
 

 

Abstract: Writing matrix nodal equations for a 
circuit that contains no voltage source is simple and 
straight forward. We expect the presence of voltage 
sources to simplify nodal analysis; however, the 
current practice used to write matrix nodal equations 
when the circuit has voltage sources is rather 
cumbersome and make the matrices unnecessarily 
larger. This paper introduces an alternative and 
simpler approach to the current practice. The paper 
also shows how to adapt the method for the circuit 
with dependent sources.   

 
Key words: Floating voltage source, grounded 
voltage source, matrix equation, modified nodal 
analysis, network analysis, node voltage, nodal 
equation, node-voltage equation, supernode   

1. Introduction 
We begin by introducing matrix equations and matrix 
multiplication rule because throughout the paper not 
only we use this rule to write system of equations in 
matrix form but also we use it to augment matrix 
equations or to move terms from one side of the 
equation to the other side. Consider the following 
system of n equations and n unknowns.  

൞ܣଵଵݔଵ + ଶݔଵଶܣ + ⋯+ ௡ݔଵ௡ܣ = ܾଵܣଶଵݔଵ + ଶݔଶଶܣ + ⋯+ ௡ݔଶ௡ܣ = ܾଶ⋮	ܣ௡ଵݔଵ + ଶݔ௡ଶܣ + ⋯+ ௡ݔ௡௡ܣ = ܾ௡                        (1) 

Applying the matrix multiplication rule [1], this 
system of equations is presented in matrix form as 

൦ܣଵଵܣଶଵ ଶଶܣଵଶܣ ⋯ ⋮ଶ௡ܣଵ௡ܣ ⋱ ௡ଵܣ⋮ ௡ଶܣ ⋯ ௡௡൪ܣ			 ൦
௡൪ݔ	⋮ଶݔଵݔ = ൦ܾଵܾଶ⋮	ܾ௡൪ or Ax = b      (2) 

We used red font for the first equation of the system 
to show how matrix multiplication rule is applied to 
convert Equation 1 to Equation 2. 
 
WRITING matrix nodal equations by inspection for a 
circuit that contains no independent voltage source 
and no dependent source is simple and straight 
forward [2-5]. The matrix equations for such a circuit 
with n + 1 nodes is 

൦				ܩଵଵ−ܩଶଵ ଶଶܩ		ଵଶܩ− ⋯ ⋮ଶ௡ܩ−ଵ௡ܩ− ⋱ ௡ଵܩ−⋮ ௡ଶܩ− ⋯ ௡௡൪ܩ			 ൦
௡൪ݒ	⋮ଶݒଵݒ = ൦݅ଵ݅ଶ⋮	݅௡൪ or Gv = i     (3) 

While the variable (unknown node-voltages) matrix v 
is shared by all rows due to matrix multiplication rule 
row k of the coefficient matrix G and the constant 
(source) matrix i represents Kirchhoff's Current Law 
(KCL) equation for node k. The positive diagonal Gkk 
of this row is the sum of the conductances directly 
connected to node k. The negative off diagonal Gkj 
(where j ≠ k) is the equivalent conductance directly 
connecting node k to node j. Since Gjk = Gkj, the G 
matrix is symmetrical. The vk of matrix v is unknown 
node voltage at node k. The ik of matrix i is the sum 
of all currents entering node k from current sources 
that are directly connected to node k. As a simple 
example, consider the circuit of Figure 1. Elements 
of the coefficient matrix are G11 = 1/3 + 1/1 + 1/5 = 
23/15 S (Siemens), G12 = G21 = 1/5 S and G22 = 1/2 + 
1/5 = 7/10 S. Elements of the current matrix are i1 = 3 
A and i2 = 8 − 3 = 5 A.  The nodal equation in matrix 
form for the circuit is ൤23/15 −1/5−1/5 7/10൨ ቂݒଵݒଶቃ = ቂ35ቃ                             (4) 

Solution of Equation 4 is v1 = 3 V and v2 = 8 V. 
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In general, the presence of voltage sources simplifies 
the nodal analysis because it reduces the number of 
KCL equations.  Nonetheless, the current practice of 
writing matrix nodal equations for the circuits that 
contain voltage sources is rather cumbersome and 
makes the matrices unnecessarily larger. One current 
practice is to use source transformation and replace 
every voltage source in series with a resistance by an 
equivalent current source in parallel with the same 
resistance [3].  Absence of a series resistance makes 
this method useless.  Another current practice is to 
use modified nodal analysis [5].  

For example, consider the circuit of Figure 2 with 
two voltage sources. To facilitate writing nodal 
equations, resistors in the circuit are expressed in 
conductance units (Siemens). 

 

It is obvious that we cannot use the source 
transformation method for this circuit because neither 
voltage source is in series with a resistance. To use 
modified nodal analysis, we assume the current 
through the 10-V and 20-V sources are ix and iy 
respectively as shown in the figure and treat ix and iy 
as fictitious current sources. With these assumptions, 
the matrix nodal equation for the circuit is  

 

 
This approach introduces two new unknowns (ix and 
iy) and thus two more equations are needed. These 
two new equations are Kirchhoff's Voltage Law 
(KVL) equations for the two voltage sources:  

v4 − v2 = 10 V                                                       (6)                    
v5 = 20 V                                                              (7)   

We augment the matrix equation (Equation 5) by two 
rows to add these two new equations to the matrix: 
 

 
 
Row 6 of the Equation 8 (shaded in color) represents 
Equation 6. All entries of the G matrix of this row is 
zero except for entries in column two which is −1 
(representing −1v2) and in column four which is 1 
(representing 1v4). Entry in row 6 of the right matrix 
is 10 which is right side of Equation 6. Similarly, 
row 7 (shaded in gray) represents Equation 7. 
 
Since unknowns belong to the left side of the 
equation, we move ix and iy terms of Equation 8 to 
the left and incorporate them into G and v matrix. 
We do this by adding two columns to the right of G 
matrix:   
 

 
 
We first add the unknown themselves to row 6 and 7 
of the unknown matrix v. We then add the opposite 
of their coefficients to G matrix (opposite because we 
are moving these terms from one side of the equation 
to the other side). Transformation follows matrix 
multiplication rule. Since ix is added to row 6 of the 
matrix v, coefficients of ix terms in the i matrix of 
Equation 8 are entered into column 6 of the G matrix 
(shaded in color): Entry 1 in row two of this column 
represents −ix in row two of i matrix of Equation 8. 
Entry −1 in row four of this column represents ix in 
row four of i matrix of Equation 8. Similarly since iy 
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is added to row 7 of matrix v, coefficients of iy terms 
in Equation 8 are entered into column 7 of the G 
matrix (shaded in gray). Solving Equation 9, we get 
v1 = 25 V, v2 = 5 V, v3 = 7 V, v4 = 15, v5 = 20, ix = 2 
A and iy = −6 A. 
 
This paper introduces an alternative and simpler 
approach to the current practices. The paper also 
shows how to adapt the method to circuit with 
dependent sources. 

2. Proposed Method 
A voltage source in a circuit is either a grounded 
voltage source or it is a floating voltage source [3, 5] 
A grounded voltage source is a voltage source that is 
connected to the reference node or to a node with a 
known voltage. A voltage source that is not a 
grounded voltage source is a floating voltage source. 
For example, the 20-V source of Figure 2 is a 
grounded voltage source but the 10-V source in the 
figure is a floating one. When a node is connected to 
a grounded voltage source, its voltage is easily 
determined by inspection or from a simple KVL 
equation. Nodes that are connected together via 
floating voltage sources make a supernode [2-6]. We 
can write x – 1 simple KVL equations and one KCL 
for x nodes that make a supernode. 
 
To write matrix nodal equations for a circuit with n + 
1 nodes that contains voltage sources, we begin by 
creating a matrix equation with n rows and make 
entries for nodes that are not connected to any 
voltage source as before. Next, we fill in the 
remaining rows by KVL and KCL equations for the 
nodes that are connected to voltage sources. To 
demonstrate this new method and to compare it with 
the modified nodal analysis we use it to write matrix 
nodal equations for the circuit of Figure 2 which is 
shown below with supernode shaded.  

 
 
We begin with a matrix equation with five rows and 
complete the first and the third rows for nodes 1 and 

3 that are not connected to any voltage source. The 
entries for row 1 and 3 are the same as defined in 
Equation 3:  
 

ێێێۏ
ۍ 0.7?−0.5??

−0.2?−0.5??
−0.5?1??

0?0??
ۑۑۑے??0?0
ې
ێێۏ
ۑۑےହݒସݒଷݒଶݒଵݒۍ

ې = ێێۏ
??8−?13ۍ ۑۑے

ې
    (10) 

 
Node 5 is connected to the grounded 20-V source. 
The KVL equation for the node is Equation 7 (v5 = 
20). Nodes 2 and 4 are connected via a 10-V floating 
voltage source; they make a supernode (shaded area 
of Figure 3). The KVL equation for the supernode is 
Equation 6 (v4 − v2 = 10). We use two of the 
remaining rows of the matrix, e.g. row 2 and 4, to 
represent these two KVL Equations as we did it in 
Equation 8:  
 

ێێێۏ
ۍ 0.70−0.50?

−0.2−1−0.50?
−0.5010?

0100?
ۑۑۑے?0001
ې
ێێۏ
ۑۑےହݒସݒଷݒଶݒଵݒۍ

ې = ێێۏ
?820−1310ۍ ۑۑے

ې
    (11) 

 
Finally, we use the last remaining row, row 5, to 
represent the KCL equation of the supernode. The 
entries for the KCL equation for the supernode are 
parallel to entries for other KCL equations. In 
Equation 3, the sum of the conductances directly 
connected to node k makes the positive diagonal Gkk 
in the matrix. For the supernode, the sum of the 
conductances directly connected to each side of the 
supernode enters the matrix with a positive sign. 
Since nodes 2 and 4 make the supernode, G52 and G54 
have positive sign in the matrix. They are the sum of 
conductances outside the supernode that are 
connected to the supernode at node 2 and at node 4 
sides respectively: 
ହଶܩ  = 	0.5 + 0.2 + 0.8 = 1.5	S                      (12)    ܩହସ = 0.4	 + 0.2 = 0.6	S	                               (13) 
 
Note that any conductance inside the supernode (for 
example 0.1 S) does not appear in the KCL equation 
of the supernode and thus is not included in the 
matrix. Each G5k when k is not 2 or 4 is the sum of 
conductances between the supernode and node k and 
enters the matrix with a negative sign: 
ହଵܩ  = 	0.2	S	                                                   (14) ܩହଷ = 	0.5	S                                                    (15) 

Fig. 3- Circuit with voltage Sources
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ହହܩ = 	0.4	S																																																											(16) 

The entry in the right matrix for row four is the sum 
of all currents from current sources that enter the 
supernode which for this problem is 0. Entering these 
values in Equation 11 results in  

ێێێۏ
ۍ 0.70−0.50−0.2

−0.2−1−0.501.5
−0.5010−0.5

01000.6
ۑۑۑے0001−0.4

ې
ێێۏ
ۑۑےହݒସݒଷݒଶݒଵݒۍ

ې = ێێۏ
8200−1310ۍ ۑۑے

ې
   (17) 

Solution of matrix Equation 17 is v1 = 25 V, v2 = 5 V, 
v3 = 7 V, v4 = 15 and v5 = 20. 

3. Circuits with Dependent Sources  
Presence of dependent sources in a circuit results in 
the constraint equations that express the source 
current or voltage in terms of some other network 
currents or voltages. The dependent source current or 
voltage can ultimately be expressed in term of 
unknown node voltages. In the matrix form, these 
terms appear in the i matrix but they can be moved to 
the left side of the equation and incorporated into the 
G and v matrices. For example, consider the circuit 
of Figure 3 where gs are conductances   

 
 
The matrix equation for the circuit is 

      	൥ ݃௔ −݃௔ 0−݃௔ ݃௔ + ݃௕ + ݃௖ −݃௖0 −݃௖ ݃௖ + ݃ௗ		൩ ൥ݒଵݒଶݒଷ൩ = ൥݅௔ − ௫00݅ߚ ൩	                 (18) 

The constraint equation for the dependent source is  ݅௫ = ݃௖(ݒଶ − (ଷݒ = 	݃௖ݒଶ − ݃௖ݒଷ                          (19) 

Substituting Equation 19 in Equation 18, we get 

      ൥ ݃௔ −݃௔ 0−݃௔ ݃௔ + ݃௕ + ݃௖ −݃௖0 −݃௖ ݃௖ + ݃ௗ		൩ ൥ݒଵݒଶݒଷ൩												 = ൥݅௔ − ଶݒ௖݃ߚ + ଷ00ݒ௖݃ߚ ൩																					(20) 

We need to move −βgcv2  and βgcv3  terms in the first 
row of the i matrix to the left side of the equation 
because they contain unknown node voltages. Since 
we are moving these terms from one side of the 
equation to the other side, we first change their signs 
(to βgcv2  and −βgcv3). We use matrix multiplication 
rule backward to incorporate βgcv2  term into the G 
matrix: We drop v2 from the term and add βgc to G12. 
We drop v2 because every term of G12 is multiplied 
by v2. Similarly, to move −βgcv3  term into G matrix 
we drop v3 from the term and add −βgc to G13. The 
resulting matrix is  
 ൥ ݃௔ −݃௔ + ௖݃ߚ ௖−݃௔݃ߚ− ݃௔ + ݃௕ + ݃௖ −݃௖0 −݃௖ ݃௖ + ݃ௗ		൩ ൥ݒଵݒଶݒଷ൩ = ൥݅௔00 ൩      (21) 

 
By multiplying G matrix by v matrix and setting it to 
the i matrix, we can verify that Equations 21 is 
equivalent to Equation 20. 

4. Conclusion 
One of the two current methods, using source 
transformation method, for writing matrix nodal 
equations for a circuit with voltage sources is often 
useless. The second method, modified nodal analysis, 
is rather cumbersome and makes the matrices 
unnecessarily larger. A simpler alternative method is 
to fill in the rows of the matrix for nodes that are not 
connected to any voltage source as usual and then 
complete the matrix by using the remaining rows to 
represent KVL and KCL equations associated with 
nodes that are connected to voltage sources. The 
method can easily be adapted for circuits that contain 
dependent sources. 
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