Using spectro-temporal featuresfor Environmental Sounds
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Abstract

The paper presents the task of recognizing envieoah
sounds for audio surveillance and security appticat

A various characteristics have been proposed fafioau
classification, including the popular Mel-frequenmgpstral
coefficients (MFCCs) which give a description oé thudio
spectral shape. However, it exist some temporalaiom
features. These last have been developed to ckearacthe
audio signals. Here, we make an empirical featmadysis
for environmental sounds classification and propmsese
the log-Gabor-filters algorithm to obtain effectitame-
frequency characteristics.

The Log-Gabor filters-based method utilizes timeggfrency
decomposition for feature extraction, resultingaitilexible
and physically interpretable set of features.

The Log-Gabor filters-based feature is adopted
supplement the MFCC features to yield higher clasdion
accuracy for environmental sounds.

Extensive experiments are performed to prove the
effectiveness of these joint features for environtakesound
recognition. Besides, we provide empirical resshswing
that our method is robust for audio surveillance
Applications.

to

Keywords: Environmental sounds, MFCC, Log-
Gabor filters, Spectrogram, SVM Multiclass.

1 Introduction

Many previous works have focused on the recognitbn
speech and music while research on environmentaidso
recognition has received little attention. Someortéf have
been emerged toward systems which investigate
environmental classification [1-2].

Besides, the courant life sounds are very versathat
composed of sounds generated in domestic, busiaess,
outdoor environments.

The high variability of sounds makes such moddldift to
manipulate, the majority of works concentrate oecHjc
classes of sounds.

There is system that is able to classify environaen
sounds. This system possesses a great importance fo
surveillance and security applications [2]. Theas the
identification of some current life sounds classnghg the
eventual applications [3-4-5-6], we quote: the cars
classification according to their noise, the firena sounds
identification to warn the police, the distress rutsi
identification for the remote monitoring systemsdan
medical security [7].

In this paper, the system elaborated is adaptedtter
classification of a few number of environmental rsds
classes and is interested by a sound-based sangsll
application.

In standard sound classification methods [8-9],
classification of a sound is usually composed af phases.
First, a set of features is generated using variecisniques
to characterizing the signal to be classified.

Then, for these feature vectors, a classifier edus assign
a pattern to a class. The select of proper featsnescessary

to obtain an effective system performance.

In this work, our focus is to characterize the emwvinental
sounds types. Generally, audio signals have been
characterized by the popular Mel-frequency cepstral
coefficients (MFCCs) or time-frequency represeptadilike

the wavelet transform.

In the literature, the filter bank used for MFCQGwguutation
possesses some significant properties of the huauditory
system. The use of MFCCs for structured sounds in
particular speech and music have been obtainedoa go
performance to characterizing signal, but theifgrerance
degrades in the presence of noise.

We can conclude also that MFCCs are not capable to
analyzing signals that possessed a flat spectrain [2

the



Most of environmental sounds have a broad flat tspec
that may not be effectively modeled by MFCCs.

Courant life sounds form a large and diverse warigt
sounds, like explosions and gunshots which havaomg
temporal domain signatures, these sounds haveaal lilat
spectrum which are sometimes not effective to mdmel
MFCCs.

In this work, we propose to use the Log-Gabor it GF)

in addition to MFCCs coefficients to analyze enmimental
sounds. Log-Gabor filters (LGF) offer a way to extrtime-
frequency domain features that can classify soummtisy
provides an excellent simultaneous localizationspétial
and frequency information [10]. The process comstain
finding the decomposition of a signal from spedgmporal
components, which would yield the best set of fiomst to
obtain an approximate representation. The log-Géiiers
coefficients contain relevant and effective infotima. They
consist in signal decomposition into spectro- terapatoms,
which are efficient to form an approximate repréaton.

The log-Gabor filter has been used in a variety of
applications, such as speech detection [11] aneés$Str
emotion classification [10]. Log-Gabor filter hals@been
used in image genre classification [12].

In [13] Gabor filters have been proposed, as thee fa
identification techniques. Other works have usechdba
wavelets in the elastic comparison graphs [14] enthe
correlation of Gabor filter representations [15].

Other studies have used Gabor filters for the fipget
identification [16], for the segmentation of thettae [17],
for identification of the iris [18] and identifidah of face
[19].

In our proposed approach, the log-Gabor filtenssd for
feature extraction in the context of environmergalind
[20]. We investigate a combination of features andure an
empirical evaluation on ten environment classes.

It is demonstrated that the most frequently-usedures do
not always efficient with environmental sounds whihe
Log-Gabor filters-based features can be addedeguéncy
domain features (MFCC) to produce higher clasdifica
accuracy for courant life sounds.

This paper is organized as follows. Some intergstin
previous work is discussed in Section 2. Sectipne3ents a
review of different audio feature extraction methodhe
log-Gabor filter algorithm is described and the bamation
of the log-Gabor filters based features and MFCEs i
presented in Section 4. Section 5 describes expetah
evaluation of selected features. Finally conclusiand
perspectives are presented in Section 5.

2 Background Review

A major problem in construction of an automatic iaud
classification system is the choice of signal cbimmdstics
which may lead an effective discrimination betweanous
environmental sounds.

Unlike music or speech, generally environmental nsisu
possess unstructured data including of contribstiivom a

variety of sources. In this case, it is difficultdonstitute a
generalization to quantify unstructured data.

Because of the variety and diversity sound, it terisiny
features that can be used, to describe environirsmiad.
Generally, acoustic characteristics can be diviohad two
domains: time-domain and frequency-domain.

In order to construct a robust classification systdhe
suitable choice of these features is essential.

For each type of environmental sound, it exist some
underlying structures, so we used log-Gabor filtéos
discover them [20].

Various types of courant life sounds possess thain
unique characteristics, which enables to notice tha
decomposition into sets of basis vectors to beceably
different from one another.

We have demonstrated in [20] that the log-GabderSl
constitute an efficient way of selecting a small ugroof
basis vectors that promotes the production of nmegni
features in order to characterize an environmestaind
[21].

The log-Gabor filters algorithm was originally ajgal to
reassigned spectrogram of environmental soundsVi22]
are used time-frequency representations in paaticsbund
spectrogram, which offers new opportunities forrpising
parameterization [23].

The advantage of the time-frequency representasiatie
ability to bring out the useful structure of eaghe of sound
[10].

In order to improve the readability and eliminate
interference of spectrogram we proposed to apply th
reassignment method. This method relies on the
intervention of an adequate field of vectors whicbves the
values of the time-frequency distribution so thiathee end,
reading becomes simplifigd4].

The reassignment approach refocuses spectrograngyene
components and corrects the low concentration time-
frequency [22].

e Log-Gabor filters:

The log-Gabor filters consist in signal decompositinto
spectro- temporal atoms. They have many useful and
important properties, in particular the capacitglewompose

an image into its underlying dominant spectro-terapo
components [25-26]. The log-Gabor function in the
frequency domain can be presented by the transfetibn
G(r, 0) with polar coordinates [10]:

G(r,0) = Gragiar (r)-Gangular ™) 1)
Where Gragiaq(r) = e 1080 /f0)*/207 s the frequency
response of the radial component a€gh gy qr(r) =

exp (—(8/6,)%/202), represents the frequency response of
the angular filter component.

We note that(r,6) are the polar coordinateg,represents
the central filter frequencyd, is the orientation angle,



o, and g, represent the scale bandwidth and angular
bandwidth respectively.

The log-Gabor feature representatitf(x,y)|,, of a
magnitude spectrogram s(x,y) was calculated as a
convolution operation performed separately for risl and
imaginary part of the log-Gabor filters:

Re(S(x,¥))mn = s(x,¥) * Re(G (11, 6,))
Im(S(, Y ma = s, y) * Im(G (13, 6))

2
3

(x,y) represent the time and frequency coordinates of a
spectrogram, anth = 1,...,N, =2 andn=1,..,Ng =6
where N, devotes the scale number a#gthe orientation
number. This was followed by the magnitude caldéotator

the filter bank outputs:

IS )] =
2
J(Re(sGey),, ) + MG @

The feature vectors are calculated by an averagecdation
for each 12 log-Gabor filter appropriate. The psgpbeing
to obtain a single output array [10]:

1
Ny Ng

Ny,Ng
m=1
n=1

NEFIIE 1S4, Y) I (5)

We processed three approaches. In the first apprcac
reassigned spectrogram is generated from soundt, Mex
goes through single log-Gabor filter extractionha scales
(1,2) and 6 orientation§l,2,3,4,5,6) . Then, we apply
mutual information in order to get an optimal featuThis
feature is finally used in the classification (figul).
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Figure 1 Feature extraction using single log-Gabor filter
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The second approach consists of the same steprstasnie,
but with an averaged 12 log-Gabor
filters{G,1, G135, ..., G16, G21, -, G35, G2}, instead of single

log-Gabor filter (figure 2).
e o A

Figure 2 Feature extraction using 12 log-Gabor filters
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In the third approach the idea is to segment each
spectrogram into 3 patches. Intuitively, for eactch,
averaged 12 log-Gabor filters are calculated. Aftext we
apply a mutual information selection to pass thenthe
classifier. In the classification phase, we use $MMOne-

Against-One configuration with the Gaussian kef(figlure
3). For more information we can see [22].
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Figure 3 Feature extraction using 3 spectrogram patches
with 12 log-Gabor filters

3 Features Extraction with Log-Gabor Filter and
MFCCs

In order to have a better classification, the gobdice of
feature is essential. The used features shouldobast,
stable, and physically interpretable.

In this paper we will show that the use of log-Gablters
added to MFCCs is very efficient for classificateystem.
The advantages of the combination of Log-Gaboerfltand
MFCCs are the ability to capture the inherent s$tmec
within each type of environmental sounds.

Our aim is to use log-Gabor filters added to MFCGGsa
tool for feature extraction for classification. Netheless,
the combination of Log-Gabor filters and MFCCs [ides
an excellent improvement in the recognition results
compared to results obtained when using only loggga
filters.

We chose to use the concatenation of 12 log-Gaktierst
This choice is justified in our previous work [20fhere we
have shown that the concatenation of 12 log-Gaitters is
obtained the best classification rate.

In the literature, we remarked that among the blétaudio
features for combination are the Mel-frequency taps
coefficients(MFCC).

In [21], the addition of MFCC to Matching Pursuithéeved
the best classification rate compared to otheratehtures
such as the short-time energy, the zero crossiegarad the
spectral flux.

We remarked also in [27] that the use of MFCC iditiohn
with temporal and wavelet based features improve th
system performance.

Log-Gabor filters are parameterized in frequencyd an
orientation. They have the advantage of extradtioglized
and oriented frequency information. [28], [29]. Vherovide
an excellent simultaneous spatial and frequencgliation
of information. They have several important projestt
particularly the ability to decompose a spectrogiata its
dominant spectral and spatial components [30].



However, we chose the log Gabor filter to extratevant
descriptors for two reasons. First, the log-Gahorcfions
don’t have continuous component, which helps torowe
the contrast of edges, and the borders of speetmugyr
Second, the transfer function of the log-Gabor fismchas a
long tail on the extremity of high frequency, whiallows

us to obtain wide spectral information with localizspatial
extent and contributes, thus, to preserve thestuetures of
edges of spectrograms [29].

The important aspect of the function of log-Gabsrthat,
contrary to the Gabor function, the frequency resgoof
the log Gabor is symmetric on a logarithmic axis.
Log-Gabor filters can be constructed with a given
bandwidth. This bandwidth can be optimized to pomda
filter with minimal spatial extent.

It was shown that the functions of log-Gabor haemesive
queues at high frequency extremities should be #ble
encode spectrogram more effectively through better
representation of high frequency components.

4 Experimental Evaluation

4.1. Experimental Setup

We examined the performance of tfeatures and make an
experimental evaluation on ten different types wfent life
sounds as shown in Table 1.

The corpus sound samples used derived from differen
sound libraries available [31-32]. Otherwise, usgsayeral
sound collections is important and very necessanrdate a
representative, large, and enough diverse databases

The used database contains impulsive and harmonitds

for example phone rings (Pr) and children voices) (@l
signals have a resolution of 16 bits and a sampling
frequency of 44100 Hz that is characterized by adgo
temporal resolution and a wide frequency band, ke
both necessary to cover harmonic as well as immilsi
sounds.

Table 1 Classes of sounds and number of
database used for performance evaluation

Classes Train Test Total
Door slams (Ds) 208 104 312
Explosions (Ep) 38 18 56
Glass breaking (Gb) | 38 18 56
Dog barks (Db) 32 16 48
Phone rings (Pr) 32 16 48
Children voices (Cv) | 54 26 80
Gunshots (Gs) 150 74 224
Human screams (Hs) 48 24 72
Machines (Mc) 38 18 56
Cymbals (Cy) 32 16 48
Total 670 330 1000
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Figure 4 Audio waveform and Spectrograms of 8 classes
environmental sound.

The ten environment types considered were: Doansla
Explosions, Glass breaking, Dog barks, Phone rings,
Children voices, Gunshots, Human screams, Machines,
Cymbals.

In addition, we remark the presence of some classesd
very similar to human listeners such as explosi@y are
pretty similar to gunshots (Gs) (figure 4), hende,s
sometimes not obvious to discriminate between thEmey

are deliberately differentiated to test capacitythed system

in separating very similar classes of sounds.

samples in theA type of sounds is required by the applicatioryrets are

non-still, mainly of short durations, mainignpulsive audio
signals, and presenting a big diversity intra-a@asand a lot

of similarity inter-classes. Most of the impulsiwégnals
introduced into the base have duration of 1s, lrhes
sounds possess much superior durations which daevac
6s (for certain samples of explosions and the Human
screams).

We examined the performance of 12 log-Gabor filters
features, MFCC (12), a concatenation of the logesab
filters features and MFCCs.

We adopted the Gaussian Mixture Model (GMM) and the
Support Vector Machines (SVM) and in the classtfaa
phase.

We begin with GMMs which for each data class was
modeled as a mixture of several Gaussian clusigns.



conditional
below:

probabilities were computed with for@ul

my
PG\ XD = D p(x\ HP()
=1

whereX,, is the data points for each class, is the number
of components,P(j) is the prior probability, and(x \ j) is

the mixture component density. Then, the EM alganit
[33] was generated to obtain the maximum likelihood
parameters of each class.

We used also a Support Vector Machine, in One-atrain
One and One-against-All configuration [34].

The idea is to employ a kernel functifiifx;, x;), where

K (x;,x;) satisfies the Mercer conditions [35]. We chose a
Gaussian RBF kernel:

k(x,x") = exp [_”J;_Tzl”z] ) (6

Concerning the computation of log-Gabor filters, a
concatenation of 12 filters was applied to the sipmed
spectrogram. The 12 log Gabor filters are derivexnf 2
scales and six orientations. In order to imprave time-
frequency representation and eliminate interference
reassigned spectrogram is used [22].

Evaluations of the M-SVM-based system using a danss
RBF kernel with individual features are comparedthe
results obtained by the GMM-based classifier.

Table Il contains the results. We performed a compa
using GMMs, M-SVM(1-vs-1), and M-SVM(1-vs-all).
According to the results, presented in table 2, 1hes-1
classifier performs better than 1-vs-all and GMdssifiers.
We remark also that none of the individual featwaes able

to attain very high performance. In this case, tise of
features combination is a solution, as presentetthiénnext
subsection.

Table 2 Recognition Rates Using Various Features Applied
to GMMs, and M-SVMs- Based Classifiers

Where”.” indicates the Euclidean norm&f.
Q allows to perform a mapping of a large space hictv

the linear separation of data is possible [36].

Q:RY — H

(x, %) — Q(x)(x;) = k(x;, x;) (7)

The H space reproduces kernel Hilbert space (RKHS) o

functions. Thus, the dual problem is presented by a
Lagrangian formulation as follows:

max W (a) = X% a; — 2 X7y viyiaiaik (%, %) =1, m
(22)
Under the following constraints:
Z’iﬁlaiin0,0SaiSC. (8)
The «a; are called Lagrange multipliers and is a
regularization parameter which is used to allow

classification errors. The decision function wille b
formulated as follows:

f(x) = sgn(XiZ; a; yik(x,x;) + b) 9

We adopted and

approaches [37].

One-against-One One-against-All

4.2. Experimental Results

In this section we begin by the presentation o$sifecation
results which obtained when using only one featoréhe
feature vector.

The MFCC feature [38] is computed from each frahthe
reassigned spectrogram. We used the Hamming asalysi
window, with length 25 ms and 50% overlap.

Recognition Rate %
Features GMM M-SVM(1- | M-SVM(1-

vs-1) vs-all)

12MFCCs 81.52 83.87 81.82

12 Log-Gabor 83.98| 92.07 86.23

filters

12MFCCs +12 91.68 | 94.55 92.82

log-Gabor filters

Table 3 presented results obtained with feature

combinations. Reference [21] shows that adding tsalec
features can improve the classification performaridais,
we added MFCCs to log-Gabor filters.

In our previous work [22-20], we have shown thage th
concatenation of 12 log-Gabor filters is achievhd best
classification rate compared to using a singleffind the
three patches spectrogram with the concatenatid dbg-
Gabor filters. This justifies the use of the coeacattion of
12 log-Gabor filters in addition to 12 MFCCs.

The results for the combination of 12 MFCCs andldg
Gabor filters are evaluated by the M-SVM-based sifies
and HMM-based classifier.

As shown in Fig, we compare the overall classifratrate
using log-Gabor filters, MFCC and their combination fdr 1
classes of environmental sounds.

We notice that MFCC features obtain better reshls log-
Gabor features in four of the examined classes ewnhil
performing poor results in the case of six othesses; like
Door slams (Ds), Dog barks (Db), Gunshots (Gs), Em
screams (Hs), Machines (Mc) and Cymbals (Cy).
Log-Gabor filters features achieve better ovenaith the
exception of two classes (Explosions (Ep) and Glass
breaking (Gb) they have the lowest classificatiae rat
62.50%.



It exist some example in particular the explosiomd a
gunshots classes, which are very similar and cosifaigher
frequencies. According Tab. we note that MFCCsialitse
classification rate 83.87% of this category, logaGafilters
features were able to yield a classification oé @t 92.07%.
In order to better characterize these sounds, preégerable
to use narrow spectral peaks. MFCC is insufficiémt
encode narrow-band structure, but log Gabor filfeesures
are effective in doing so.

By adding together Log-Gabor filters and MFCC feasy
we were able to reach an averaged accuracy ratedef
94.55% in discriminating ten classes.

Besides, there are eight classes that have a ridicograte
higher than 90%. We notice that MFCC and Log-Gabor
filters features complement each other to obtam llest
overall performance.

For classification, we used SVM multi-class: onesus
one.

Table 3 Recognition Rates for Various Features Applied to
1-vs-1 SVMs-Based Classifier

Features

MFCCs%| 12Log Gabor | MFCC+12

Classes filters % Log-Gabor
filters %

Ds 75.78 99.35 99.76
Ep 86.45 62.50 88.66
Gb 88.63 78.57 92.37
Db 84.56 87.50 90.68
Pr 88.94 83.33 91.87
Cv 88.64 87.50 93.38
Gs 76.58 98.21 99.35
Hs 85.36 94.11 96.75
Mc 79.88 89.28 94.83
Cy 83.89 95.83 97.85

We can note that the information of MFCCs coeffitseis
very efficient and suitable to be added to log-Gafiiters.
Our experiments confirm this conclusion.

As shown in [27], the fundamental frequency magibeilar

for different classes for environmental sounds; fbis
raison and the low dimension of the tested temdestures
(ZCR and the average energy) and the frequencyrieat
(SRF and SC), these features fail to represent dat

mostly informative for high frequencies. This jfist the
use of 12 MFCCs in addition to 12 log- Gabor fiteAs can

be shown in Table 3, this combination improves the
discrimination ability.

Using One -Against-One SVMs based classifier presid
high classification accuracy for the feature comtiims.
Moreover, the most informative feature combinatibase a
large dimension that does not allow the use of GMMs
approach, while SVMs are less sensitive to the dgion of
the data space.

3.4 Comparison of state-of-the-art methods

Our experimental result was compared to the sthtbesart
methods results.

By comparison with classic descriptors of environtaé
sounds system already established, we find thatritygosed
features which based on combination of 12 log-Gdilters
and 12 MFCCs is positioned in the first ranks (2263.

Indeed, as illustrated in Table 4 , the combinatetween
13 MFCCs, 1 RASTA-PLP, 5 Amplitude Descriptor (AR),
Spectral Flux (SF), 1 Loudness [39] has given asrane
classification rate of the order 88.2%.

In [7], the classification system used as featt@MFCCs+
energy# + AA, achieves a recognition rate is of the order
89.3%.

Moreover, the system of Chu et al. [21] provided a
combination of matching pursuit (MP) and MFCCs tees.
The obtained averaged classification rate is of08&8.9 %.
Other work [27] used a combination between MFCCs,
energy, Log energy, SRF (SpectralRoll-Off-Point 3@
(Spectral Centroide). The averaged classificatate is of
the order 90.64%.

The comparison with these works proves the advaoizg

of combining the MFCCs and the 12 log-Gabor filtéos
environmental sound recognition.

Experimental results show that our features aieiefit and
suitable in spite of their limited number. This dam partly
explained by the fact that the spectro-temporaufes have
the advantage to combine two complementary domains
spectral and temporal.

Table 4 Comparison of state-of-the-art methods

information. This justifies the use of MFCCs.
The results presented in Table 3 show that log-Géilvers

features are not able to discriminate between efass
successfully when used alone like Explosions (Efgs&
breaking (Gb).The combination of MFCCs and log-Gabo

filters separate some classes very well.

Generally, combinations including spectro -tempad@hain

are useful, because they combine information of tthe
complementary domains.

MFCCs are spectral features, they characterize th

frequency contents. Nerveless, log-Gabor filteratufees

Features Classification

Rate(%)

13 MFCCs, 1 RASTA-PLP, 88.20

5 Amplitude Descriptor (AD), 1 Spectral

Flux (SF), 1 Loudness [39]

16 MFCCs+energyAx + AA [7] 89.30

Matching Pursuit (MP) + MFCCs [21] 83.14

MFCCs+energy+Log 90.64

energy+SRF(SpectralRoll-Off-

n Point+SC(Spectral Centroide) [27]
Adopted Descriptors using 12 log-Gabor 92.82
filters+ 12MFCCs

provide temporal and spectral information and aise




5 Conclusion

The paper provides a feature extraction method tisas

log-Gabor filters to choose a set of spectro-temlpor

features, which is efficient and physically intexyable.
Log-Gabor filters features can classify sounds whime
and frequency features, are not able to
discriminative properties of the sounds, featuréshigh
complexity, such as spectro-temporal coefficients, aell
suitable for the environmental sounds classificatio

Our experiments proved the advantages of the IdgpGa

fiters and MFCCs combination in environmental sbun

classification. The combination with MFCCs ensuremam
discrimination performance.

The use of SVMs provides a robust system in high

dimensions. They are well based mathematicallyetoggod
generalization while retaining high classificatiataracy.
Using spectro-temporel features as well as the rgigsel
classification method (SVM) gives the best discnation
between specific sound classes.
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