimum 

error (%) 

Maximum 

error (%) 

Mean 

error 

(%) 

Standard 

deviation 

PR-G 9.6555e-007 0.0422 0.0034 0.0035 

NR-G 1.8161e-007 0.0210 0.0027 0.0026 

R-R 5.6117e-006 0.0334 0.0036 0.0033 

 

The probability density curve of % error of the three 

fault locators are shown in Fig.10 and its distribution 

is given in Table IX. As observed from Table IX, the 

three fault locators predicted the fault location with 

less than 0.01% error for 6238 (96.27% of test data). 

It is observed that even with a small training data 

(which is roughly 11% of the test data), the fault 

locator accuracy of the proposed method is high. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.10. Percentage error density curve of fault locators 

TABLE IX 

% error distribution for AR-ELM fault locators 

% error 

Range 

Type of fault locator 
Total 

test 

samples 

PR-G 

fault 

locator 

NR-G 

fault 

locator 

R-R 

fault 

locator 

0.0-0.005 1652 1794 1639 5085 

0.005-0.01 406 327 420 1153 

0.01-0.015 70 33 71 174 

0.015-0.02 23 5 21 49 

>0.02 9 1 9 19 

Total 2160 2160 2160 6480 

 

The effect of the fault distance on the performance of 

the fault locators is analyzed by calculating % mean 

error on each fault location. The total 6480 test cases 

consist of 90 locations with 72 test cases in each 

location. The mean error of these 72 test cases are 

calculated for each fault location and plotted against 

the fault distance as shown in Fig.11. The 

distribution of this mean error is uniform throughout 

the entire length of the cable considered.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig.11. Effect of fault distance on the performance of fault 

locator 

The effect of the fault resistance on the 

performance of the fault locators is analyzed by 

calculating % mean error for three fault resistances 

on each fault location. The total 6480 test cases 

consist of 90 locations with six fault resistances. So, 

for each fault resistance, the fault locators are tested 

with 12 test cases in each location. The mean error of 

these 12 test cases are calculated for each fault 

location and plotted against the fault distance as 

shown in Fig.12. The three fault resistances 

considered are .,,.R f Ω101010=  The performance 

of the fault locator is unaffected by the fault 

resistance as the % mean error is less in all the three 

cases considered.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig.11. Effect of fault resistances on the performance of 

fault locator 

 

The proposed AR-ELM fault classifier 

performed efficiently in classifying the fault with 

negligible error when tested with 8640 test cases. 

The proposed AR-ELM fault locators predicted the 

fault distance from the point of measurement with 

less % error when tested with 6480 test cases.  

 



A. Further studies 

The performance of the proposed AR-ELM 

fault classifier is analyzed by changing the data 

window size. The current signals I1, I2 at the point of 

measurement sampled at a rate of 1 kHz for half 

cycle duration is modeled using AR signal modeling. 

The signal window of 10 ms and model order p = 6 

are used for the AR coefficients calculation. The 

calculated six AR coefficients are given as input to 

the fault classifier. Table X depicts the performance 

of the fault classifier for half cycle duration of 

current signal. The classification accuracy obtained 

is 98.96% which is little lower than the accuracy 

obtained by using full cycle duration current 

samples. But, the accuracy obtained by using the half 

cycle duration current samples can also be 

considered as a satisfactory one. 
TABLE X 

Fault classification accuracy for different fault types for 

half cycle duration 

Fault 

Type 

No. of 

test 

cases 

No. of 

misclassification 

No. of true 

classification 

Accuracy 

(%) 

PR-G 2160 - 2160 100 

NR-G 2160 - 2160 100 

R-R 2160 90 2070 95.83 

AC 2160 - 2160 100 

Total 8640 90 8550 98.96 

 

B. Comparison with other scheme 

Recently, a method that integrates wavelet 

transforms (WT)-based multi resolution analysis 

technique with artificial neural network (ANN) for 

fault detection and fault classification in MVDC 

shipboard power systems has been proposed in [9]. A 

classification accuracy of 99.58% had been reported 

with 160 training cases and 240 test cases [9]. For 

comparing the performance of the proposed AR-

ELM fault classifier and locator with that proposed 

method in [9], fault classification and fault location 

task has also been carried out for all the test cases. 

MATLAB-Neural network toolbox is used for the 

ANN implementation. The db10 wavelet and scale 9 

are chosen as the mother wavelet. The DWT of the 

current signals of one cycle duration are found out. 

The wavelet coefficients are given as input for the 

fault classifier and locator designed using ANN. 

WT-ANN fault classifier is tested with 8640 test 

cases. The overall classification accuracy of the 

fault classification method of [9] is 99.56% which is 

almost the same obtained by the proposed AR-ELM 

fault classifier. Table XI depicts the performance of 

the scheme of [9].  
 

TABLE XI 
Performance of the scheme of Ref. [9] for different fault types 

Fault 

Type 

No. of 

test 

cases 

No. of 

misclassification 

No. of true 

classification 

Accuracy 

(%) 

PR-G 2160 - 2160 100 

NR-G 2160 - 2160 100 

R-R 2160 28 2132 98.7 

AC 2160 30 2130 98.6 

Total 8640 58 8602 99.56 

 

WT-ANN fault locators are test with 6480 

test cases.  The minimum, maximum, mean error and 

standard deviation for the three WT-ANN fault 

locators are given in Table XII.  The maximum error 

of the WT-ANN fault locators is higher than 

maximum error of proposed AR-ELM fault locators. 

 
TABLE XII 

Performance of the WT-ANN fault locators of Ref. [9] 

Type 

of 

locator 

Minimum 

error (%) 

Maximum 

error (%) 

Mean 

error 

(%) 

Standard 

deviation 

PR-G 7.0541e-004 1.7554 0.2953 0.2019 

NR-G 0.0014 1.2560 0.2609 0.1333 

R-R 0.0026 1.3654 0.2708 0.1968 

The performance of the WT-ANN classifier 

and AR-ELM classifier are almost the same. But the 

performance of the WT-ANN fault locators are poor 

than the AR-ELM fault locators. Since the maximum 

error for the WT-ANN fault locators are 1.7554%, 

1.256%, and 1.3654% for PR-G, NR-G, R-R fault 

locators respectively, whereas the maximum error for 

the AR-ELM fault locators are 0.0422, 0.0210, and 

0.0334%. The training and testing time required for 

the AR-ELM fault classifier and fault locators are 

very few minutes. But, WT-ANN fault classifier and 

fault locators needs several minutes. Hence, the 

proposed AR-ELM fault locators can be considered 

superior to the WT-ANN fault locators.  

Also, ELM has better scalability and much 

better generalization performance at a faster learning 

speed (up to thousands of times) than traditional 

support vector machine (SVM) and least square 

support vector machine for the standard data sets as 

reported in [34]. So, SVM based fault classifier and 

locators are not taken into account for comparison of 

the performance of the proposed method. The 

performance of the AR-ELM fault classifier and fault 

locators are unaffected by parameter variations. 



Hence, AR-ELM fault classifier and fault locators 

can be considered quite suitable for digital protection 

of the MVDC shipboard power systems. 

 

8. CONCLUSION 

AR-ELM based fault classification and location 

method for MVDC shipboard power systems is 

presented in this paper. Current signal for full cycle 

duration is modeled using AR signal modeling. The 

calculated AR coefficients of the fault current signal 

at the point of measurement are used as input to the 

fault classifier and fault locators. AR-ELM fault 

classifier is trained with 960 cases and tested with 

8640 cases. Each of the three AR-ELM fault locators 

is trained with 240 cases and tested with 2160 test 

cases. The overall classification accuracy of AR-

ELM fault classifier is 99.7%. AR-ELM fault 

locators performed accurately in locating the fault 

with less than 0.05% error. The maximum error 

obtained is 0.0422% by the PR-G fault locator. The 

three fault locators predicted the fault location with 

less than 0.01% error for 96.27% of test data. Hence, 

it is observed that the proposed fault classification 

and location method using AR-ELM is accurate and 

robust to parameter variation. The proposed method 

can be considered quite suitable scheme for the 

complete digital protection of MVDC shipboard 

power systems. 
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