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Abstract: Wkiting matrix nodal equations for a
circuit that contains no voltage source is simple and
straight forward. We expect the presence of voltage
sources to simplify nodal analysis, however, the
current practice used to write matrix nodal equations
when the circuit has voltage sources is rather
cumbersome and make the matrices unnecessarily
larger. This paper introduces an alternative and
simpler approach to the current practice. The paper
also shows how to adapt the method for the circuit
with dependent sources.
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1. Introduction

We begin by introducing matrix equations and matrix
multiplication rule because throughout the paper not
only we use this rule to write system of equationsin
matrix form but also we use it to augment matrix
equations or to move terms from one side of the
equation to the other side. Consider the following
system of n equations and n unknowns.

Ajgxy +Appxy + -+ Aypx, = by
Ap1xy + Appxy + -+ Agpxy, = by
: (D)
Ap1x, + Apaxy + -+ Appxn = by,
Applying the matrix multiplication rule [1], this

system of equationsis presented in matrix form as
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We used red font for the first equation of the system
to show how matrix multiplication rule is applied to
convert Equation 1 to Equation 2.

WRITING matrix nodal equations by inspection for a
circuit that contains no independent voltage source
and no dependent source is simple and straight
forward [2-5]. The matrix eguations for such a circuit
withn + 1 nodesis
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While the variable (unknown node-voltages) matrix v
is shared by all rows due to matrix multiplication rule
row k of the coefficient matrix G and the constant
(source) matrix i represents Kirchhoff's Current Law
(KCL) equation for node k. The positive diagonal Gy
of this row is the sum of the conductances directly
connected to node k. The negative off diagonal Gy
(where j # K) is the equivalent conductance directly
connecting node k to node j. Since G = Gy, the G
matrix is symmetrical. The v, of matrix v is unknown
node voltage at node k. The ik of matrix i is the sum
of al currents entering node k from current sources
that are directly connected to node k. As a simple
example, consider the circuit of Figure 1. Elements
of the coefficient matrix are Gy = 1/3+ /1 + 1/5=
23/15S (SiemenS), Gp=Gy= 1/5 S and Gy = 1/2 +
1/5=7/10 S. Elements of the current matrix arei,; = 3
Aandi,=8-3=5A. The nodal equation in matrix
form for the circuit is
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Solution of Equation4isv;=3V andv,=8V.
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Fig. 1- A circuit with no voltage source

In general, the presence of voltage sources simplifies
the nodal analysis because it reduces the number of
KCL equations. Nonetheless, the current practice of
writing matrix nodal equations for the circuits that
contain voltage sources is rather cumbersome and
makes the matrices unnecessarily larger. One current
practice is to use source transformation and replace
every voltage source in series with a resistance by an
equivalent current source in paralel with the same
resistance [3]. Absence of a series resistance makes
this method useless. Another current practice is to
use modified nodal analysis[5].

For example, consider the circuit of Figure 2 with
two voltage sources. To facilitate writing noda
equations, resistors in the circuit are expressed in
conductance units (Siemens).
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Fig. 2- Circuit with voltage Sources

It is obvious that we cannot use the source
transformation method for this circuit because neither
voltage source is in series with a resistance. To use
modified nodal analysis, we assume the current
through the 10-V and 20-V sources are ix and iy
respectively as shown in the figure and treat i and iy
as fictitious current sources. With these assumptions,
the matrix nodal equation for the circuit is
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This approach introduces two new unknowns (ix and
iy) and thus two more equations are needed. These
two new eguations are Kirchhoff's Voltage Law
(KVL) equations for the two voltage sources:

Va— V=10V (6)

Vs=20V (7
We augment the matrix equation (Equation 5) by two
rows to add these two new equations to the matrix:
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Row 6 of the Equation 8 (shaded in color) represents
Equation 6. All entries of the G matrix of thisrow is
zero except for entries in column two which is -1
(representing —1v,) and in column four which is 1
(representing 1v,). Entry in row 6 of the right matrix
is 10 which is right side of Equation 6. Similarly,
row 7 (shaded in gray) represents Equation 7.

Since unknowns belong to the left side of the
equation, we move iy and iy terms of Equation 8 to
the left and incorporate them into G and v matrix.
We do this by adding two columns to the right of G
matrix:
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05 05 1 0 o o0 of||lw] |-8
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We first add the unknown themselves to row 6 and 7
of the unknown matrix v. We then add the opposite
of their coefficients to G matrix (opposite because we
are moving these terms from one side of the equation
to the other side). Transformation follows matrix
multiplication rule. Since iy is added to row 6 of the
matrix v, coefficients of iy terms in the i matrix of
Equation 8 are entered into column 6 of the G matrix
(shaded in color): Entry 1 in row two of this column
represents —iy in row two of i matrix of Equation 8.
Entry —1 in row four of this column represents iy in
row four of i matrix of Equation 8. Similarly since iy



is added to row 7 of matrix v, coefficients of i, terms
in Equation 8 are entered into column 7 of the G
matrix (shaded in gray). Solving Equation 9, we get
vi=25V, =5V, vs=7V,Vv;=15,v5=20, ixy=2
Aandiy=-6A.

This paper introduces an aternative and simpler
approach to the current practices. The paper aso
shows how to adapt the method to circuit with
dependent sources.

2. Proposed Method

A voltage source in a circuit is either a grounded
voltage source or it is a floating voltage source [3, 5]
A grounded voltage source is a voltage source that is
connected to the reference node or to a node with a
known voltage. A voltage source that is not a
grounded voltage source is a floating voltage source.
For example, the 20-V source of Figure 2 is a
grounded voltage source but the 10-V source in the
figure is afloating one. When a node is connected to
a grounded voltage source, its voltage is easily
determined by inspection or from a simple KVL
equation. Nodes that are connected together via
floating voltage sources make a supernode [2-6]. We
can write x — 1 ssimple KVL equations and one KCL
for x nodes that make a supernode.

To write matrix nodal equations for a circuit with n +
1 nodes that contains voltage sources, we begin by
creating a matrix equation with n rows and make
entries for nodes that are not connected to any
voltage source as before. Next, we fill in the
remaining rows by KVL and KCL equations for the
nodes that are connected to voltage sources. To
demonstrate this new method and to compare it with
the modified nodal analysis we use it to write matrix
nodal equations for the circuit of Figure 2 which is
shown below with supernode shaded.
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Fig. 3- Circuit with voltage Sources

We begin with a matrix equation with five rows and
complete the first and the third rows for nodes 1 and

3 that are not connected to any voltage source. The
entries for row 1 and 3 are the same as defined in
Equation 3:

[07 —02 —05 0 Oy 113
? ? ? ?7 0 [Uz] ?
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Node 5 is connected to the grounded 20-V source.
The KVL equation for the node is Equation 7 (vs =
20). Nodes 2 and 4 are connected via a 10-V floating
voltage source; they make a supernode (shaded area
of Figure 3). The KVL equation for the supernode is
Equation 6 (v4 — v» = 10). We use two of the
remaining rows of the matrix, e.g. row 2 and 4, to
represent these two KVL Equations as we did it in

Equation 8:
07 =02 —-05 0 Oy 13
0 -1 0 1 0[|V2 10
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Finally, we use the last remaining row, row 5, to
represent the KCL equation of the supernode. The
entries for the KCL equation for the supernode are
parallel to entries for other KCL equations. In
Equation 3, the sum of the conductances directly
connected to node k makes the positive diagonal Gy
in the matrix. For the supernode, the sum of the
conductances directly connected to each side of the
supernode enters the matrix with a positive sign.
Since nodes 2 and 4 make the supernode, Gs, and Gs,4
have positive sign in the matrix. They are the sum of
conductances outside the supernode that are
connected to the supernode at node 2 and at node 4
sides respectively:

Gs, = 05+02+08=15S
Gsy =04 +02=06S

(12)
(13)

Note that any conductance inside the supernode (for
example 0.1 S) does not appear in the KCL equation
of the supernode and thus is not included in the
matrix. Each Gsc when k is not 2 or 4 is the sum of
conductances between the supernode and node k and
enters the matrix with a negative sign:

Gs; = 028
ng = 05 S

(14)
(15



The entry in the right matrix for row four is the sum
of al currents from current sources that enter the
supernode which for this problem is 0. Entering these
valuesin Equation 11 resultsin

07 -02 —-05 o0 0 Y1 13
0 -1 0 1 0 [Uz] 10

-0.5 -0.5 1 0 0 [|vsi=(-8| (17)
0 0 0 0 1 [U4J 20

-0.2 15 -05 06 —041s 0

Solution of matrix Equation 17 isv; =25V, v,=5V,
vs=7V,Vvs=15and vs = 20.

3. Circuitswith Dependent Sources

Presence of dependent sources in a circuit results in
the constraint equations that express the source
current or voltage in terms of some other network
currents or voltages. The dependent source current or
voltage can ultimately be expressed in term of
unknown node voltages. In the matrix form, these
terms appear in the i matrix but they can be moved to
the left side of the equation and incorporated into the
G and v matrices. For example, consider the circuit
of Figure 3 where gs are conductances
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Fig. 4- Circuit with dependent source
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The matrix equation for the circuit is

Ya —Ya 0 V1
—9a Yat9»+9c —9Ic V2
0 —9c ge+ga 1lv3

ia_ﬁix
=[ 0 ] (18)
0

The constraint equation for the dependent sourceis

iy = gc(Vz - U3) = 9cV2 — 9.3 (19)
Substituting Equation 19 in Equation 18, we get
Ja —Ya 0 V1
—Y9a Ya + b + Ic —9Ic )
0 —9c e+ 9a 1lV3
ia - ﬁgcvz + ,BgCUS
= 0 (20)
0

We need to move —fg.v, and Bg.vs termsin the first
row of the i matrix to the left side of the equation
because they contain unknown node voltages. Since
we are moving these terms from one side of the
equation to the other side, we first change their signs
(to Bgevz and —Bgevs). We use matrix multiplication
rule backward to incorporate Bgc.v. term into the G
matrix: We drop v, from the term and add Bg. to Gi..
We drop v, because every term of Gy, is multiplied
by v,. Similarly, to move —Bg.vs term into G matrix
we drop v; from the term and add —Bg. to G3. The
resulting matrix is

Ya —Ya + ﬁgc _,Bgc U1 ia
—ga Gatgrtge —9c ||vz|=]0] (21
0 —9c get+ 9ga 11V3 0

By multiplying G matrix by v matrix and setting it to
the i matrix, we can verify that Equations 21 is
equivalent to Equation 20.

4. Conclusion

One of the two current methods, using source
transformation method, for writing matrix nodal
equations for a circuit with voltage sources is often
useless. The second method, modified nodal analysis,
is rather cumbersome and makes the matrices
unnecessarily larger. A simpler aternative method is
to fill in the rows of the matrix for nodes that are not
connected to any voltage source as usua and then
complete the matrix by using the remaining rows to
represent KVL and KCL equations associated with
nodes that are connected to voltage sources. The
method can easily be adapted for circuits that contain
dependent sources.
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