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ABSTRACT – Fast Fourier Transform (FFT) and Inverse 

Fast Fourier Transform (IFFT) computation involves a quite 

large number of complex multiplications and complex additions. 

Optimizing the FFT processing elements in terms of complex 

multiplication reduces area and power consumption. In this 

work, complex multipliers in the FFT processors are replaced by 

area and power efficient approximate multipliers. In image and 

signal processing applications which can tolerate minimum error, 

accurate computing units are always not necessary. Accurate 

computing units can be replaced with approximate computing 

units. Approximate computing can decrease the design 

complexity with an increase in area and power efficiency. In this 

paper, approximate 8- and 16-bit multipliers are designed and 

implemented in radix-2 butterfly unit which is the crucial 

computational component in FFT/IFFT processing. The designed 

FFT/IFFT processing units are analyzed, synthesized and 

simulated in Altera Cyclone II EP2C35F672C6 FPGA device. 

Experimental results shows that the proposed 16-point FFT 

architecture incorporating approximate complex multiplier 

achieves an area efficiency of about 33.47% and power efficiency 

of 1.8% when compared to accurate 16-point FFT processor. The 

8 point and 16 point Decimation-In-Time (DIT) – FFT 

incorporating approximate computational elements operates at a 

speed of 26.69Gbps and 46.20Gbps respectively. 

Keywords— FFT, IFFT, Approximate computing, FPGA 

implementation.  

I. INTRODUCTION 
A comparative study on efficient FFT/IFFT algorithms, 

architectures and significance of length of the data sequences 
for FFT/IFFT computations on corresponding applications 
were discussed [1]. Several real-time implementation 
strategies and complexities during run-time environment of 
FFT/IFFT processing units were stated in [2 - 4]. The 
implementation of a complex multiplier plays a major role in 
the butterfly element which is the integral part of FFT/IFFT 
processing algorithms. Multiplication is the critical 
computation compared to addition because switching activity 
of multipliers are high compared to other data path units of 
any processing architecture. Hence, it is extremely essential to 
implement a complex multiplier that operates in low power 
and of high efficiency. It is also obvious that precise 
computation of a complex multiplier consumes more power 
than approximate computing [5]. Approximate computation 
will decrease the design complexity with an increase in 
performance and decrease in power consumption with a 
minimum error that would be tolerant based on the specific 
application. The accuracy of this approximate complex 
multiplier can also be increased by using optimal error 
correction schemes [6]. 

Many approximation techniques are available in the 
literature to improve power and energy efficiency of complex 
multipliers. The most common techniques are truncation, 
voltage over scaling and simplification of logic complexity by 
modifying the truth table. Truncation helps in complexity 

reduction by eliminating partial product term matrix lower 
parts in the complex multiplier [7 - 8]. This truncation may 
result in an error. Voltage over scaling is lowering the supply 
voltage below Vdd – Vcritical which may result in transient 
circuit timing errors [9]. Selection of approximate arithmetic 
architecture is very important in voltage over scaling since 
different hardware implementation of same arithmetic 
function responds differently [10]. An approximate 2X2 
multiplier with tunable error characteristics (3.32% of error) 
with an average power savings of 31.78% ~ 45.40% when 
compared with precise 2X2 multiplier is proposed [11]. In 
designing fast multiplier, compressors have been used widely 
to speed up the partial product reduction stage. Two designs of 
approximate compressor have been proposed where exact full 
adder cells are replaced by the approximate full adder cells 
[12]. However, this is not efficient because the error rate of 
this compressor is more than 53%. The use of m x m 
multiplier to perform n x n multiplication have been proposed. 
It takes m consecutive bits of an n-bit operand, either starting 
from MSB or ending at LSB and apply two segments that 
include leading ones from two operands (SSM) to an m x m 
multiplier [13]. The partial products are decomposed into two 
major units and processed in parallel to reduce the delay in 
fixed-width multipliers. This fixed-width multiplier with 
column bypassing technique is optimal for low power error 
tolerant applications [14]. Various approximate complex 
multipliers (wallace, array and dadda) are designed by partial 
product perforation technique. This technique is to perforate 
any two rows from the original partial products generated. The 
perforation skips the generation of partial product and 
decreases the number of operands to be accumulated, hence 
reducing power consumption of about 50% [15]. 

The multi-bit adders in digital signal architecture are 
designed by using the imprecise full adder cells that results in 
a power savings of 69% when compared to that of a design 
with precise full adder cells [16]. The usage of compressors 
and compressor-adders in complex multipliers reduces the 
power consumption and has good area efficiency as well [17]. 
Different sizes of approximate compressors were used in 
building the multiplier using an algorithm that allocates the 
compressors with minimum error [18]. Modified approximate 
compressors are used in order to design a low-power and high-
speed multiplier with minimum error values [19]. The 
proposed approximate complex multiplier design is used in 
building the FFT computational units with an average error of 
2.5% to 3.5% that consumes low power with less area 
utilization. The proposed approximate complex multiplier, 
radix-2 FFT butterfly module, 8 point and 16 point FFT 
algorithms are synthesized and simulated in Altera Quartus II 
simulator tool and implemented in Altera Cyclone II 
EP2C35F672C6 FPGA device. 

The organization of this paper is as follows. A brief 
introduction to approximate multipliers and its structures are 
discussed in section II. The implementation of approximate 



multipliers in FFT/IFFT computations are given in section III. 
Comparative analysis and results of approximate with precise 
8 and 16 points FFT computations are discussed in section IV. 
Concluding remarks are stated in section V. 

II. APPROXIMATE MULTIPLIERS 
Any arithmetic processing can be performed on an 

approximate basis. Implementation of multiplier includes three 
phases, generation of partial products, partial product 
reduction and final addition. Power consumption, critical path 
delay and circuit complexity are dominated by the partial 
product reduction stage. Many techniques have been proposed 
to reduce the critical path in the multipliers. The most 
commonly used technique for partial product reduction is that 
use of compressors.  

The compressor is made of full adders or half adders to 
count the number of one’s in the input. Lower order 

compressors consumes lesser area. Hence we use 4-2 and 5-3 
compressor for approximating altered partial products. 

In this work, an approximate complex 16-bit multiplier is 
designed and it is used in building FFT computational 
elements. The original generated partial products are altered to 
propagate and generate signals using following equation. 

 Pm,n = Am,n + An,m 

 Gm,n = Am,n . An,m 

This propagate signals are approximated using 
approximate half adders, approximate full adders, approximate 
4:2 compressor adders. The approximation is applied using 
simple OR gate for generate signals. The first stage of partial 
product reduction using approximation is shown in Figure 1. 
The second stage of reduction uses twelve approximate full 
adder, four 4:2 approximate compressor adder, eleven 5:3 
approximate compressor adder circuits. 

 

Fig. 1. Partial product reduction using approximation

A. Approximate half adder: 

In a precise Half Adder (HA), XOR gate is used to 

calculate “Sum”. But XOR gates consumes more area and 

power [5]. So, XOR gate of the precise half adder is replaced 

with OR gate for approximation. The logic difference between 

precise and approximate half adder is shown in the table I. The 

following equation (3) & (4) illustrates the approximate half 

adder circuit. 

 Sum = A + B 

 Carry = A . B 

TABLE I. TRUTH TABLE OF HALF ADDER. 
Input Precise HA Approx. HA 

A B Sum Carry Sum Carry 

0 0 0 0 0 0 

0 1 1 0 1 0 

1 0 1 0 1 0 

1 1 0 1 1 1 

 

B. Approximate full adder: 
To calculate the sum and carry of Full Adder (FA) three 

XOR gates are necessary. For the approximation of full adder, 
one XOR gate is replaced with OR gate in sum computation. 
The logic difference between precise and approximate full 
adder is shown in the table II. The following equations (5) – 
(7) illustrates the approximate full adder circuit. 

 X = A + B 

 Sum = X xor C 

 Carry = X . C 

TABLE II. TRUTH TABLE OF FULL ADDER. 
Input Precise FA Approx. FA 

A B C Sum Carry Sum Carry 

0 0 0 0 0 0 0 

0 0 1 1 0 1 0 

0 1 0 1 0 1 0 

0 1 1 0 1 0 1 

1 0 0 1 0 1 0 

1 0 1 0 1 0 1 

1 1 0 0 1 1 0 

1 1 1 1 1 0 1 
 

C. Approximate 4:2 and 5:3 compressor: 
Compressors and compressor-adders are the fundamental 

building blocks of multipliers to accumulate generated partial 
products. Compressor-adders are used in the second stage of 
multiplier architecture to reduce the number of partial 
products and also to reduce the gate count and critical path 
delay. The use of approximate compressors in the least 
significant bits decreases power consumption and circuit area. 
The logic differentiation between precise and approximate 4:2 
compressor-adder is shown in the table III. The following 
equations (8) – (11) illustrates the approximate 4:3 
compressor-adder circuits. 

 X = A . B 

 Y = C . D 

 Sum = (A XOR B) + (C XOR D) + X . Y 

 Carry = X + Y 



In 5:3 compressor-adder, five input bits are summed up to 
produce three output bits. This compressor will be used in the 
second stage of partial product reduction stage. The logic 
differentiation between precise and approximate 5:3 
compressor-adder is shown in the table III. The following 
equations (12) – (14) illustrates the 5:3 approximate 
compressor adder circuits. The outputs S1 and S2 will remain 
same for precise as well as approximate 5:3 compressor-
adders. But the output S3 in the precise 5:3 compressor-adder 
calculation is replaced by S3’ in approximate 5:3 compressor-
adder which is given in equation (15). 

 S1 = A XOR B XOR C XOR D XOR E 

 S2 = C XOR D 

S3 = A . (~(A XOR B )) + B . (A XOR B) . (C . (~(A XOR B 
XOR C XOR D ))) + D . (A XOR B XOR C XOR D) 

 S3’ = C . D 

TABLE III. TRUTH TABLE OF 4:2 COMPRESSOR ADDER. 

Input Precise 4:2 Approx. 4:2 

A B C D Sum Carry Sum Carry 

0 0 0 0 0 0 0 0 

0 0 0 1 1 0 1 0 

0 0 1 0 1 0 1 0 

0 0 1 1 0 1 0 1 

0 1 0 0 1 0 1 0 

0 1 0 1 0 1 1 0 

0 1 1 0 0 1 1 0 

0 1 1 1 1 1 1 1 

1 0 0 0 1 0 1 0 

1 0 0 1 0 1 1 0 

1 0 1 0 0 1 1 0 

1 0 1 1 1 1 1 1 

1 1 0 0 0 1 0 1 

1 1 0 1 1 1 1 1 

1 1 1 0 1 1 1 1 

1 1 1 1 0 0 1 1 

 

III. FFT/IFFT ALGORITHM 

A. Preliminaries : 
The basic principle behind this FFT algorithm is to 

decompose the input sequence of length N into smaller 
Discrete Fourier Transform (DFT) sequences. Let x(n) be an 
N-point sequence, where N is assumed to be a power of 2. The 
DFT X(k) and its inverse (IDFT) x(n) of an N-point sequence 
can be mathematically given as, 
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The exponential term specified in equation (16) and (17) 
represents the twiddle factor needed for FFT and IFFT 
computations respectively. The decomposition can be 
classified as Decimation-In-Frequency (DIF) and Decimation-
In-Time (DIT), depending upon the partition that takes place 
from input and output data points respectively. For real-valued 
application DIT algorithm is preferable as it involves less 
number of computation when compared to DIF. Depending 
upon the application any of the algorithms can be used.  
Approximate multiplier is used in the radix-2 DIT butterfly 
used in this work. 

B. Radix 2 DIT  Butterfly : 
The basic radix-2 butterfly algorithm for DIT-FFT is 

shown in figure 2. In figure 2, A and B indicate the 
complex input from preceding stage while C and D 
indicate the complex output of the present stage (or 
complex input to the subsequent stage). The twiddle 
factors WN are defined as the co-efficients which are used 

to compute results from the preceding stage and to form 
inputs to the subsequent stages of FFT algorithm. 

TABLE. IV. TRUTH TABLE OF 5:3 COMPRESSOR ADDER. 
Input Precise 5:3 Approx. 5:3 

A B C D E S1 S2 S3 S3’ 

0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 0 0 0 

0 0 0 1 0 1 0 0 0 

0 0 0 1 1 0 1 0 0 

0 0 1 0 0 1 0 0 0 

0 0 1 0 1 0 1 0 0 

0 0 1 1 0 0 1 0 0 

0 0 1 1 1 1 1 0 0 

0 1 0 0 0 1 0 0 0 

0 1 0 0 1 0 1 0 0 

0 1 0 1 0 0 1 0 0 

0 1 0 1 1 1 1 0 0 

0 1 1 0 0 0 1 0 1 

0 1 1 0 1 1 1 0 1 

0 1 1 1 0 1 1 0 1 

0 1 1 1 1 0 0 1 1 

1 0 0 0 0 1 0 0 0 

1 0 0 0 1 0 1 0 0 

1 0 0 1 0 0 1 0 0 

1 0 0 1 1 1 1 0 0 

1 0 1 0 0 0 1 0 0 

1 0 1 0 1 1 1 0 0 

1 0 1 1 0 1 1 0 0 

1 0 1 1 1 0 0 1 0 

1 1 0 0 0 0 1 0 0 

1 1 0 0 1 1 1 0 0 

1 1 0 1 0 1 1 0 0 

1 1 0 1 1 1 0 1 0 

1 1 1 0 0 1 1 0 1 

1 1 1 0 1 1 0 1 1 

1 1 1 1 0 1 0 1 1 

1 1 1 1 1 1 0 1 1 

 

 
Fig. 2. Radix-2 butterfly structure. 

From figure 2., C and D can be written as 
 Cr + jCj = (Ar+ jAj) + (Br + jBj) (Wr+ jWj) 

 Dr + jDj = (Ar+ jAj) - (Br + jBj) (Wr+ jWj) 

Rewrite equation (18) – (19) as, 

 Cr =Ar + BrWr – BjWj     

 Cj = Aj + WjBr + WrBj     

 Dr =Ar - BrWr + BjWj     

 Cj = Aj - WjBr – WrBj     

 
Fig. 3. Radix 2 butterfly structure with multipliers. 



From the equations (20) – (23), the radix-2 butterfly 
structure for DIT-FFT computation is shown as figure 3. One 
radix-2 butterfly operation requires four complex 
multiplications, three complex additions and three complex 
subtractions. Complex multiplications requires more area and 
power when comparing with complex additions and complex 
subtractions. So in conventional radix-2 butterfly structures, 
the complex precise multiplications are replaced by the 
approximate multiplications which requires reduced area 
utilization as well as reduced power consumption.  

C. 16 Point DIT FFT: 
In DIT-FFT algorithm input bits are bit-reversed and 

output bits are natural in order. Twiddle factors for every 
stages are accessed from the look-up-tables. The twiddle 
factors are computed using binary scaling technique. Binary 
scaling technique is widely used in digital arithmetic 
processing to perform a floating point multiplication using the 
integers. The flow graph for 16-point FFT algorithm is shown 
in figure 4. 

 
Fig. 4. Flow diagram of FFT 16 point. 

IV. RESULTS AND DISCUSSIONS  
The approximate 16-bit complex multiplier and radix-2 

butterfly architecture incorporating the approximate complex 
multiplier using Verilog hardware description language (IEEE 
1364) and implemented in Altera EP2C35F672C6 Cyclone II 
FPGA device. A precise 16-bit complex multiplier is also 
designed and the results were compared with the approximate 
16-bit complex multiplier in terms of area utilization, delay 
and power consumption. The 8 point and 16 point DIT-FFT 
incorporating the approximate complex multiplier are also 
designed and results were compared with that of conventional 
approaches. The experimental results obtained using Altera 
Quartus simulator were presented and discussed in the 
succeeding sub-sections. 

A. Synthesis results  of approximate 16-bit multiplier: 
The approximate 16-bit complex multiplier occupies 424 

logical elements out of 33216 which achieves an area 
utilization of 1.27%. From the table V, it is concluded that 
28.97% of logical elements have been reduced in the 
approximate multipliers when compared to that of 16-bit 
precise multipliers.  

TABLE. V. SYNTHESIS RESULTS OF APPROX. 16-BIT MULTIPLIER. 

Parameter Precise 16-bit  Approx. 16-bit  

Logical Elements 597 424 

FPGA Area Utilization % 1.79 1.27 

Delay (ns) 63.74 23.09 

Total Thermal power (mW) 228.61 225.32 

Core Dynamic power (mW) 5.88 4.30 

Core Static power  (mW) 80.32 80.31 

I/O Thermal power  (mW) 142.41 140.71 

 
B. Timing and Power analysis of approximate multiplier: 

The power play analyser and the classic timing analyser 
tools are used to analyse the power consumption and timing 
parameters. Approximate 16-bit complex multiplier achieves a 
worst case propagation delay of 23.09ns. The approximate 
multiplier consumes a total thermal power of 225.32mW 
which includes a core dynamic power of 4.30mW, core static 
power of 80.31mW and I/O thermal power of 140.71mW. 
When compared to accurate multiplier, 1.43% of total thermal 
power has been reduced in approximate multiplier. 

C. Synthesis results of radix-2 using proposed multiplier: 
The RTL schematic of radix–2 butterfly using the 

proposed approximate 16-bit multiplier is shown in the figure 
5. The radix-2 structure occupies 677 logical elements, a total 
combinational function of 673 and 64 dedicated logic registers 
out of 33216 total logical elements. The table VI illustrates the 
synthesis results of radix-2 butterfly incorporating precise 16-
bit complex multiplier and approximate 16-bit complex 
multiplier. It is evident that 17.68% of logical elements have 
been reduced in the radix-2 butterfly that has approximate 
multiplier. 

 
Fig. 5. RTL Schematic of radix–2 butterfly. 

TABLE. VI. SYNTHESIS RESULTS OF RADIX-2 BUTTERFLY.  

Parameter 
Radix-2 

(With precise mul.) 
Radix-2 

(With approx. mul.) 

Logical Elements 821 677 

FPGA Area Utilization % 2.46 2.03 

Delay (ns) 26.29 22.56 

Total Thermal power (mW) 334.83 311.88 

Core Dynamic power (mW) 15.27 20.13 

Core Static power  (mW) 80.68 80.60 

I/O Thermal power  (mW) 238.87 211.15 

 
D. Timing and Power Analysis of radix-2 using proposed 

multiplier: 
Radix-2 butterfly with approximate multiplier design 

achieves a worst case setup time of 22.56ns, combinational 
delay of 8.708ns. It consumes a total thermal power of 
311.88mW which includes a core dynamic power of 
20.13mW, core static power of 80.60mW and I/O thermal 
power of 211.15mW. When compared to radix-2 structure 
with precise multiplier, 1.43% of total thermal power has been 
reduced in radix-2 structure with approximate multiplier. 

 
Fig. 6. Simulation report of 8 point DIT-FFT computation. 



E. Synthesis Result  of 8 & 16 point DIT-FFT 
computation: 

The 8 point DIT-FFT with approximate multiplier 
occupies 1549 logical elements, 1489 combinational function 
out of 33216 total elements. It is shown in the table VII that 
30% of logical elements have been reduced when compared 
with the 8 point DIT-FFT with precise multiplier. The 16 point 
DIT-FFT with approximate multiplier occupies 2721 logical 
elements, 2663 combinational function out of 33216 total 
logical elements. It is also shown in the table VII that 33.47% 
of logical elements have been reduced when compared with 
the 16 point DIT-FFT with precise multiplier. 

The real and imaginary parts of the input sequence and 
twiddle factor for all the stages of DIT-FFT have been 
assigned in the waveform editor and simulated. The simulation 
results for 8 point DIT-FFT and 16 point DIT-FFT were 
shown in the figure 6 and 7 respectively. 

 
Fig. 7. Simulation report of 16 point DIT-FFT computation. 

F. Timing and Power Analysis of 8 & 16 point DIT-FFT 
computation: 

The 8 point DIT-FFT with approximate computational 
units achieves delay of 12.03ns at 83.15MHz of operating 
speed whereas conventional architectures have a delay of 
17.95ns at 17.88MHz of operating speed. The 8 point DIT-
FFT with approximate computational units consumes a total 
thermal power of 392.91mW whereas conventional 
architectures consumes 387.88mW of total power.  

 
Fig. 8. Chip planner view with fan in and fan out. 

The 16 point DIT-FFT with approximate computational 
units achieves delay of 13.86ns at 72.17MHz of operating 

speed whereas conventional architectures have a delay of 
20.13ns at 49.68MHz of operating speed. The 16 point DIT-
FFT with approximate computational units consumes a total 
thermal power of 417.26mW whereas conventional 
architectures consumes 424.84mW of total power. The chip 
planner view of 16 point DIT-FFT with approximate 
computational elements is given in the figure 8. The chip 
planner view provides a visual display of logic utilization, fan-
ins and fan-outs of the proposed system. 

TABLE. VII. SYNTHESIS RESULTS OF 8 AND 16 POINT DIT-FFT 

Parameter 
8 point DIT-FFT 16 point DIT-FFT 

Precise Approx. Precise Approx. 

Logical Elements 2213 1549 4088 2721 

FPGA area utilization (%) 6.66 4.66 12.31 8.19 

Combinational Slices 2148 1489 3994 2663 

Dedicated Registers 488 496 718 618 

Pin Count 321 321 385 385 

Delay (ns) 17.95 12.03 20.13 13.86 

Power Dissipation (mW) 392.91 387.88 424.84 417.26 

Frequency (MHz) 55.70 83.15 49.68 72.17 

Throughput (Gbps) 17.88 26.69 31.84 46.20 

 

V. CONCLUSION & FUTURE SCOPE 

In this work, an area efficient low-power radix-2 
butterfly incorporating approximate computational elements 
is used in building 8 point and 16 point DIT-FFT algorithms. 
The experimental results show that the usage of approximate 
complex multipliers have reduced the power consumption 
and a significant reduction in the number of logic slices 
required to perform the 8 and 16 point DIT-FFT 
computation. The proposed 8 point DIT-FFT achieves an 
area utilization of 4.66% consuming 387.88 mW of power at 
a maximum throughput of 26.69 Gbps. Similarly, the 
proposed 16 point DIT-FFT achieves an area utilization of 
8.19% consuming 417.26 mW of power at a maximum 
throughput of 46.20 Gbps. The 8 point DIT-FFT 
incorporating approximate elements achieves an area 
efficiency of 30%, power efficiency of 1.3% and throughput 
efficiency of 49.27% when compared with the conventional 
architectures. Similarly, the 16 point DIT-FFT incorporating 
approximate elements achieves an area efficiency of 
33.47%, power efficiency of 1.8% and throughput efficiency 
of 45.10% when compared with the conventional 
architectures. Implementation of higher points FFT/IFFT 
architectures incorporating approximate complex multiplier 
design with self-error correction schemes are left for future 
work.  
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