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Abstract: Lead-Acid batteries continue to be the preferredtorage technologies utilized, namely the Nicketahe

choice for backup energy storage systems. Howéer, pyqride NiMH and the lithium-ion (Li-lon) [32]. The
inherent variability in the manufacturing and comgat

design processes affect the performance of tH\éiMH batf[ery is a successor to the N_iCd which has
manufactured battery. Therefore, the developed 1&zid  inherent issues such as the negative temperature
battery models are not very flexible to model thjze of coefficient, thermal runaway, and the toxicity of i

variability. In this paper, a new and flexible méidg of & ~ chemicals to the environment. The introduction of
Lead-Acid battery is presented. Using curve fittin

techniques, the model parameters were derived asq\HMH technoI(_)gy allowed for 40% increase in specifi
function of the battery’s state of charge based arodified €Nergy capacity but at the expenses of lower charge
Thevenin equivalent model. In addition, the chaage discharge cycles rate (approximately 500 at 1hmgeha
discharge characteristics of the derived model werghr discharge rate) [33]. Another relatively nepetyf

investigated and validated using a real NP4-12 YAAS : ; ; ;
battery manufacturer's data sheet to match perforceaat battery which has good electrical properties fghhi

different capacity rates. Furthermore, an artificieeural POWer applications is the Lithium-ion (Li-ion) bery.
network based learning system with back-propagatiohi-ion battery has higher power density and camgiha
technique was used for estimating the model parammet and discharge at a faster rate (approximately E00

using MATLAB software. The proposed neural moddl h N ; p—
the ability to predict values and interpolate bedwethe Lhr charge - 1hr discharge rate). The cell potbistia

learning curves data at various characteristicshaiat the 2SO considered high with an open circuit voltage o
need of training. Finally, a closed-form analyticabdel typically 4.15V per cell. However, the voltage legg

that connects between inputs and outputs for neurhi-ion batteries must be continuously monitoredtsin

networks was presented. It was validated by compafie  gyercharging can lead to a thermal runaway conditio

]Eg(r:gt;g:&and output and resulted in excellent reg®ss iy can destroy the battery [33]. Fig. 1 presémes
Ragone chart to compare the performance of various

types of energy-storing devices.
Key words. Lead-Acid Battery, Storage, Model, Neural
Network, and Estimation.

1. Introduction.
Advances in energy storage technologies are¢g
spearheaded the by significant improvements in th
dynamic performance of storage batteries making the
cost-effective and more efficient. Lead-Acid bagsr

continue to be the main energy storage unit (EStH f

wide range of applications such as hybrid electric

—a— Supercapacitors
—&—| ead-acid batteries
—O— NiMH batteries

Specific power [W kg

vehicles (HEV) and photovoltaic (PV) systems. —s— Li-ion batteries - Gl
Depending on the application, ESU has the abitity t 1 5 — e — prc;
either receive or deliver power via a DC/AC inverte Speatiic encity [Whiks']

Currently, there are several types of batteriessiad 9" 1(; Ragtor;e chart comparing [:t)ower gen§ity veren
according to cost, size, and service lifetime. &t ensity for various energy-storing devicey

with good energy density suffer typically from POOT battery stores and delivers electrical power uigio
power density and must be supplemented ly

) . ectrochemical processes resulting in internalt hea
supercapacitors to provide for short power peaks Bsses. The maximum capacity of a battery is gjosel
power systems [36].

related to the state of health (SoH) of the battAry
battery is considered “dead” when its capacityiwid

In high power applications, there are two main 8M€T 10 80% of the maximum capacity. In addition, the



efficiency of a battery is affected by heat losseits As shown in Fig 2, the electric current, denotedyby
equivalent internal resistor and can significantlflows throughR, during charging and throughy®R
shorten the life of the battery. The aging proad#ss during discharging. The self-discharge losses @ th

NiMH battery is related to operation, temperatureyattery are modeled by,R The terminal voltages of
charging/discharging cycles, and depth of dischargge battery are derived as:

(DOD) of each cycle. NiIMH battery has a high L
tendency to be overcharged which negatively imipgact Vo onaars = Es + 'ﬁn[l‘ eRchCOVJ (1)

life cycle [34]. On the other hand, Lead-Acid baés

charging process can be easily controlled to avoid .
overcharging. In addition, the Li-ion battery han@re Vi achaging = Eo |dec{1_eRdchwJ (2)
complex aging process that is less sensitive to -

overcharging but very sensitive to low temperatur it it @ estimated to be 40 F
[33]. A study of various energy storage technolsgie € overvollage capacitance, > estimated to be

with a qualitative comparison was provided in [37]120]- The dynamic characteristics of the batteryeutel
The designing and sizing of an integrated solar a/¥ff the battery SOC, the charge/discharge ratetrend
wind based hybrid for HEV charging system waslectrolyte temperature. Based on the Yuasa (NR4-12
presented in [42]. This system is comprised ofteba battery manufacturer's datasheet, the relationship
stack and super capacitors that can be automgticdlBtween the battery open circuit voltage and reimgin
controlled using computer and interfacing circuits. battery capacity is approximately linear [22] as
depicted in Fig 3. Using the linear approximation
The Lead-Acid technology reached the maturity stagechnique, a function betweegdihd SOC is given by:
thus_ it _has been _used in a various engineering E, = 0.0137550C + 115 A3)
applications4,5]. Using the state of charge (SOC) for
modeling the Lead-Acid battery has been the key fhe values of R are plotted versus the SOC as
improve its dynamic performance [12,13]. Severdlisplayed in Fig 4. Using curve-fitting, a quadrati
modeling techniques have been proposed usingpalynomial function for Byin kQ as a function of the
neural network based learning system [14] and op&attery SOC is derived as:
circuit voltage (OCV) as a parameter to p_redi(_:t the R, = - 0039SOC? + 427SOC— 1923 @)
SOC of the battery [15]. However, SOC estimation is
and losses that incur during the charging proo&ss. components [20]:
equivalent-circuit model [16] is developed to estien

the battery SOC taking into consideration thesecef Rien = Reai + Rog ®)
where

2. Lead-Acid Battery Model R, = 101e 22" + 024e7°%" (6)
The basic battery model presented in [17] consisted and
a simple resistor connected in series with an ideal
voltage source. A more complex model however, is
needed to capture the dynamic performance of Lquming charging, B can be divided into two
Acid batteries [18, 19]. An enhanced dynamic mOd%bmponents [20]:

is shown in Fig. 2 where ohmic voltage drop and

overvoltage effects are identified together and Ren = Roci + Rec (8)

polarization resistance is described by a singlghere R, is estimated to be &, and

equivalent resistor for each operating mode [20].
C

Rbd - 29266—004250(3 (7)

R,. = 932*10°SOC? + 001SOC+ 0028 (9)

v
ov

e PN This proposed battery model is simulated as shown i
Ru Fig 3 at discharge rate of 0.1 CA. Terminal voltege
+ LA —t— v is compared with the discharge characteristicsgive
EQ SR R ! the manufacturer’s data sheet of the 12 V, 4vAlasa
batteries [22]. Dotted line (---) represented the

simulated discharge rate while the solid line (-)
Fig. 2- Dynamic Model of a Lead-Acid Battery



represented the corresponding discharge rate fiem tand discharging models taking advantage of the ANN
manufacturer’s data sheet. The comparison indieatemterpolation ability between points and curves for
close match between the battery’s actual and tBRaracteristics estimation. The closed-form algebra
modeled discharge rates. equations representing the charging and discharging

s , , models were derived to be used without the need to
retrain the neural network. The developed models ha
adequate number of layers and neurons with exdellen
regression constant as discussed below.

125
12

115

A. ANN Charging Moddl

For this model, the neural network inputsTanee,
SOC, C (capacity rate) ranges and the outputs are
Vit_charging Eos In, Rsa @and Ry, The model consists of a
hidden layer with log-sig function and 7 neurond an
second layer with pure-line function and 5 neurass

In addition, the battery model was simulated an%hown |F|g

validated for several discharge rates (0.5, 02,,@4,
0.6, 1, 2, and 3 CA). Again, terminal voltage; 16

‘ E
obtained in each case and compared with the digehar /@’ \
characteristics given in the manufacturer’s dateshs A@gﬁi -

11
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Fig. 3- Validation Results of the Battery ModeDat CA

shown in Fig. 4. The validation results are dispthin
Fig. 5. These comparisons also indicates closehmat h
between the actual and modeled discharge rates. ‘
(V) FOR12V (V) FOR6V Note: C = Given capacity as stated on each battery in Ah el
EA;:;Rj ::TrERY NP ] AT 25°C (77°F)
= |
1209 60 ::::k e e e )
™
g 10 s ] Fig. 6- T' ANN Model with layers, neurons, weights, and
3 \ \ \ 1L ks e structures
gl 1004 50 — ua:*.n Di2CA
: ol wa \ = The training data was well depicted in the follogvin
| 3D figures for all inputs (Fig. 7 — Fig. 9) anddats
i Y outputs (Fig 10) and regression (Fig 11).
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Fig. 5- Validation Results of the Battery Model at
Various Discharge Rates

3. Neural Network Maodeling
Artificial neural network (ANN) with back-propagati
techniques [24,25] was used to implement charging
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Model . . .
The model mathematical formulation is presented in

the following set of algebraic equations.

Normalized inputs (subscripgt denotes normalized
variable) for the ANN model

Time, = 42.0849*10*Time- 0.579456 (20)
SOC, =34458*10S0OC-1.7229 (11)
= 2 CA, =1.0111CA-0.929 (12)
1500 o
. : Capacity Rate (CA) .
Time (Minutes) Normalized outputs:
Fig. 10- 3-D relation for R, CA with time for Charging 1
Model Fl - 1+ eZ*lO'ATimqq—01051SOCﬂ—00527CA1—15095 (13)
F = 1 14
2= 1 + g 0-1698Time, - 0129950, + 10518CA, + 15892 (14)
g* 1
2 2 F3 = -4 (15)
& 1+ elO Timg,— 0175S0OG, - 00131CA, + 13759
& 1
§ 0 F4 = 10" Time, + 00996SOG, - 00016CA, + 14836 (16)
Qg 0 1+ (S] A )
507 500 _ 1
1000 Ry = 1+ e-6*10'4Timen+ 01366S0G, - 01024CA, - 13882 17
Rsd (k2) 100 1300 Time (Minutes)
Fig. 11- 3-D relation for B, CA with time for Charging = 1 (18)

- 0.2581Time,— 00468SOGC, + 07242CA,—- 01513
Model 1+e€ ime, G Ay



1 following 3D figures for all inputs (Fig. 13-Fig5)

R = 1 + g 0-0967Time, + 0174550G, + 04317CA, ~ 16266 (19) and targets outputs (Fig. 16) and regression (Y.
Vi, =—4682F, - 46.7F, - 7774F, -1757F, 20)
-11701F, - 52.1F, —143.3F, +1665
E,, =16F, - 0045F, - 123F, - 395F, 21)
—-17F, - 0037F, + 0049F, + 49
I, =-3043F, +13F, +135.1F, - 3806F, 22)
+2019F; +1.2F, - 09F, +130.6
1
R, =185F, + 06F, - 404.7F, - 8475F, 23) e o ° Capacity Rate (CA)
+ 601F, + 0.5F, —16F, +177.1 Fig. 15- 3D relation for Wg.n CA with time for Discharging
Model
R,, =-08F, - 0.1F, + 663F, + 71F, (24)
-9.7F, - 0.1F, + 0.3F, - 184

14

Un-normalized outputs §12
3
Vi =1.1592V,,, +13.0038 (25) gm
E, = 0399, +12.1875 (26) H
" 125 3
l, = 25233, +18375 27) 12 ;o
Eb(yy ™30 Capacity Rate (CA)
Ry= 31269Rsdn + 63945 (28) Fig. 16- 3D relation for M4, E,, with CA for Discharging
Model

R, =05651R,, +2.3394 (29)

B. ANN Discharging Model

Similarly for this model, the inputs are Time, SAL,
(capacity rate) ranges and the outputs a§&i¥narging

Ep I, Rig and Re The model consists of a hidden
layer with log-sig function and 10 neurons and a
second layer with pure-line function and 5 neurass
displayed in Fig 12. o0

1500 o
Time (Minutes)

Capacity Rate (CA)

Fig. 17- 3D relation for Ry, CA with time for Discharging
Model

Terminal Voltage (V)

neurons, weights,

and structures

Discharge Time (Min.)

Again, the training data was well depicted in the



Fig. 18- Discharge voltage comparisons for all cétya

ranges
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Fig. 19- Regression for Discharging Model

The model mathematical formulation is presented

the following set of algebraic equations:

E - 1

1 1+€ 143410 Time, - 07331SOG, - 02524CA, - 18208
E - 1

2 = -0.125Time, + 1685S0GC, - 02986CA, - 39433

1+e

E = 1

3~ 1+ e-3.1084‘|’imen— 21596S0G, + 03928CA, + 20421
E - 1

4 52*10"Time, - 0695SOG, - 00176CA, + 09002
E - 1

57 1+ e123*104Timen + 07279S0C, + 0233CA, + 18247
E - 1

6~ 1+ e 46783Time, + 0432950G, — 14449CA, + 32211
E - 1

[ 1+ e59*10‘4Timen + 07964S0G, + 00233CA, - 08382
E = 1

8~ 1+€ 32706Time, - 22497SOGC, + 00288CA, + 18566
E = 1

9~ 1+¢e 03809Time, — 0825850GC, + 04331CA, - 19203
. 1

10 —

1+ e69’10'4Timeﬂ+ 06493S0G, - 00605CA, + 17393

Ve, = ~10852F, - 41F, - 25F, - 722F,

~11905F, - 0.9F, — 603F, + 24F,
+164F, +107F,, +11366

E, =22F, +02F,+ 02F, +163F, + L7F,
+9.8F, - 02F, - 0.2F, - 36F,, - 132

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

I, =-1427F, - 19F, + 2F, - 39.1F,
-1769F, - 0.2F, - 31.7F, - 1.9F, (42)
+ 04F, + 374F,,+17638

R, =-1162F, + 0.2F, - 04F, —1074F,
-1319F, + 0.1F, — 744F, + 04F, (43)
- 0.3F, — 238F,, +205.9

Rue, =—2504F, + 588F, +42F, +12138F,
- 2382F, +12F, +9619F, - 413F,  (44)

+ 45F, +1146F,, —8535

Un-normalized outputs

o = 1098V, +115007 (45)
E, = 0399E, +12.1875 (46)
l, = 25233, +1.8375 (47)
R, = 31269R,, + 63945 (48)
Ry, = 0.7085R,, +1.2383 (49)

From these charging and discharging figures, it is
evident that; the battery electromotive forcengdirly
proportional to battery capacity; however, withdithe
relationship becomes non-linear. The relation betwe
the remaining battery capacity against the stotiage

with the self-discharge resistance shows that this
resistance value increase with the SOC until aertai
value as peak and then decreases with the time. The
discharge resistance changes with the terminagelt
from the battery EMF especially during transient
interval, and hence, depends on the discharge
current. A rate of charge or discharge in Ampeses i
proportional to the capacity of the battery. Asdtate

of charge increases, the internal resistance temds
decrease. Hence, the current increases leading to
further increase of the state of charge accompdnjed
an increase in temperature. The linear assumpsion i
usually not true. The nonlinearity is more evidfmt
faster discharge rates. A better solution is tcsimter

the manufacturer discharge curves and only usearli
approximation to interpolate the appropriate disgba
curve.

4. Conclusion

In this paper, a review of different types of sgwa
devices is presented with a focus on the modelfng o
Lead-Acid batteries that are the preferred choike a



storage unit in many applications especially faxegr [9] Battery characteristics: Teaching and _ Learning
energy. A flexible and efficient modeling method is ~ Packages. Department of Materials Science and
proposed and validated with a 12 V, 4 Ah Lead-Acid Metallurgy, University (_)f Cambridge. D_|ssem|ngtMn -
battery. The parameters of the battery model were LT _I;’r th;.\ _ PromOt'O”k/ l‘)fl_b/'\l;'ate”?"sl_ gc'e”ﬁe'
derived as functions of the state of charge (S@€)0 ttp://www.doitpoms.ac. ukitiplib/batteries/indexgph

. - . O]Power-sonic  Corporation, “Sealed Lead-Acid
battery using curve fitting technigques and comparétj:i T )

ith th b f s d Batteries”, Technical Handbook, 2008.

with the NP_4'12 YUASA . attery manu a_cturers atF’iLl] Panasonic Ltd, “Overview of Lithium-lon Batteries”,
sheet for different capacity rates. The discham® a" Tachnical Manual. 2007.
charge characteristics of the battery model wesdiel  [12]sadli, I.; Marie-Joseph, I.; Primerose, A.; Clergeb,
and simulation results showed excellent matching. “New battery dynamic model: Application to leadci
Furthermore, a neural network based learning system battery”, The 2nd International Conference on
method with back-propagation techniques was Computer and Automation Engineering (ICCAE), 26-
implanted for parameters estimation using MATLAB 28 Feb. 2010, Vol. 5, pp. 140 — 145.
which can readily be used to identify parametecs afl3]Hartmann, L.V.; Correa, M.; Lima, AM.N., Leao,
characteristics for this type of batteries with acify ‘r]n('jnﬁo rih‘;?dﬁ;l';ﬂebdatt;gzvr;ro%?ggggrrl‘i‘issteggn(fe“?:nCe
ranging from 0.05 to 3 CA It was sh_own that the and Exposition (APEC), 2010 Twenty-Fifth Annual
neural models have the ability to predict valued an

. . ) IEEE, 21-25 Feb. 2010, pp. 239 — 243.
also make interpolation between learning curvet da[14] Bambang Sri Kaloko, Soebagio, Mauridhi Hery

at various operating conditions. Finally, closethfo Purnomo, “Estimation of Residual Capacity of Lead

nonlinear equa_ltions linking inputs and outputs ouith Acid Battery using RBF Model,” IJCA Special Issue 0
the need to train the neural network were preseartdd Artificial Intelligence Techniques - Novel Approazh

validated. The results indicated that the proposed & Practical Applications (3):12-17, 2011. Publishgyd
model closely matched the actual data of the Leaid-A Foundation of Computer Science. _
battery verified using NP4-12 YUASA battery datd15]Ganesan, A., Sundaram, S., “A Heuristic Algoritium f

sheet. Determining State of Charge of a Lead Acid Battery
Small Engine Applications,” SAE Technical Paper
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