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Abstract: A sliding mode controller (SMC) is applied in this 
paper to control a grid-connected Doubly Fed Induction 
Generator (DFIG) wind turbine for maximization the wind 
energy conversion and hence reducing the generator losses, 
the sliding mode controller is a nonlinear controller that 
implemented here with two Proportional Integral 
Derivative (PID) controller. The chattering problem of 
SMC is rejected here by using a minimum discontinuous 
controller term for ensuring disturbance rejection. PID 
controller is a commonly used controller in many industrial 
applications, while PID controller parameter tuning is a 
challenging issue which had been done here using a new 
version of Biogeography-Based Optimization (BBO) which 
is called Linearized Biogeography-Based Optimization 
(LBBO) algorithm. BBO is one of the latest evolutionary 
optimization algorithm based on mathematical model of 
Biogeography; it permits recombination among candidate 
solutions (habitats) by migration and immigration also a 
mutation process is being used. The objective function to be 
minimized is chosen to be the overall copper losses of the 
DFIG using MATLAB/SIMULINK. The simulation results 
are compared with Tyreus–Luyben tuning method, Genetic 
Algorithm (GA), and Biogeography-Based Optimization 
(BBO). Simulation results shows that the LBBO is an 
effective tuning method and has better performance 
compared with GA, and BBO. 
 
Key words: Biogeography-Based Optimization (BBO), 
Evolutionary Algorithm (EA), PID control, and Sliding 
Mode Control. 
 
1. Introduction. 
 Developing wind energy generation has an 
increasing interest in the last decade. A lot of 
objectives can be achieved by using electrical 
controller especially in variable speed operations [1-
3]. Due to the improvement and cost reduction of 
micro controllers and AC drives, the classical 
controllers can be replaced by modern controllers such 
as fuzzy control [4], robust control [5], and adaptive 
control [6]. One of the modern controllers is the 
Sliding Mode (SM) control which it is useful when 
dealing with a variable speed process as it has a merits: 

reduced-order, robustness against disturbances and 
system parameters variation with time [7- 9], but In 
SMC, there is an undesirable oscillations, which is 
known as “chattering” [10]. By using PID controllers 
in SMC implementation, finding its parameters values 
problem is risen. We can’t often tune PID parameters 
at its optimum values due to the difficulties of the 
conventional techniques that being used like 
frequency response. Ziegler-Nichols rules based on 
loop testing was used in the past [11, 12], but today 
intelligent control has become a focus of research as 
Artificial Neural Network (ANN) controller, fuzzy 
control, and evolutionary algorithms based controller 
[13].  
 Dan Simon introduced Biogeography-Based 
Optimization (BBO) Algorithm [14], many searches 
focused on that new algorithm to develop its ability of 
getting the global optimum value, to increase its 
variance, and to reduce its optimization time  as; 
Biogeography-Based Optimization with Blended 
Migration for Constrained Optimization Problem 
[15], A Hybrid Differential Evolution with 
Biogeography-Based Optimization (DE/BBO) for 
Global Numerical Optimization [16], Equilibrium 
Species Counts and Migration Model Tradeoffs for 
Biogeography-Based Optimization [17], a Modified 
Biogeography-Based Optimization (MBBO) [18], and 
Linearized Biogeography-Based Optimization with 
Re-initialization and Local Search [19].  
 This paper is organized as follows: Section 2 
presents sliding mode control. Section 3 presents the 
dynamic model of the wind energy conversion system. 
Section 4 reviews Biogeography-Based Optimization. 
Section 5 presents the Linearized Biogeography-
Based Optimization. In Section 6 discussion and 
comparison of GA, BBO, and LBBO Finally, the 
conclusions are stated in section 7. 
 
2. Sliding Mode Control. 
 A sliding mode control is a nonlinear controller that 



 

 

modifies the dynamics of a system using application 
of a discontinues control signals which coerces the 
system to slide a cross-section of the system’s normal 
behavior [20]. Consider a MIMO nonlinear system, 
modeled by the following: 

�̇� = 𝑓(𝑥) + 𝐺(𝑥)𝑈 + 𝜁 = 𝑓(𝑥) + ∑ 𝑔𝑖(𝑥)𝑢𝑖 + 𝜁

𝑚

𝑖=1

̇

         (1) 

     Where f is the drift vector, and gi of the input 
distribution matrix are smooth vector fields, 𝜁 =
[𝜁1, 𝜁2, … , 𝜁𝑛]𝑇 is an unknown disturbance vector. We 
should select m individual sliding variables si(x), it is 
also assumed that the system is hyperbolically 
minimum phase [20]. The controller will be a 
summation of three terms as follow: 
U(x) = UI(x) + UII(x) + UIII(x)                                  (2) 
     By using Lyaponouv theory with variable structure 
and geometric concepts. 

𝑉(𝑥) =
1

2
𝑆𝑇𝑆                                                                 (3) 

�̇�(𝑥) = 𝑆𝑇
𝜕𝑆

𝜕𝑥
�̇� = 𝑆𝑇

𝜕𝑆

𝜕𝑥
(𝑓(𝑥) + 𝐺(𝑥)𝑈)             (4) 

With S = [s1, s2, …sm]T and 
∂S
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∂s1

∂x
 
∂s2

∂x
…

∂sm
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 ]m×n
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To design the drift cancellation controller UI assuming 
the system is initially at S=0, our aim is to 
forceV̇(x) = 0, by substituting in equation 4, we get 

UI(x) = −[
∂S

∂x
G(x)]−1 [

∂S

∂x
f(x)]                               (5) 

     While UII is the reaching mode controller, its target 
if the system wasn’t initially at S = 0, is to ensure 
reaching the intersection manifold. 

 UII(x) = −[
∂S

∂x
G(x)]−1ΓS                                           (6) 

     Where Γ  is a diagonal positive matrix. By 
assuming that the derivative of Lyaponouv equation 
is: 

�̇�(𝑥) = −∑𝛾𝑖𝑢𝑖
2                                                        (7)

𝑚
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       Where the m is positive design parameters 𝛾𝑖 
correspond to the diagonal elements of Γ. To avoid 
chattering, a discontinuous control term UIII should be 
able to cancel any projection of 𝜁 bounded by 𝜁𝑀 =
[𝜁𝑀1, 𝜁𝑀2, … , 𝜁𝑀𝑛]𝑇on the orthogonal subspace 
with m dimensions. 𝜁 can be assumed as it is 
actually unknown. The orthogonal projection 
onto the basis vector 𝜕𝑆�̌�/𝜕𝑥 is bounded by using: 

|
𝜕�̌�

𝜕𝑋
| 𝜁𝑀 = [|

𝜕�̌�1

𝜕𝑋𝑇
| 𝜁𝑀, … , |

𝜕�̌�𝑚

𝜕𝑋𝑇
| 𝜁𝑀 ]

𝑇

                      (8) 

So the discontinuous control term will be: 

𝑈𝐼𝐼𝐼(𝑥) = − [
𝜕𝑆

𝜕𝑋
𝐺(𝑋)]

−1

Λ 𝑠𝑔𝑛(𝑆)                         (9) 

Where Λ = 𝑑𝑖𝑎𝑔 (|
𝜕𝑆

𝜕𝑋
| 𝜁𝑀). 

3. Wind Energy Conversion System Modeling. 
 The stator is directly connected to the grid, also the 

rotor is connected to the utility through bidirectional 
converter as shown in fig. 1. By selecting the d-q 
frames and the q-axis of the stator will be selected as 
a reference frame (Vqs=VL and Vds=0). The dynamic 
model can be described by the following equations: 

�̇�𝑞𝑠 = −𝑅𝑠𝑖𝑞𝑠 − 𝜔𝜑𝑑𝑠 + 𝑉𝐿                                      (10) 

�̇�𝑑𝑠 = −𝑅𝑠𝑖𝑑𝑠 + 𝜔𝜑𝑞𝑠                                              (11) 

�̇�𝑞𝑟 = −𝑅𝑟𝑖𝑞𝑟 − (𝜔 − 𝜔𝑟)𝜑𝑑𝑟 + 𝑣𝑞𝑟                    (12) 

�̇�𝑑𝑟 = −𝑅𝑟𝑖𝑑𝑟 + (𝜔 − 𝜔𝑟)𝜑𝑞𝑟 + 𝑣𝑑𝑟                   (13) 

𝜑𝑞𝑠 = 𝐿𝑠𝑖𝑞𝑠 + 𝐿𝑚𝑖𝑞𝑟                                                  (14) 

𝜑𝑑𝑠 = 𝐿𝑠𝑖𝑑𝑠 + 𝐿𝑚𝑖𝑑𝑟                                                 (15) 

𝜑𝑞𝑟 = 𝐿𝑟𝑖𝑞𝑟 + 𝐿𝑚𝑖𝑞𝑠                                                 (16) 

𝜑𝑑𝑟 = 𝐿𝑟𝑖𝑑𝑟 + 𝐿𝑚𝑖𝑑𝑠                                                 (17) 

𝑇𝑒 =
3

2
𝑃𝐿𝑚(𝑖𝑞𝑟𝑖𝑑𝑠 − 𝑖𝑑𝑟𝑖𝑞𝑠)                                   (18) 

     Where Rs and Rr are the stator and rotor resistances, 
Ls and Lr are the stator and rotor inductances, Lm is the 
mutual inductance. The vqs, vds, vqr, and vdr are the 
quadrature-direct components of the stator and rotor 
maximum voltages, iqs, ids, iqr, and idr are the 
components of the stator and rotor currents, while φqs, 
φds, φqr, and φdr are the components of the stator and 
rotor concentrated flux. Te is the generator torque and 
P is the number of pair poles. 
     By applying the Newton’s equation and neglecting 
the friction term, the dynamic equation will be  

�̇�𝑟𝑚 =
�̇�𝑟

𝑃
=

1

𝐽
(𝑇𝑡 − 𝑇𝑒)                                           (19) 

𝑇𝑡 =
1

2
 𝜌𝜋𝑟3𝐶𝑡(𝜆)𝑣2                                                 (20) 

𝐶𝑡 =
𝑎

𝜆
(
𝑏

𝜆
− 1) 𝑒

−
𝑐
𝜆                                                    (21) 

Where J is the inertia of the rotating parts, 𝜔𝑟𝑚 =
𝜔𝑟/𝑃 is the mechanical rotation, v is the average wind 
speed, Tt is the turbine torque, 𝜌 is the air density, r is 
the blade length, Ct is the coefficient of performance, 
and 𝜆 is the Tip-Speed Ratio (TSR), which TSR= 
𝜔𝑟𝑚 ∗ 𝑟/𝑣, with a, b, and c are constants related to the 
turbine under consideration. 
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Fig. 1. Schematic diagram of the wind energy conversion 
system with DFIG. 
 



 

     The maximum extractable power could be obtained 
at 𝜆𝑜𝑝𝑡. By substituting equations (10)-(21) in 
equation (1), we get: 

�̇� =

[
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𝑓3(𝑥)
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+
1

𝐿𝑒𝑞
2

[
 
 
 
 
−𝐿𝑚

0
𝐿𝑠

0
0

0
−𝐿𝑚

0
𝐿𝑠

0 ]
 
 
 
 

𝑈 + 𝜁                         (22)  

     Where the states are X=[iqs, ids, iqr, idr, 𝜔r]T, and the 
control input U=[vqr, vdr]T, and 𝐿𝑒𝑞

2 = 𝐿𝑠𝐿𝑟 − 𝐿𝑚
2   

𝑓1 =
𝑅𝑠𝐿𝑟𝑖𝑞𝑠−(𝜔𝐿𝑒𝑞

2 +𝜔𝑟𝐿𝑚
2 )𝑖𝑑𝑠−𝑅𝑟𝐿𝑚𝑖𝑞𝑟+𝐿𝑟𝑉𝐿−𝜔𝑟𝐿𝑚𝐿𝑟𝑖𝑑𝑟

𝐿𝑒𝑞
2 , 

𝑓2 =
𝜔𝐿𝑒𝑞

2 𝑖𝑞𝑠+𝜔𝑟𝐿𝑚
2 𝑖𝑞𝑠+𝑅𝑠𝐿𝑟𝑖𝑑𝑠+𝜔𝑟𝐿𝑚𝐿𝑟𝑖𝑞𝑟−𝑅𝑟𝐿𝑚𝑖𝑑𝑟

𝐿𝑒𝑞
2 , and 

𝑓5 =
1

𝐽𝑃
(𝑇𝑡 −

3

2
𝑃𝐿𝑚(𝑖𝑞𝑟𝑖𝑑𝑠 − 𝑖𝑑𝑟𝑖𝑞𝑠)) 

     To maximize the wind energy conversion, we 
should operate at 𝜆𝑜𝑝𝑡 with the variation of the wind 
speed. To achieve the maximization object and 
reducing the copper losses, we should track Tref and 
Qref through the individual sliding manifold S1 and S2. 

𝑇𝑟𝑒𝑓 = 𝐾𝑜𝑝𝑡𝜔𝑟
2 =

𝜌𝜋𝑟5𝐶𝑡(𝜆𝑜𝑝𝑡)

2𝜆𝑜𝑝𝑡
2 𝑃2 𝜔𝑟

2                           (23)  

𝑄𝑟𝑒𝑓 =
3

2
𝑃

𝜔𝐿𝑠𝑅𝑟𝜑𝑑𝑠
2

𝐿𝑚
2 𝑅𝑠 + 𝐿𝑠

2𝑅𝑟

                                         (24) 

𝑆1(𝑥) = 𝐾𝑜𝑝𝑡𝜔𝑟
2 −

3

2
𝑃𝐿𝑚(𝑖𝑞𝑟𝑖𝑑𝑠 − 𝑖𝑑𝑟𝑖𝑞𝑠)         (25) 

𝑆2(𝑥) = 𝑄𝑟𝑒𝑓
3

2
𝑃(𝑣𝑞𝑠𝑖𝑑𝑠 − 𝑣𝑑𝑠𝑖𝑞𝑠) = 𝑄𝑟𝑒𝑓 −

3

2
𝑃𝑉𝐿𝑖𝑑𝑠     (26) 

     By assuming that the DFIG is connected to a 
constant voltage constant frequency utility and hence 
φqs = 0  and φ̇ds = 0  also we will neglect the 
resistive voltage drop in the stator winding to be more 
suitable for implementation. The controller terms in a 
simplified form will be: 

𝑈𝐼 = [

𝐿𝑒𝑞
2

𝐿𝑚
(𝑓1 +

4𝐾𝑜𝑝𝑡𝜔𝑟𝑓5
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2

𝐿𝑚
𝑓2
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𝑈𝐼𝐼 =

[
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4. Biogeography-Based Optimization (BBO) 
     BBO is based on the biogeography science, which 
is the study of the distribution of organisms over time 
and space. Biogeography was first studied by Alfred 
Wallace [22] and Charles Darwin [23]. In BBO every 
possible solution of the optimization problem can be 
presented by an island. Each island H has a number of 

features called a suitability index variable (SIV). The 
number of SIV in each solution H is proportional to 
the problem dimension. The fitness of each solution is 
called its habitat suitability index (HSI), where a high 
HSI of an island means good performance on the 
optimization problem, and a low HSI means bad 
performance on the optimization problem. Improving 
the population is the way to solve problems in 
heuristic algorithms. The method to generate the next 
generation in BBO is by emigrating solution features 
to other islands, and receiving solution features by 
immigration from other islands. The algorithm 
assumes high species’ count in island having high HSI 
(i.e., for island corresponding to good solutions). The 
high species’ count encourages species to leave the 
island sharing their good SIV with other island. 
Hence, islands with good HSI have high emigration 
rate and low immigration rate. Bad solutions (islands 
with low HSI) have small species count, low 
emigration rates and high immigration rates. Mutation 
is performed for the whole population in a manner 
similar to mutation in GAs.  
 
5. Linearized Biogeography-Based Optimization 
(LBBO) [18]. 
     As BBO has limitations that it deals with one 
variable at a time in each solution, and it has weakness 
of its local search ability so a gradient descent will be 
used. The gradient descent is one of some 
modifications applied to conventional BBO. Some of 
the modifications as boundary search, global grid 
search strategy, restart, and re-initialization will be 
discussed below: 
 
5.1. LBBO Migration. 
     The immigration rate λk is used to probabilistically 
decide whether a solution zk to immigrate or not, 
where k ∈[1, N] is a randomly-selected parameter. The 
solution zk is linearly combined with the k emigrating 
solutions such that zk moves towards each emigrating 
solution yj with an amount that is proportional to its 
emigration rate μj: 
zk            zk + μj (yj - zk)                                       (30) 

The linearized migration method is described in 

Algorithm 1. 

For each solution zk 

Use λk to probabilistically decide whether to 

immigrate to zk 

       If immigrating then 

           For i = 1 to  

                  Use {μi} (i = 1, …, N ) to probabilistically 

select the emigrating solution yj 

                 zk            zk + μj (yj - zk) 

           Next i 

        End if 

        Probabilistically decide whether to mutate zk,s 



 

 

Next solution 

 
5.2. Gradient Descent. 
     LBBO is combined with several local search 
operators to improve its performance as it nears the 
global optimum. Gradient descent is implemented as 
shown in Algorithm 2. 

If  FE > FEmax or (fmin(g+1) fmin(g)) / fmin(g) < 1 

then 

     Perform gradient descent on the Ng best 

individuals 
End if 

     Where FE is the current number of function 
evaluations by LBBO that have been performed, and 
FEmax is the maximum function evaluation limit. 
Gradient descent is activated according to α value 
where α∈ [0, 1]. It is typically used α = 1/2. fmin(g) is 
the minimum function value obtained by LBBO 
during the g-th generation. The quantity fmin(g+1) - 
fmin(g)) / fmin(g) indicates the relative improvement in 
the best function value found by LBBO from the g-th 
generation to the (g+1)-st generation. ε1 is a threshold 
that determines when gradient descent is activated. 
 
5.3. Boundary Search. 
    As many real-world optimization problems have 
their solution on the boundary of the search space so a 
boundary search is applied. If the best individual in the 
population are within a certain threshold of the search 
space boundary, then it is moved to the search space 
boundary and perform gradient descent on the other 
dimensions. 
 
5.4. Global Grid Search. 
     The global grid search systematically covers the 
search space, the global grid search is implemented 
under similar conditions as gradient descent and 
boundary search stated previous. Global grid search is 
implemented if the best individual is improved by a 
factor of less than the computer precision so that 
global grid search is implemented only if the best 
individual does not improve at all from one generation 
to the next. Global grid search is implemented for the 
best No individuals, which it is typically equal to 2. 
 
5.5. Re-initialization. 
     Re-initialization is performed every Nr (Nr is set 
typically equal to 1000) function evaluations. We 
generate N (population size) new random individuals, 
along with two individuals at each extreme of the 
search domain. This gives us a temporary population 
size of 2N+2. The best N individuals are then selected 
out of these 2N+2 individuals for the next generation. 
 
5.6. Restart. 
     If there is no improving in the population, we start 
over, a randomly-generated population will be started, 

and discard the entire population. The LBBO flow 
chart is shown in Fig. 2. As with standard BBO, 
elitism is typically used where the best two solutions 
are kept from one generation to the next. 
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Fig. 2. LBBO Flow Chart. 

6. Simulation, Discussion, and Comparison. 
     The aim of this part is to test the performance of 
Linearized Biogeography-Based Optimization 
algorithm and hold a comparison among its 
performance with GA, BBO, and Tyreus–Luyben 
tuning method. The total copper losses in equation 
(31) is the objective function to be minimized for the 
Wind Energy Conversion System (WECS) with a PID 
and PI controllers. 

𝑃𝑐𝑢 =
3

2
(𝑖𝑞𝑠

2 + 𝑖𝑑𝑠
2 )𝑅𝑠 +

3

2
(𝑖𝑞𝑟

2 + 𝑖𝑑𝑟
2 )𝑅𝑟              (31) 

     By tuning the proportional gain (Kp1), integral 
constant (τi1), and differential constant (τd1) for the 
first PID controller and the proportional gain (Kp2), 
integral constant (τi2) for the PI controller, using 
MATLAB/SIMULINK the total simulation time is 
7290 seconds to test all the wind speed from 7 m/sec. 
to 15 m/sec, each speed will be simulated for 90 sec,. 
The transfer function of the controller is given as: 

 𝐺𝑐(𝑠) = 𝐾𝑝(1 +
1

𝜏𝑖𝑆
+ 𝜏𝑑𝑆)                                     (32) 

     The simulation constants are a=19.346, b=9.4117, 

c=20, r=3.8 m, Rs=0.082 Ω, Rr=0.228 Ω, Ls=0.0355 

H., Lr=0.0355 H., Lm=0.0347 H., J=3.362 Kg.m2, 

VL=380, frequency=60 Hz, P=4 poles, and Gear 

ratio=16:1. Tyreus–Luyben, GA, BBO, and LBBO are 

tested with WECS_DFIG. The tuned gains obtained 

by the algorithms are given in Table 1. Table 2 gives 

the optimization function, which it is the integration 

of the copper losses over the simulation period, the 

LBBO shows the best result. 

 

Table 1 
PID tuned Parameters obtained by GA, BBO, LBBO and 

Tyreus–Luyben (T-L) tuning method. 

Algorithm Kp1 τi1 τd1 Kp2 τi2 

T–L 0.06909 0.09533 0.006878 0.00017 0.12 

GA 0.91472 0.99995 0.5598 0.6969 0.681 

BBO 0.20887 0.91548 0.5250 0.99624 0.936 

LBBO 0.96204 0.9145 0.5173 0.92688 0.997 

 

Table 2 
The optimized value obtained by GA, BBO, LBBO and 

Tyreus–Luyben tuning method (Best result is shown in 

boldface. 
Algorithm Optimization value 

Tyreus–Luyben 3.49 e+06 

GA 3.38 e+06 

BBO 3.28 e+06 

LBBO 3.25 e+06 

 

     Figure 3 shows the power losses in the DFIG at 

speed of 10.7 m/sec. as a sample of the overall 

simulation period, it is clear that Genetic Algorithm 

has a better result than the Tyreus–Luyben, but LBBO 

gives the best result of all algorithms used in this 



 

 

paper. LBBO reduces the power losses by average 

value of 8 % over all the available working speed 

range. 

Fig. 3. Power losses curves at speed 10.7 m/sec obtained 

by T-L, GA, BBO, and LBBO. 

 

7. CONCLUSIONS 
     In this paper, a Sliding mode controller, WECS-
DFIG, Biogeography-Based Optimization, and 
linearized biogeography-based optimization had been 
presented, then Tyreus–Luyben, GA, BBO, and 
LBBO are tested and compared. It was clear that the 
LBBO has a better performance than BBO, and GA; 
which it has the lowest cost value for the tested plant. 
LBBO reduces the power losses by an average value 
of 8% and hence it increased the generated power. 
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