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Abstract: It is essential to determine the presence of bad 

data in power system networks and to identify the 

reasonable meters which cause bad data error. In this 

paper, a distributed approach is adopted which enables 

distribution of complex system network into different area 

and apply meter identification procedures separately in 

each area. The reasonable meters identified using 

individual error determination technique after grouping 

into distributed areas. It improves sensitivity as well as 

reliable detection of bad data along with locating the 

affected meters. The system works with MATLAB platform 

to verify meter identification. 
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Nomenclature 
 

H Function Matrix 

R Co-variance Matrix 

Zm Measurement Matrix 

 Voltage angle 

J(x) Residue 

Z Power flow Meter 

Nm Number of Measurements 

Ns Number of State variables 

E Total error 

e Individual Meter error 

t Threshold value 

 
1. Introduction 
 

     The presence of bad data in metering devices can arise 

severe power system security issues like blackouts. While 

considering the role of metering infrastructures involving 

measuring devices and sensors, the indication of system to 

fall into blackout may or may not be done by the meters. 

In such cases the presence of bad data in measurement 

plays an important role to make the system into blackout 

condition. It is considered that the bad data in meters may 

arise either due to the internal meter error or due to the 

wrong connection of meters. The internal meter error 

introduces deviation in actual meter readings exceeding 

the given tolerance level whereas the reverse/wrong 

connection of meters can produce negative readings. In 

modern power system, the entire load distribution is done 

by means of Demand Side Management (DSM). The part 

of DSM which performs the above task is DSM controller 

which has its main input parameters as metered data from 

the measuring devices. Based on the metered data, the 

DSM controller will optimize the load distribution as well 

as line flows. Hence the concern is that, the controller will 

operate such that it keeps the line flow below line limits if 

the line tends to exceed the limit. Also the controller may 

stay inactive even under load change when the line is still 

within line flow limits. But the occurrence of errors or bad 

data in metered readings cannot be avoided. As a 

consequence, the DSM controller will perform improper 

operation along with ineffective distribution of line flow.  

     There are several methods adopted to detect the 

presence of data error on the basis of data security. In [1], 
a lightweight message authentication scheme introduced 

so that malicious users were prevented to influence the 

secrecy or privacy of the information exchanged. A 

detector based on GLRT [2] investigates error data in the 

view of an adversary. But in nonlinear models [4], it is 

difficult to form data error since it requires online data to 

make attacks in the data system. In [8],a machine learning 

technique along with signal processing is introduced to 

enhance the data security. Another scheme involves 

identification of bad data [11] using state estimation with 

voltage magnitude and angle. Most methods adopted to 

detect the bad data error are limited to determine its 

presence in the system and not to locate the exact origin of 

the error. It is important that the measured data provided to 

DSM controller should be error corrected and verified. So 

such data errors or bad data is to be detected if it exists 

around the meters. Hence state estimation should perform 

to determine the estimated measurements and allowed to 

compare with measured reading. In this paper, a bad data 

detection scheme which is capable of determining whether 

there exists or not, the presence of bad data in metering 

devices. Also it checks for individual error detection and 

identifies the meter or combination of meters undergoes 

bad data around them. Here uses, least square estimation 

for determining the estimated values and chi-square 

detector for detection of bad data. 
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Fig.1 Base case system with normal(all line flows are within limits) line flow condition 

 

 

2. System Description 
 

     Consider a 13-bus system modeled as shown in Fig. 1 

which consists of three generation units and six loads such 

that, the system operates under normal condition. There 

are 17 transmission lines which were provided with certain 

line flow limits (in MW).Seventeen meters Z1, Z2, Z3… 

Z17 indicates the instantaneous line flow and sends the 

measured reading to DSM controller. Based on the line 

flow data input from meters, the DSM controller will 

execute an effective load distribution in the system, 

without making line out flow. The system design case 

parameters are shown in Table 1 and 2. Consider that all 

the meters in Fig. 1 indicates accurate measurement, hence 

the case is taken as design or base case. As a test case, all 

the lines are taken into consideration. 

 

Table 1 

System Base Case Parameters 
 

Parameter Value 

Generator 1 (bus 1) 155 MW, 55 Mvar 

Generator 2 (bus 2) 100 MW, 31 Mvar 

Generator 3 (bus 3) 100 MW, 40 Mvar 

Load 1 (bus 1) 25 MW, 0 Mvar 

Load 2 (bus 2) 30 MW, 0 Mvar 

Load 3 (bus 7) 75 MW, 0 Mvar 

Load 4 (bus 8) 75 MW, 0 Mvar 

Load 5 (bus 9) 50 MW, 0 Mvar 

Load 6 (bus 13) 100 MW, 0 Mvar 

Line reactance 0.2 p.u (All lines) 

 

Table 2 

Line Flow Values 
 

Line 
Base case flow 

(MW) 

Line flow limit 

(MW) 

1-4 130.00 150.00 

2-5 70.00 80.00 

3-6 100.00 120.00 

4-7 74.92 80.00 

4-11 55.08 60.00 

5-8 50.18 60.00 

5-12 19.82 25.00 

6-9 59.02 60.00 

6-10 40.98 50.00 

7-10 23.12 25.00 

7-13 23.04 25.00 

8-9 26.88 30.00 

8-13 2.06 5.00 

9-10 17.86 25.00 

11-12 11.88 20.00 

11-13 43.20 50.00 

12-13 31.70 40.00 
 

 

3. State Estimation 
 

     The state estimation form estimates which are required 

to obtain the respective quantity to be estimated. For 

complex systems with Renewable energy resources, 

optimization methods[12] are available to estimate the 

state variables. In the above test case, meter readings are 

the quantity to be estimated using state estimation. There 

are some parameters should be provided while perform 



state estimation, viz. the Function Matrix, the Co-variance 

Matrix and the Measurement Matrix. 

     The Function Matrix, H remains same for a given 

system network. It is formed form a set of expressions that 

obtains the quantity to be estimated. If there are 12 state 

variables and 17 measurements, then H is 12x17 Matrix. 

In case of DC power flow method, the elements in H 

matrix are the inverse of line reactance. The Co-variance 

Matrix, R represents the probability of variation of 

measured data from its actual value. The elements of R 

Matrix are obtained from the manufacturer itself but, when 

consider for a test case we can assume values as 1% or 

2%. The Measurement Matrix, Zm is directly obtained 

from the measuring device which may be accurate or 

inaccurate. The measured data is the prime element for 

evaluating the nature of estimate, whether it is good or bad 

estimate. 

     Fig. 1 shows a basic 13-bus system with measurements 

of all the transmission line flows were taken into 

consideration. In this case, the state estimation is done 

with voltage angles are taken as estimation variables (state 

variables). The bus at which generator 1 connected is 

taken as the slack bus. i.e. 1 = 0.00
0
 and the voltage 

angles in other buses viz. 2 , 3 , 4 ,… 13 are the 

estimation variables. Now, the degree of freedom, m-n = 

17-12 = 5. The level of significance of each of the 

measurement is considered to be 1% (i.e. 0.01). The 

general expression for line flow can be written as[13], 
 

 (   )  
 

 (   )
(     )   (1) 

 
Since the meters represents line flow, then the expression 

for measurements Z1 to Z17 can be determined using the 

above general formula. From the set of equations, the 

function matrix H can be formed by substituting the 

coefficients of estimates in expression for measurement. 

Since each expression involve function of any two 

estimates, the elements of each row have at most two non-

zero elements. The reactance of each transmission line is 

considered to be 0.2pu. Hence the non-zero elements in H 

will be always 5 or -5. The Co-variance Matrix, R 

represents the probability of variation of measured data 

from its actual value. The R matrix is a diagonal matrix 

formed by variance of each meters in the system. The 

variance is represented as „i‟ and the co-variance matrix 

R becomes, 

R =     

  
     

   
    

     
       

 

  (2) 

 

   The Zm Matrix is directly obtained from the meter itself. 

It is column matrix of all the meter readings in a specific 

order. The readings may accurate or inaccurate, despite 

that they are provided to the state estimator. The detection 

process will start only if the estimates from the estimator 

should be accurate. The measurement matrix can be given 

as, 

Zm = 

  ( )
  ( )

 
  (  )

    (3) 

The general expression for residue, 
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Where, Zm = 
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In matrix form, the expression for residue can be given as,  

 

 ( )       ( )            ( )   (5) 
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                                      ( ) -  ( )       ( )    (6) 

 

Substituting the value  f(x) = Hx in (6) 

 

    ( )=                        -
                                        -                (7) 

 

Best estimate is obtained by minimizing the residue J(x). 

Hence partial derivative is applied and equate to zero. 

 

  ( )             -       
    -

                                               
 

                        
Hence the value of estimate can be defined as, 

                              (8) 

 

     Now the estimates are determined and hence the 

estimated measurement vector [Z] is calculated. Note that 

[Zm] is the measured value which directly taken from the 

measuring devices and the estimates formed are based on 

Zm. Thus comparison of estimated value with design 

parameters results the total error due to inaccuracy in 

estimator input. This value ultimately indicates the nature 

of estimate. It is also possible to identify the reason for bad 

estimate if any occurred in estimation. 

 

4. Bad Data Detection 
 

    The secure operation of power system networks enables 

error free data communication. Thus the data provided to 

the controllers should be accurate and error free with 

minimum possible tolerance of deviation. Hence it is 

required to detect the bad data errors in meters as well as 

specify the meters(s) involving data errors associated with 

them. Such a way, it is possible to provide error free 



measurements to DSM controller. The detection of bad 

data can be done with help of main two parameters which 

involves the estimated value and measured value and their 

difference gives the estimated error. By analyzing the 

estimated error with the help of predefined threshold value 

(from standard chi-square table), presence of bad data can 

be effectively detected. Now the detection requires state 

estimation using Nm number of measurements and Ns 

number of state variables. 

     Standard chi-square technique is used to detect the 

presence of bad data. It is also possible to perform 

detection using another method called cosine similarity 

matching. The following graphs indicate the comparison 

between chi-square and cosine similarity methods. 

 
   

 
(a) 

 
(b) 

Fig.2 Comparison between (a) chi-square and (b) cosine 

similarity methods 

 

     From Fig.2, it is clear that the variation of residue 

against deviation for same system network is higher for 

chi-square method than cosine similarity matching 

approach. Hence it is easier to provide threshold values to 

filter the error value, thereby detection can be done more 

accurately. In case of CSM, the deviation of similarity 

value varies slightly causes difficulty in setting threshold 

values. In other words, chi-square obtains more reliable 

detection than cosine similarity matching technique. 

     The threshold value is the ultimate limit for detecting 

the nature of estimate. The threshold value should be 

selected with standard methods which are commonly 

acceptable. Here the threshold value is set using standard 

chi-square table. In the above test case, there are 13 

estimates (θ2, θ3…... θ13) represented as Ns and 17 no.s of 

measurement (Z1, Z2…., Z17) denoted as Nm. Now the 

degree of freedom can be defined as, 

Degree of freedom, k = Nm-Ns =5 

     Let the level of significance α be taken as 1% (i.e 0.01). 

Thus the chi-square value corresponding above condition 

will be obtained from standard chi-square table as 15.086. 

Hence the threshold value t = 15.086 is used to compare 

with total error calculated. Now the method enables 

detection of presence of bad data in power flow meters. 

But it does not sufficient to provide any information 

regarding the location bad data error. Hence individual 

meter errors are to be determined to specify those 

reasonable meters. The individual meter errors e1,e2…e17 

are calculated and check individually and  followed by 

combination of meters. Finally, display the status of 

presence of bad data as well as the meters reasonable for 

bad data error. 

 

5. Distributed Detection and Meter 

Identification 
 

    The simultaneous detection of bad data error in a 

complex system network having more number of buses, 

have some problems in reliable operation. Such detection 

approaches may cause reduced sensitivity [5], software 

program become more complex and the program delay 

increases. If there is any error occurred in the program, 

will affect the entire system operation. To avoid such 

difficulties, we can divide the system network into 

different area/zone and it is possible to apply the detection 

procedure in each area separately in a distributed manner. 

The division of above test case can be made into 4 zones 

as shown in Fig.3.   It is clear that, the division of zones 

done by grouping all the meters into different zones which 

were treated independently. Note that, state estimation is 

done once for entire measurements and the detection is 

performed separately. The distribution of meters which 

comes under different zone can be tabulated in Table 3. In 

this approach, the estimator takes the input values as 

measured data and performs state estimation to determine 

the estimated measurements. After detecting the presence 

of bad data in the whole system, the network system is 

divided into different areas. The region of error is 

identified first by calculating the total error occurred in the 

area due to the concerned meters. If the error exceeds 

threshold value, it is required to identify the reasonable 

meters. Hence thorough checking is adopted inside each 

area which undergoes bad data error. The meter 

identification involves determining individual meter errors 

in each area separately for the purpose identifying the 

location of error in the whole system. The flow chart 

shown in Fig. 5 indicates the proposed identification 

technique using distributed approach. The error may occur 

in more than one meter simultaneously in the system. 

Hence combinational meter identification is required in the 

case of multiple meter errors. 
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Fig.3 Bus system with distributed detection approach 

 

     For example, if bad data error occurred at meter 8 in 

line 8-13, it will displays that bad data error occurred at 

Zone 2 and check meter 8. Similarly it is applicable to all 

the meters in all zones. If there is no error in any zone, it 

will indicate separately. Thus the region or area associated 

with reasonable meter can be located easily for further 

correction proceedings. The average area error is 

determined inorder to identify the area which possesses 

dominant error in the system. While meters were 

identified, they are displayed in the descending order of 

error deviation. This implies that the firstly indicated 

meter in a respective area undergoes most deviation error 

among others.  

The Error-deviation graph shown in Fig. 4 shows that 

when there is deviation in any meter the error become non 

zero and keep increasing as the deviation in both 

directions. When the error value meets the threshold line 

provided, it  

 

 

 

reaches the maximum allowable limit of deviation and 

beyond that value the meter will be grouped into error 

measurement device. Similarly, all the meters inside each 

area is evaluated to identify those meters undergoes error 

and the corresponding location of error. 

 

 
Fig. 4 Error-deviation graph for meter identification

Table 3 

Distribution of Meters into Different Zones 
 

AREA 1 AREA 2 AREA 3 AREA 4 

Meters Line Meters Line Meters Line Meters Line 

Z1 1-4 Z5 11-12 Z9 2-5 Z13 7-10 

Z2 4-7 Z6 11-13 Z10 5-12 Z14 9-10 

Z3 4-11 Z7 12-13 Z11 5-8 Z15 6-10 

Z4 7-13 Z8 8-13 Z12 8-9 Z16 6-9 

      Z17 3-6 
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 Fig. 5 Flow chart of proposed meter identification scheme 
 

6. Results 
 

     A MATLAB program was developed and the base case 

values are obtained from 13-bus system modeled in 

POWER WORLD simulator software package. Program 

verified the method to determine the estimates as well as 

the meters that causes bad data error if any. The bad data 

is detected in distributed network system enables 

identification of location of system from which the error 

occurs and the concerned meter(s) causes error. Fig. 6 

shows the case for “No error” condition, means that the 

measured data from all power flow meter connected in 

various locations of the system network gives accurate 

reading or the readings are within tolerance limit. Fig. 8a 

shows the graph of deviation in measurements and it is 

clear that all the measured reading overlaps the estimated 

value which indicates the accurate measurement. Here it is 

not required to identify the location or meter(s) since there 

is no error happened in the system.  

 

 
 

Fig.6 Case for No error condition (Command Window) 
 

     Now it is considered that bad data error occurred in 

some power flow meters in the system network as shown 

in Fig.7. The meters 1, 7,10,12,15 and 17are provided with 

sufficient deviation in readings and given during the run 

time as measured data.  

 

 
 

Fig.7 Case for error in meters 1, 7,10,12,15 and 17 

(Command Window)



 
(a) 

 
(b) 

Fig,8  Deviation graph for (a) No error condition (b) Error in meters 1, 7,10,12,15 and 17 

 

 

Here the system determines the presence of bad data error 

and identifies the meters which causes the error. Since the 

meter 1 involves Area 1, meter 7 involves Area 2, meters 

10 and 12 involves Area 3 and meters 15 and 17 involves 

Area 4 respectively, the system identifies the areas which 

undergo bad data error and the respective metes. 

     From the output window shown in Fig. 7, the location 

of meters which causes error was identified. While 

calculating the total error of each area, the average area 

error is determined and is specified along with it. Here it is 

found that, Area 3 possesses highest error occurring region 

among others since the average area error is highest for 

Area 3. This indicates that the meters which come under 

Area 3 are the cause for producing most error in the 

network. Also in area 3, Meter 10 introduces more 

deviating error than Meter 12 so that Meter 10 is indicated 

first and followed by Meter 12. Similarly in Area 4, Meter 

17 causes more error than Meter 15, thus Meter 17 is 

indicated first. The deviation in measurement can be 

represented with variation in measured data from 

estimated data of reasonable meters as shown in Fig. 8b.  

     The approach can be used to analyze the rate of error 

occurrence of different areas in the system. Also, those 

regions with frequent error occurrence can be identified 

and further proceedings such as improving the sensitivity 

of meter identification as well as error correction can be 

done as extension. 

 

7. Conclusion 
 

     This paper proposes a method to detect the presence of 

bad data and to locate the meter(s) which causes error in 

power flow meters connected in a 13-bus system network. 

A proposed distributed detection approach is used along 

with chi-square method for setting standard values of 

threshold. The method enables distribution of complex 

system network into different area and applies detection 

procedures separately instead of performing once in the 

entire system and identifies the location of error in the 

system in terms of region and concerned meter(s). It gives 

an idea about which region possess dominant error in the 

system and the meter in which most error occurs. The 

result shows that the system works with efficient detection 

of bad data error and identifies the exact location of 

reasonable meters. 
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