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Abstract — For electric power generation and 
dispatching problems, cost is not any more the only 
criterion to be met. Environmental considerations have 
become one of the major management concerns. The 
harmful ecological effects caused by the emission of 
particulate and gaseous pollutants like sulfur dioxide 
(SO2) and nitrogen oxides (NOx), can be reduced by 
adequate distribution of load between the plants of a 
power system. However, this leads to a noticeable 
increase in the operating cost of the plants. 

In order to eliminate this conflict, and to study the 
trade-off relation between fuel cost and emissions, an 
approach to solve this multiobjective 
environmental/economic load dispatch problem, based 
on an efficient multiobjective fuzzy optimization 
technique, is proposed. To show the effectiveness of the 
proposed solution method, it is applied to the IEEE 30-
bus benchmark test system and compared with some 
recently published approaches, including linear 
programming, genetic algorithm and evolutionary 
algorithm. The obtained results reveal the performance 
of the proposed method for dealing with the 
multiobjective nature of power dispatch problem.       

Keywords–Economic emission dispatch, Optimal power 
flow, Fuzzy sets, Multiobjective fuzzy optimization.  

1. INTRODUCTION 

 The economic dispatch (ED) or optimal power flow 
(OPF) problem is to determine the optimal combination 
of power outputs for all generating units, which 
minimizes the total fuel cost, while satisfying load 
demand and operational constraints [1]. 
 Under the strict governmental regulations on 
environmental protection, the conventional operation at 
minimum fuel cost can no longer be the only basis for 
dispatching electric power. Therefore, it is mandatory 
for electric utilities to reduce pollution from power 
plants either by design or by operational strategies. 
Especially, emissions contribution of fossil-fired electric 

power plants which use coal, oil, gas or combinations as 
the primary energy resource cannot be neglected. The 
most important emissions considered in the power 
generation industry due to their effects on the 
environment are sulfur dioxide (SO2) and nitrogen 
oxides (NOx). It is obvious that trade-off among fuel cost 
and emission objectives is impossible because of their 
differences in nature. 
 Unfortunately, conventional optimization techniques 
are not suitable to obtain the optimal solution which 
simultaneously optimizes a variety of objectives. One 
conceivable approach using conventional approach 
methods is to convert a multiobjective problem into a 
single objective problem by assigning distinct weights to 
each objective, thereby allowing for relative importance 
among goals [1, 2]. However, this artifice is not totally 
satisfactory since different objectives cannot be 
evaluated under a common measure and there is no 
rational basis of determining adequate weights. 
 When permissible limit of emission are clearly 
specified in a power system under study, this quantity 
could be incorporated into the OPF as operational 
constraint [3]. However, in system planning studies, 
these limits posed on emission would be very 
ambiguous, thus making such treatment difficult. 
Furthermore, operation indices mentioned herein are in 
conflicting trade-off relations, successful optimization 
cannot be attained through any of conventional 
optimization approaches. 
 Recently, intelligent computing techniques like 
genetic algorithm, simulated annealing, evolutionary 
programming and neural network have been applied to 
solve the combined economic emission dispatch (EED) 
problem [4-6]. 
 In this paper, a fuzzy formulation of the EED problem 
is presented and converted into a crisp optimization 
problem. An efficient successive linear programming 
(SLP) method is then used to solve the new problem. 
Numerical test results on the IEEE 30-bus system show 
that the developed fuzzy economic emission dispatch 



(FEED) method could give the best compromise solution 
between fuel cost and emission. Comparison results 
demonstrate the superiority of the FEED for dealing with 
the multiobjective nature of power dispatch problem. 

2. CRISP PROBLEM FORMULATION 

 The economic emission dispatch (EED) problem is to 
minimize simultaneously two conflicting objective 
functions, fuel cost and emission, while satisfying 
several equality and inequality constraints. Generally, 
the problem is formulated as follows: 

2.1. Problem objectives  

a. Minimization of fuel cost 

 The fuel cost curve is considered to be approximated 
by a quadratic function of generator power outputs Pgi. 
The total $/h fuel cost f(x) of the entire power system is 
expressed by the sum of the quadratic cost model for 
each generator [1], as follows: 
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where ng is the number of thermal units, Pgi is the active 
power generation at unit i and ai, bi and ci are the cost 
coefficients of generating unit i.  

b. Minimization of emission 

The amount of pollutants generated from a fossil 
based generating unit depends on the amount of power 
generated by that unit. The total ton/h emission e(x) of 
these pollutants can be expressed as [4]:  
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where αi, βi, γi, ωi, ηi are the emission coefficients of 
generator i.  

2.2. Constraints 

a. Equality constraints 

The equality constraints are represented by the power 
balance constraint, where the total power generation 
must cover the total power demand and the power loss. 
This implies solving the load flow problem, which has 
equality constraints on active and reactive power at each 
bus as follows [7]: 
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where, jiij θθθ −= . n are number of buses. Pi and Qi are 

respectiveley, the injected active and reactive power at 
bus i. Pdi and Qdi are respectively the active and reactive 
power demand at bus i. Vi and θi are respectively the bus 
voltage magnitude and angle at bus i. Gij and Bij are the 
conductance and susceptance of the (i,j) element in the 
admittance matrix. 

b. Inequality constraints 

The inequality constraints reflect the limits on 
physical devices in the power system as well as the 
limits created to ensure system security, which are: 

Upper and lower bounds on the active and reactive 
generations: 
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Upper and lower bounds on the tap ratio (t) and phase 
shifting (α) of variable transformers: 
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Upper limit on the active power flow (Pij) of line i-j:     

maxijij PP ≤  (6) 

Upper and lower bounds on the bus voltage magnitude: 

maxmin iii VVV ≤≤  (7) 

 2.3. Problem formulation 

 Aggregating the objectives and constraints, the 
problem can be mathematically formulated as a 
nonlinear constrained multiobjective optimization 
problem, as follows [4]: 

Minimize      [ f(x), e(x) ] (8) 
Subject to:    g(x) = 0 (9) 
                  h(x) ≤  0  (10) 

where f(x) and e(x) are the objective functions, g(x) and 
h(x) are respectively the set of equality and inequality 
constraints. x is the vector of control and state variables. 
The control variables are generator active and reactive 
power outputs, bus voltages, shunt capacitors/reactors 
and transformers tap-setting. The state variables are 
voltage and angle of load buses. 

     3. MULTIOBJECTIVE FUZZY OPTIMIZATION 

 In fuzzy optimization, the objective may not be 
optimized exactly, and constraints can be satisfied to 
varying degrees. This is opposed to crisp optimization 
where an optimal solution is sought satisfying all the 
constraints crisply. Most methods reported in the 
literature transform a fuzzy problem into a crisp one by 
using the symmetric approach of Bellman and Zadeh [8]. 
The basic idea is that the objective function should be 
essentially smaller than or equal to some “aspiration 
level” and this can be regarded as a constraint. Bellman 
and Zadeh treat this “objective function” and other 
constraints symmetrically, and define fuzzy optimization 
as maximizing the minimum degree of satisfaction 
among all the constraints. In the same manner, in 
multiobjective fuzzy optimization the objective 
functions and constraints are treated symmetrically, and  

 



the goal is to maximize the minimum degree of 
satisfaction among all the objectives and constraints. 

3.1. Fuzzy problem formulation 

 The fuzzy set theory has been developed to model 
inexact or imprecise objects in optimization problems [9, 
10]. Enforcement of soft constraints does not need to be 
exact; furthermore minimization of the objective 
functions should not be rigid. Therefore, the fuzzy set 
theory can be applied to the EED problem to more 
accurately model practical considerations. Based on the 
fuzzy set theory, the fuzzy multiobjective economic 
emission dispatch problem can be written as: 

Minimize     [ f(x)
~
≤ co and  e(x) 

~
≤ eo ] (11) 

Subject to:    g(x) = 0 (12) 
                  h(x) ≤  0  (13) 

where (
~
≤ ) denotes a fuzzy inequality relation. 

Equation (11) states that the objective is to minimize f(x) 
and e(x) so that they will not exceed the desired values 
co and eo “too much”. Equations (12-13) state that the 
hard constraints g(x) and h(x) must be enforced exactly. 
The membership function of the fuzzy inequality in (11) 
is depicted in Fig. 1 and given by: 
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 The cost co+δco and emission eo+δeo in (14) and (15) 
are the highest acceptable cost and emission. Usually, 
these values are calculated from the load flow solution 
which represents the current non-optimized operating 
state. Then, the lowest cost co and the lowest emission eo 
are determined by the user desired maximum cost δco 
and emission reductions δeo. Selection of these 
parameters may be subjective and dependent on specific 
operational practices. 

3.2. Solution methodology 

 The solution of the multiobjective fuzzy optimization 
problem in (11-13) consists of minimizing two fuzzy 
objectives while enforcing the hard constraints exactly. 
The degree of satisfaction for fuzzy objectives can be 
represented by a membership variable λ. The 
membership variable λ is defined as the minimum of all  

  

 

 

 

 

 

the membership functions of the fuzzy objectives, that is: 
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The problem becomes maximizing λ [9], that is: 

Maximize      λ (17) 
Subject to:    g(x) = 0 (18) 
                λµ ≥))(( xff  (19) 

                   λµ ≥))(( xee  (20) 

                 h(x) ≤  0  (21) 
                    10 ≤≤ λ  (22) 

Substituting the membership functions into the above 
equations (19 and 20) yields the following crisp 
optimization problem:   

Minimize      ̠  λ (23) 
Subject to:    g(x) = 0 (24) 
      cooco cxf δλδ +≤+)(  (25) 

          eooeo exe δλδ +≤+)(  (26) 

                      h(x) ≤  0  (27) 
                    10 ≤≤ λ  (28) 

The problem thus becomes maximizing a scalar value λ 
representing the degree of satisfaction such that the 
membership values of all constraints should be greater 
than or equal to this λ. 
 A successive linear programming (SLP) based 
algorithm is used and adapted to solve the new problem 
given by (23-28). The basic steps required in the SLP 
algorithm are summarized as follows [1]: 

Step 1. Solve the load flow problem to obtain a feasible 
solution that satisfies the power balance equality 
constraint. 

Step 2. Linearize the fuzzy objectives and hard 
constraints in (25-27), around the load flow 
solution. 

 Step 3. Solve the LP problem and obtain optimal 
incremental control variables x∆ and membership 
variable λ∆ . 

Step 4. Update the control and membership variables: 

xxx kk ∆+=+ )()1(  and  λλλ ∆+=+ )()1( kk . 
Step 5. Obtain the load flow solution with updated 

control variables. 
Step 6. If x∆ and λ∆  in step 3 are bellow user defined 

tolerances, the solution converges. Otherwise, go 
to step 2.     

     4. APPLICATION EXAMPLE 

 The proposed fuzzy economic emission dispatch 
(FEED) method is examined with the standard IEEE 30-
bus 6-generators test system on AMD Athlon (tm) XP 
2000 computer, using MATLAB program coding. The 
detailed data of this system are given in [11]. This power 
system is interconnected by 41 transmission lines and 
the total system demand for the 21 load buses is 283.40 
MW. Fuel cost and emission coefficients for this system 
are given in Table 1. co co+δco 
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Fig. 1. Membership function of the fuzzy 
inequality relation 



Table 1. Generator fuel cost and emission coefficients 

Coefficients G.1 G.2 G.3 G.4 G.5 G.6 

a 10 10 20 10 20 10 

b 200 150 180 100 180 150 

c 100 120 40 60 40 100 

α 4.091 2.543 4.258 5.426 4.258 6.131 

β -5.554 -6.047 -5.094 -3.550 -5.094 -5.555 

γ 6.490 5.638 4.586 3.380 4.586 5.151 

ω 2.0e-04 5.0e-04 1.0e-06 2.0e-03 1.0e-06 1.0e-05 

η 2.857 3.333 8.000 2.000 8.000 6.667 

 
The simulations were run for three different goals as 
follows: 
Case 1: Minimize total fuel cost. 
Case 2: Minimize total emission. 
Case 3: Minimize fuel cost and emission simultaneously. 

 Fuel cost and emission objectives are optimized 
individually in order to test the equivalence of the fuzzy 
EED to the crisp EED. This step is also necessary for 
exploring    the   extremes    points   of    Pareto – 
optimal solutions obtained by the proposed FEED 
algorithm. The cost and emission of the initial operating 
state based on the load flow without optimization are 
respectively 765.92 $/h and 0.23872 ton/h, which are 
used as the highest acceptable values of co+δco and 
eo+δeo. 

4.1. Minimization of each objective individually 

 The minimum value of a single objective is obtained 
by giving full consideration to one of the objectives, and 
neglecting the other. For minimum fuel cost, the desired 
cost is set to co=650.00 $/h. For minimum emission, the 
desired emission is set to eo=0.19000 ton/h. The best 
results of cost and emission functions are reported in 
Table 2. It can be seen that the fuel cost and emission are 
conflicting objectives. Emission has maximum value 
when cost is minimum. Convergence of total fuel cost 
(case 1) and total emission (case 2) are shown in Fig. 2.   
 The best results of FEED algorithm were compared to 
those using Linear Programming (LP) [12], 
Nondominated Sorting Genetic Algorithm (NSGA) [13], 
Niched Pareto Genetic Algorithm (NPGA) [14], and 
Strength Pareto Evolutionary Algorithm (SPEA) [4].  

Table 2. The best solutions for cost and emission  
optimized individually 

 Case 1 
(Best cost) 

Case 2 
(Best emission) 

Pg1 (MW) 11.081 41.336 
Pg2 (MW) 30.193 46.658 
Pg3 (MW) 54.560 53.922 
Pg4 (MW) 101.739 38.458 
Pg5 (MW) 52.406 54.204 
Pg6 (MW) 36.037 51.429 
Cost ($/h) 605.93 644.80 
Emission (ton/h) 0.22209 0.19418 
Power loss (MW) 2.616 2.607 
Satisfaction degree λ 1.00 0.78 

 

 
 
 
 

The comparison results are given in Table 3 and 4. It is 
clear that the fuzzy EED is equivalent to crisp methods. 
Fuel cost and emission obtained with FEED algorithm 
are reduced compared with those from literature. The 
profit in cost and reduction in emission with the 
proposed approach are significant.  

4.2. Minimization of objectives simultaneously 

In multiobjective optimization, fuel cost and emission 
are minimized simultaneously, subject to the imposed 
constraints. The set of compromise solutions or Pareto-
optimal set of the problem is computed according to the 
lowest membership value λ of all the fuzzy objectives. 
The highest acceptable cost and emission are set 
respectively to their maximum values obtained in case 2 
(644.80 $/h) and case 1 (0.22209 ton/h). The desired 
emission is set to its minimum value of 0.19418 ton/h. 

To obtain the Pareto-optimal solutions by the FEED 
based operator, 12 independent runs were made using 12 
different desired costs. The compromise solutions 
obtained for different values of desired cost are reported 
in Table 5. The trade off relationship between fuel cost 
and emission is shown in Fig. 3. From Table 5, it can be  

Table 3. The comparison results of best fuel cost 
 LP 

[12] 
NSGA 
[13] 

NPGA 
[14] 

SPEA 
[4] 

FEED 

Pg1 (MW) 15.00 11.68 12.45 10.86 11.081 
Pg2 (MW) 30.00 31.65 27.92 30.56 30.193 
Pg3 (MW) 55.00 54.41 62.84 58.18 54.560 
Pg4 (MW) 105.00 94.47 102.64 98.46 101.739 
Pg5 (MW) 46.00 54.98 46.93 52.88 52.406 
Pg6 (MW) 35.00 39.64 39.93 35.84 36.037 
Cost ($/h) 606.31 608.24 608.14 607.80 605.93 
Emission  
(ton/h) 

0.22330 0.21664 0.22364 0.22015 0.22209 

Fig. 2. Convergence of total fuel cost and emission  
(a) case 1, (b) case 2 



Table 4. The comparison results of emission 
 LP 

[12] 
NSGA 
[13] 

NPGA 
[14] 

SPEA 
[4] 

FEED 

Pg1 (MW) 40.00 41.13 39.23 40.43 41.336 
Pg2 (MW) 45.00 45.91 47.00 45.25 46.658 
Pg3 (MW) 55.00 51.17 55.65 55.25 53.922 
Pg4 (MW) 40.00 37.24 36.95 40.79 38.458 
Pg5 (MW) 55.00 58.10 55.99 54.68 54.204 
Pg6 (MW) 50.00 53.04 51.63 50.05 51.429 
Emission  
(ton/h) 0.19424 0.19432 0.19424 0.19422 0.19418 

Cost ($/h) 639.60 647.25 645.98 642.60 644.80 

seen that the fuel cost is reduced when the desired cost is 
decreasing, and the emission objectives are slightly over 
there desired minimum value. The fuzzy EED will 
balance the trade-off of cost and emission. It can be also 
observed that each simulation run is characterized with 
its own degree of satisfaction λ, reflecting the total 
satisfaction of fuzzy objectives. The operator’s 
compromise solutions are then obtained by interactive 
adjustment of different desired cost and emission, 
depending on the operator’s preference. If one solution 
is not accepted by the operator, increase or decrease the 
desired values until the solution is satisfied by the 
operator. 

4.3. The best compromise solution 

 To extract the best compromise solution over the 
trade-off curve, the desired cost and emission are set 
respectively to their minimum values obtained in case 1 
(605.93 $/h) and case 2 (0.19418 ton/h). The highest 
acceptable cost and emission are not changed. The best 
compromise solution is obtained with cost = 615.11 $/h, 
emission = 0.20075 ton/h and λ = 0.76. Convergence of 
total fuel cost and total emission of this last solution is 
shown in Fig. 4.    
 The best compromise solution obtained with FEED 
algorithm is compared with those using genetic 
algorithm (NSGA, NPGA and SPEA) [11]. The 
comparison results are grouped in Table 6. It is noted 
that the emission value obtained with FEED is 
comparable with that obtained by other methods. 
 
 

It is also clear that the savings in fuel cost obtained with 
the proposed approach is revealed. The satisfaction 
degree of the objectives is very acceptable. 
 

 
 

 

 
 
 
 

Table 5. The compromise solutions found by FEED for different desired costs with minimum emission 

Desired cost co ($/h) 650.00 640.00 630.00 620.00 610.00 600.00 590.00 580.00 570.00 540.00 520.00 500.00 

Desired minimum 
emission eo (ton/h) 

0.19418 0.19418 0.19418 0.19418 0.19418 0.19418 0.19418 0.19418 0.19418 0.19418 0.19418 0.19418 

Pg1 (MW) 40.681 39.444 35.083 30.919 27.742 25.302 22.301 20.180 19.203 16.630 15.962 15.146 

Pg2 (MW) 46.688 45.309 42.474 39.972 38.595 37.389 35.852 34.180 33.881 32.465 32.186 32.439 

Pg3 (MW) 54.552 54.691 54.595 54.714 53.649 54.691 53.866 54.347 53.646 54.693 54.981 53.380 

Pg4 (MW) 39.582 41.965 50.399 58.913 67.172 73.466 77.947 81.126 84.087 89.172 91.432 93.106 

Pg5 (MW) 53.830 54.066 54.691 54.909 54.563 53.471 54.321 54.845 54.685 53.619 52.813 53.683 

Pg6 (MW) 50.638 50.456 48.584 46.332 44.050 41.424 41.497 41.114 40.331 39.271 38.489 38.176 

Cost ($/h) 643.27 640.14 630.55 622.59 616.87 613.10 610.79 609.30 608.43 607.01 606.60 606.46 

Emission (ton/h) 0.19419 0.19425 0.19514 0.19705 0.19963 0.20232 0.20474 0.20682 0.20848 0.21200 0.21354 0.21469 

Power loss (MW) 2.572 2.530 2.426 2.359 2.371 2.344 2.385 2.391 2.432 2.449 2.463 2.529 

Satisfaction degree λ 1.00 1.00 0.97 0.90 0.80 0.71 0.62 0.55 0.49 0.36 0.30 0.26 

Fig. 4. Convergence of total fuel cost and emission  
(case 3) 

Fig. 3. The trade-off relationship between  
fuel cost and emission 



Table 6. Comparison of the best compromise solution  

 
NSGA 
[11] 

NPGA 
[11] 

SPEA 
[11] 

FEED 

Pg1 (MW) 29.35 29.76 27.52 26.41 
Pg2 (MW) 36.45 39.56 37.52 38.01 
Pg3 (MW) 58.33 56.73 57.96 53.90 
Pg4 (MW) 67.63 69.28 67.70 69.92 
Pg5 (MW) 53.83 52.01 52.83 54.19 
Pg6 (MW) 40.76 39.04 42.82 43.33 
Cost ($/h) 617.80 617.79 617.57 615.11 
Emission 
(ton/h) 

0.20020 0.20040 0.20010 0.20075 

5. CONCLUSION 

 In this paper, a multiobjective fuzzy optimization-
based method is developed to determine the best 
compromise solution of the economic emission dispatch 
problem with fuzzy objectives. The problem is first 
converted to a crisp optimization problem, and then 
solved using an efficient iterative linear programming 
technique. Implementation of the proposed approach 
was based on fuzzy set theory to obtain the Pareto-
optimal solutions. Then, the desired fuel cost and 
emission values are used to help the power system 
operator to obtain the appropriate dispatch solution. 
 The proposed method has been tested and validated 
on the standard IEEE 30-bus 6-generators test system. 
Considering the cases and comparative studies 
presented in this paper, FEED algorithm appears to be 
efficient in particular for its flexibility and its interesting 
financial profit. Numerical results show that the fuzzy 
optimization method appears to be a promising and 
efficient approach for dealing with the multiobjective 
nature of power dispatch problem.  
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