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Abstract. This paper shows the modeling and the 
effectiveness of Thyristor Controlled Voltage Regulator 
(TCVR) for power systems transient stability improvement. 
Two applications of transient stability assessment are 
presented in this article: The first uses a Runge-Kutta 
method; the second application shows the effectiveness of 
artificial neural networks (ANNs) to calculate the CCT. 
Critical Clearing Time (CCT) is used as an index for 
evaluated transient stability. The effectiveness of the 
proposed methodology is tested in the WSCC3 nine-bus 
system in the case of three-phase short circuit fault on one 
transmission line. A simulation and comparison are 
presented in this document. 
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1. Introduction. 
 Modern power systems have been larger and more 
complex for interconnections of the countries or 
electric companies. Several advances have been made 
to improve the performance, efficiency, reliability, and 
security of power systems. In power system analysis, 
the transient stability study is of paramount importance, 
it is considered when the power system is confronted 
with large disturbance. These disturbances can be 
faults such as: a short circuit on a transmission  line, 
loss of a  generator, loss  of  a load,  gain  of  load or 
loss of a portion of transmission  network …etc. The 
transient stability of an electric power system is 
referred as the ability to regain an equilibrium state 
after being subjected to a physical disturbance. 

 

Transient stability in the face of severe disturbances 

is a very important characteristic, which should be 

considered in every power system. Studies over more 

than two decades have proved that this technique can 

improve system stability in an effective. These are the 

methods of numerical integration [1,4]. Direct methods 

(methods of energy) [1,5], probabilistic methods [6,7], 

methods based on pattern recognition and nonlinear 

adaptive methods [3,8-9]. However, some of these 

methods are time consuming and in many cases cannot 

be applied for on-line assessment. The uncertainty of 

predicting future operating conditions has created a 

need for on-line Transient stability assessment. This 

complex technique constitutes a challenge to provide 

comprehensive analysis with the required accuracy, 

speed and robustness [8]. Recent applications of ANN 

have shown that they have considerable potential in 

overcoming the difficult tasks of data processing and 

interpretation. Four major steps are necessary in ANNs 

application: selection of input features, selection of 

ANNs architecture and training the ANNs and testing. 

Several methods of analysis of transient stability 

using neural networks have been developed, they are 

classified according to the release of ANNs into three 

categories: prediction of Critical Clearing Time (CCT) 

[3,9-10]. Calculating the margin of energy in order to 

maintain stability [11,12], predicting the stability by 

boolean output [13,14]. 

Various methods have been taken to improve the 

transient stability of power systems. One of the 

solutions is the application of Flexible AC 

Transmission Systems (FACTS), which depend on 

power electronics technologies [15-17]. FACTS 

technology opens up new opportunities for controlling 

power and enhancing usable capacity of the existing 

lines. The FACTS systems modify the characteristic of 

electrical components in order to increase their thermic 

capacity and remedy the problems of power system. In 

recent years, a large number of FACTS controller 

schemes based on various control techniques have been 

proposed to improve the transient and dynamic stability 

of power systems [18-20]. 

In this paper controller are considered namely 

Thyristor Controlled Voltage Regulator (TCVR), the 

effectiveness is evaluated by carrying out a transient 

stability analysis with and without considering these 

controllers embedded in the system. The TCVR is 

member of the family of combined FACTS, the TCVR 

inserts a voltage in series which is in phase with the 

bus voltage where the TCVR is connected, so as to 

increase or decrease its magnitude [15-19].  
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This paper presents an application of ANNs for 

Transient stability assessment and calculating CCT, 

which the effectiveness of the TCVR for transient 

stability of WSCC3 nine-bus system has been carried 

out. The nonlinear mapping relation between the 

TCVR margin and CCT at any instant for different 

operating conditions was established using a 

multilayered backpropagation ANNs. The proposed 

approach has been tested on WSCC3 nine-bus power 

system. 

2. Power System Modelling 

2.1 Generator Modelling  

The dynamics of the machine can be represented by 

the following differential equations [1]: 
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Where iH , iD , i , i , miP , eiP  are respectively the 

inertia constant, the damping constant, the rotor 

angular velocity, the rotor angle, the mechanical input 

power; the electrical power of the i-th generator; 

0 0,d i q iT T  , are the d-axis and q-axis transient time 

constants; ,di qiE E   are d-axis and q-axis transient emf; 

,di qix x   are generator d-axis and q-axis transient 

reactances; idI 0


, iqI 0


 are the d-axis and q-axis of the 

generator currents, exV  is the field voltage controlled 

by a voltage regulator. 

2.2 Voltage Regulator Modelling 

The terminal generator voltage Vt is controlled via 

an AVR (Automatic Voltage Regulator) represented by 

the block diagram of Figure 1. 

It is modeled with three variables: the exciter output 

voltage exV , the regulator voltage 1V and the stabilizer 

state 2V  related by the following equations: 
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Where: 

 KA, KE, KF : are the gains, TA,TE, TF : are system 

time constants; V1, V2, Eex, VR: are the AVR state 

variables and Vref is the terminal voltage reference 

setting. 

 

 

 

 

 

 

 

 

 

 

 

2.3 Speed Regulator Modelling 

The speed governor for hydroelectric generators 

used in this work is illustrated in the block diagram of 

the Figure.2  

 

 

 

 

 

 

 

 

 

The state variables of the regulator are related by the 

following equations:  
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Where:  

R is the speed regulation; cT , sT  are time constants;  

mP  is the mechanical power;  0mP  is the initial 

mechanical power; 1P , 2P  are the intermediate state 

variables; DBt is the dead band travel. 

2.4 TCVR Modelling 

The schematic diagram of TCVR is presented in 

figure.3 : 

Fig. 1 Block diagram of AVR model 
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Fig. 2 Block diagram of governor turbine for hydro -

generator 

 



 

 

 

 

 

 

 

 

 

 

The π equivalent circuit of the transmission line with 

TCVR is presented in fig. 4 [16]: 

 

 

 

 

 

 

 

 

 

 

Were rik, xik 
and 

ikb are resistance, reactance line and 

capacitance line respectively. 

The TCVR inserts a voltage in series which is in 

phase with the bus voltage where the TCVR is 

connected, so as to increase or decrease its magnitude. 

This series voltage is made variable with a variety of 

power electronics topologies.  

The tension UT is defined by: 

T T iU k U
                          

(12) 

Where kT is the control variable that can take a 

discrete number of values in the range [16]: 

0.15 0.15Tk  
              

(13) 

With the transformation ratio is: 
1

1
T
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                         (14)
    

3. Control Strategy 

The proposed control improves the dynamic stability 

of the power system by suitably modulated of voltage 

bus. The control strategy used in this paper is based to 

reduce the acceleration of the machines after a fault. 

The rapid controllability of FACTS devices can be 

used to significantly enhance the power system 

stability. The electric power is modulated by changing 

the magnitude of the bus voltage where the TCVR is 

connected. The detail of such a control strategy is given 

in the following [18,20]: 
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4. System Study and Result Analysis  

The main objective of this study is to analyze the 

effectiveness of TCVR controller to improve transient 

stability of power system. In all cases, it is considered 

for the TCVR (kmax=-kmin). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The modified WSCC 3-machine system is used as 

our test system in the case of three-phase short circuit 

fault in the transmission line. The system configuration 

is shown in figure 5. Load flow data, machine and 

exciter data can be found in reference [20]. In study 

purpose, the criterion of relative rotor angles using 

Runge-Kutta method is used. 

The simulation is done in three steps. The pre-fault 

is considered for a stable system. Then, a symmetrical 

fault is applied at one transmission line. Simulation of 

the fault condition continues till the fault is cleared. 

Then, the post-fault system is simulated for a longer 

time to observe the nature of the transient stability. 

The optimal value of the CCT is determined by trial 

and error. For this, several values of the fault duration 

(Td) are preselected and tested consecutively until the 

system becomes unstable. This time corresponds to the 

CCT [18-20]. 

4.1 Simulation Results without FACTS 

To study the efficiency of TCVR on transient 

stability, a three phase fault on line is considered and it 

is cleared by opening the line at both ends.  

Fig.6 and Fig.7 demonstrates the rotor angles and 

frequency for three phase fault on the line 6-4 near the 

bus number 4 for fault cleared at Td=0.448s. It can be 

said that the system is stable.  

Fig.8 and Fig.9 demonstrates the rotor angles and 

frequency for three phase fault on the line 6-4 near the 

bus number 4 for fault cleared at Td=0.449s. It may be 

seen that (δ12, δ13) increase indefinitely and we can be 

observed that the system becomes unstable.  The loss 

Fig. 3 Schematic diagram of TCVR  
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Fig. 5  A Three machine power system 

 

Fig. 4 The π equivalent circuit of the transmission line with 

TCVR  
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of the stability is also shown in the Fig. 9 in which the 

frequencies of machines are asynchronous and the 

system was not able to take back the synchronous; so 

the system is unstable. In this case of fault, if the time 

delay exceeds 0.448s, the system becomes unstable. As 

conclusion, the critical clearing time CCT equals to 

0.448s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Simulation Results with TCVR  

The proposed method of evaluating the additional 

damping provided by a TCVR controller is tested in 

multi-machine system as shown in Figure.5. For the 

purposes of this work, the TCVR controller margins 

are defined by Eq.(13):  

Fig. 10 and Fig. 11 illustrate relative rotor angles 

and frequency respectively in the case of three-phase 

short circuit on the line 4-6 near the bus number 4 for  

fault cleared at 0.449s with TCVR connected at bus 

number 2, where we can see that the system become 

stable with TCVR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Fig. 7 Frequency without FACTS (Td=0.448s)  
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 Fig. 8 Relative rotor angles without FACTS (Td=0.449s)  
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    Fig. 10 Relative rotor angles with TCVR   

     (Td=0.449s, kmax=0.15, 0.10)  
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Fig. 6 Relative rotor angles without FACTS 

(Td=0.448s)  
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  Fig. 9. Frequency without FACTS (Td=0.449s)  
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The results of CCT after three phase fault on the line 

4-6 near the bus 4 with TCVR are given in table 1. 

 

 

 

 

 

 

 

 

 

 

5. Assessment Transient Stability By Neural 

Networks 

Neural networks have been used for a wide variety 

of application. Especially for transient stability 

assessment, application of ANNs can be summarized in 

four steps [14]. 

5.1 Selection of Input Variables 

Selection of input variables is the most important 

factor in the successful use of ANNs and therefore 

needs a special attention. Especially to choice suitable 

independent variables which affect the ANNs output 

[7,14]. 

5.2 Data Generation  

In this step, we develop a model which covers the 

possible operating conditions, so all inputs can be 

provided off-line using traditional methods [7,14]. 

5.3 Selection of ANN Architecture 

In this step, we determine the number of neurons in  

each layer, and the number of hidden layers, the 

optimum number of neurons in the hidden layer, and 

the number of hidden layers, is determined on a 

heuristic basis, mostly a Multilayered backpropagation 

ANNs is used for function approximation and 

classification [14].  

5.4 Training the ANNs and Testing 

Training is a function of the development of ANNs 

in which the connection weights are modified to 

improve the network’s output response performance. 

For a given ANNs architecture many training 

algorithms exist and a choice has to be made 

judiciously to obtain fast and efficient training of the 

ANNs. The selection of the training items used to form 

the training facts is of critical importance to the success 

of operating an ANNs [3,7,14]. 

5.5Assessment Transient Stability By ANNs 

In this work, a feedforward backpropagation ANNs 

is used with two hidden layers having a log-sigmoid 

activation function. The first one has eleven neurons 

and the second has eight neurons. The output layer 

consists of one output neuron having linear activation 

function. The structure of the ANNs employed in the 

proposed classifier is shown in Fig. 12. The optimum 

number of neurons in hidden layer and the number of 

hidden layer is determined on a heuristic basis so that 

the prediction accuracy is acceptable. 

The activation function of the neurons in the hidden 

layers assumes the following form: 

 
1

1 y
f y

e


                        (16) 

Where y is the input of the activation function. 

The ANNs inputs include prefault variables and 

during fault variables obtained during data generation 

step. These are the mechanical powers, the rotor 

angular velocity and the TCVR control variable of all 

the generators. Therefore, there are 3N input signals 

which are used for training the ANNs. The output of 

the ANNs is the CCT, which it represents the 

maximum time that a particular fault can be allowed to 

persist on a system before instability will inevitably 

arise. Three-phase short-circuit faults are simulated at 

the line 4-6 near the bus 4. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 CCT for various ratings of TCVR 

kmax 

TCVR 

Transformer  

ratio 

CCT(s) with 

compensator 

0 1 0.448 

0.05 1.05 0.512 

0.07 1.07 0.542 

0.10 1.10 0.602 

0.12 1.12 0.701 

0.15 1.15 0.751 

 

   Fig . 11 Frequency with TCVR (Td=0.449s)  
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Fig. 12 ANN used for predicting CCT 

 



 

 

The results of CCT after three phase fault on the line 

4-6 near the bus number 4 with TCVR at bus 2 

calculated by ANNs and Runge-Kutta method are 

given in table 2. The details regarding the values used 

for ANN training are: 

- Number of epochs at the end of training: 748; 

  - Time elapsed at the end of training (s): 4.25s; 

    - Error: 0.0098. 

 

 

 

 

 

 

 

 

 

 

 

 

It is clear from the results shown in table 1 and table 

II that the system responses are quite satisfied under 

three-phase short circuit at transmission line by the 

TCVR controller. 

Table 2 shows the results obtained by ANNs 

compared with the results calculated by Runge-Kutta. 

The results obtained by the ANNs are almost identical 

to those calculated by the numerical method. The 

proposed method has short response time, which is 

appropriate for on-line applications of transient 

stability assessment. 

6. Conclusions 

In this paper, neural networks and a new control 

strategy of TCVR have been successfully applied to 

analyze the state of power system transient stability and 

the prediction of the CCT. The modeling of various 

components of power systems is discussed. 

Simulations performed on WSCC 3-machine test 

system indicate that the proposed control strategy of 

TCVR can improve transient stability. It can be seen 

from the results that the system responses are quite 

satisfied for three-phase short circuit at transmission 

line by the TCVR controllers and feedforward ANNs. 

The results obtained by the ANNs are almost identical 

to those calculated by the Runge-Kutta method. The 

proposed method has short response time, which is 

appropriate for on-line applications of transient 

stability assessment. The hard problem that is limiting 

for ANNs, and the selection and calculation of inputs 

vectors and the training set which must be determined 

by another method. However, it has focused attention 

on the feasibility of using the ANNs as tools for 

computing the CCT of a power system. 
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