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Abstract:  Lead-Acid batteries continue to be the preferred 
choice for backup energy storage systems. However, the 
inherent variability in the manufacturing and component 
design processes affect the performance of the 
manufactured battery. Therefore, the developed Lead-Acid 
battery models are not very flexible to model this type of 
variability. In this paper, a new and flexible modeling of a 
Lead-Acid battery is presented. Using curve fitting 
techniques, the model parameters were derived as a 
function of the battery’s state of charge based on a modified 
Thevenin equivalent model.  In addition, the charge and 
discharge characteristics of the derived model were 
investigated and validated using a real NP4-12 YUASA 
battery manufacturer's data sheet to match performance at 
different capacity rates. Furthermore, an artificial neural 
network based learning system with back-propagation 
technique was used for estimating the model parameters 
using MATLAB software. The proposed neural model had 
the ability to predict values and interpolate between the 
learning curves data at various characteristics without the 
need of training. Finally, a closed-form analytical model 
that connects between inputs and outputs for neural 
networks was presented. It was validated by comparing the 
target and output and resulted in excellent regression 
factors. 
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1. Introduction. 
Advances in energy storage technologies are 
spearheaded the by significant improvements in the 
dynamic performance of storage batteries making them 
cost-effective and more efficient. Lead-Acid batteries 
continue to be the main energy storage unit (ESU) for a 
wide range of applications such as hybrid electric 
vehicles (HEV) and photovoltaic (PV) systems. 
Depending on the application, ESU has the ability to 
either receive or deliver power via a DC/AC inverter. 
Currently, there are several types of batteries classified 
according to cost, size, and service lifetime. Batteries 
with good energy density suffer typically from poor 
power density and must be supplemented by 
supercapacitors to provide for short power peaks in 
power systems [36].  
 
In high power applications, there are two main energy 

storage technologies utilized, namely the Nickel-metal 
hydride NiMH and the lithium-ion (Li-Ion) [32]. The 
NiMH battery is a successor to the NiCd which has 
inherent issues such as the negative temperature 
coefficient, thermal runaway, and the toxicity of its 
chemicals to the environment. The introduction of 
NiMH technology allowed for 40% increase in specific 
energy capacity but at the expenses of lower charge-
discharge cycles rate (approximately 500 at 1hr charge-
1hr discharge rate) [33]. Another relatively new type of 
battery which has good electrical properties for high 
power applications is the Lithium-ion (Li-ion) battery. 
Li-ion battery has higher power density and can charge 
and discharge at a faster rate (approximately 1200 at 
1hr charge - 1hr discharge rate). The cell potential is 
also considered high with an open circuit voltage of 
typically 4.15V per cell. However, the voltage level of 
Li-ion batteries must be continuously monitored since 
overcharging can lead to a thermal runaway condition 
which can destroy the battery [33]. Fig. 1 presents the 
Ragone chart to compare the performance of various 
types of energy-storing devices. 
 

 
Fig. 1- Ragone chart comparing power density vs. energy 

density for various energy-storing devices [31] 
 

A battery stores and delivers electrical power through 
electrochemical processes resulting in internal heat 
losses. The maximum capacity of a battery is closely 
related to the state of health (SoH) of the battery. A 
battery is considered “dead” when its capacity is down 
to 80% of the maximum capacity. In addition, the 



 
 

efficiency of a battery is affected by heat losses in its 
equivalent internal resistor and can significantly 
shorten the life of the battery. The aging process of a 
NiMH battery is related to operation, temperature, 
charging/discharging cycles, and depth of discharge 
(DOD) of each cycle. NiMH battery has a high 
tendency to be overcharged which negatively impact its 
life cycle [34]. On the other hand, Lead-Acid batteries 
charging process can be easily controlled to avoid 
overcharging. In addition, the Li-ion battery has a more 
complex aging process that is less sensitive to 
overcharging but very sensitive to low temperatures 
[33]. A study of various energy storage technologies 
with a qualitative comparison was provided in [37]. 
The designing and sizing of an integrated solar and 
wind based hybrid for HEV charging system was 
presented in [42]. This system is comprised of a battery 
stack and super capacitors that can be automatically 
controlled using computer and interfacing circuits. 
 
The Lead-Acid technology reached the maturity stage 
thus it has been used in a various engineering 
applications [4,5]. Using the state of charge (SOC) for 
modeling the Lead-Acid battery has been the key to 
improve its dynamic performance [12,13]. Several 
modeling techniques have been proposed using a 
neural network based learning system [14] and open 
circuit voltage (OCV) as a parameter to predict the 
SOC of the battery [15]. However, SOC estimation is 
particularly difficult due to considerable side reactions 
and losses that incur during the charging process. An 
equivalent-circuit model [16] is developed to estimate 
the battery SOC taking into consideration these effects. 
 
2. Lead-Acid Battery Model 
The basic battery model presented in [17] consisted of 
a simple resistor connected in series with an ideal 
voltage source. A more complex model however, is 
needed to capture the dynamic performance of Lead-
Acid batteries [18, 19].  An enhanced dynamic model 
is shown in Fig. 2 where ohmic voltage drop and 
overvoltage effects are identified together and 
polarization resistance is described by a single 
equivalent resistor for each operating mode [20]. 

 
Fig. 2- Dynamic Model of a Lead-Acid Battery 

As shown in Fig 2, the electric current, denoted by Ib 
flows through Rch during charging and through Rdch 
during discharging. The self-discharge losses in the 
battery are modeled by Rsd. The terminal voltages of 
the battery are derived as: 
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The overvoltage capacitance Cov is estimated to be 40 F 
[20]. The dynamic characteristics of the battery depend 
on the battery SOC, the charge/discharge rate, and the 
electrolyte temperature. Based on the Yuasa (NP4-12) 
battery manufacturer’s datasheet, the relationship 
between the battery open circuit voltage and remaining 
battery capacity is approximately linear [22] as 
depicted in Fig 3. Using the linear approximation 
technique, a function between Eb and SOC is given by: 
 

                       5.1101375.0b += SOCE                   (3) 
 

The values of Rsd are plotted versus the SOC as 
displayed in Fig 4. Using curve-fitting, a quadratic 
polynomial function for Rsd in kΩ as a function of the 
battery SOC is derived as: 
 

     23.1927.4039.0 2
sd −+−= SOCSOCR          (4) 

 
 

Furthermore, the resistance Rdch is divided into two 
components [20]: 
 

                            
bdbdi RRR +=dch

                          (5) 

where  
                   bb II

bdi eeR 06.021.2 24.001.1 −− +=    (6) 

and 
                      SOC

bd eR 042.0926.2 −=                 (7) 
 

During charging, Rch can be divided into two 
components [20]: 
 

                               
bcbci RRR +=ch

                         (8) 
 

where Rbci is estimated to be 5 Ω, and 
 

          028.001.010*32.9 25
bc ++= − SOCSOCR     (9) 

 

This proposed battery model is simulated as shown in 
Fig 3 at discharge rate of 0.1 CA. Terminal voltage Vbt 
is compared with the discharge characteristics given in 
the manufacturer’s data sheet of the 12 V, 4 Ah Yuasa 
batteries [22]. Dotted line (---) represented the 
simulated discharge rate while the solid line (–) 



 

represented the corresponding discharge rate from the 
manufacturer’s data sheet. The comparison indicates a 
close match between the battery’s actual and the 
modeled discharge rates. 
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Fig. 3- Validation Results of the Battery Model at 0.1 CA 
 

In addition, the battery model was simulated and 
validated for several discharge rates (0.5, 0.1, 0.2, 0.4, 
0.6, 1, 2, and 3 CA). Again, terminal voltage Vbt is 
obtained in each case and compared with the discharge 
characteristics given in the manufacturer’s data sheet as 
shown in Fig. 4. The validation results are displayed in 
Fig. 5. These comparisons also indicates close match 
between the actual and modeled discharge rates. 

 
Fig. 4- Yuasa NP4-12 Discharge Characteristics Curves  
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Fig. 5- Validation Results of the Battery Model at 
Various Discharge Rates 

 
3. Neural Network Modeling 
Artificial neural network (ANN) with back-propagation 
techniques [24,25] was used to implement charging 

and discharging models taking advantage of the ANN 
interpolation ability between points and curves for 
characteristics estimation. The closed-form algebraic 
equations representing the charging and discharging 
models were derived to be used without the need to 
retrain the neural network. The developed models have 
adequate number of layers and neurons with excellent 
regression constant as discussed below.   

A. ANN Charging Model 

      For this model, the neural network inputs are Time, 
SOC, C (capacity rate) ranges and the outputs are 
Vbt_charging, Eb, Ib, Rsd and Rch. The model consists of a 
hidden layer with log-sig function and 7 neurons and a 
second layer with pure-line function and 5 neurons as 
shown in Fig 6.  
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Fig. 6- 1st ANN Model with layers, neurons, weights, and 
structures 

 
The training data was well depicted in the following 
3D figures for all inputs (Fig. 7 – Fig. 9) and targets 
outputs (Fig 10) and regression (Fig 11). 

 
Fig. 7- 3D relation for SOC, CA with time for Charging 

Model 



 
 

 
Fig. 8- 3D relation for Vbtch, CA with time for Charging 

Model 

 
 

Fig. 9- 3D relation for Ib, CA with time for Charging 
Model 

 
 

Fig. 10- 3-D relation for Rch, CA with time for Charging 
Model 

 
Fig. 11- 3-D relation for Rsd, CA with time for Charging 

Model 
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Fig. 12- Output VS Target for Charging Model 
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Fig. 13- Regression for Charging Model 

 
The model mathematical formulation is presented in 
the following set of algebraic equations. 
 
Normalized inputs (subscript n denotes normalized 
variable) for the ANN model 
 

0.579456- 10*0849.42 4
n TimeTime −=                    (10) 

 

1.7229- 10*58.344 4
n SOCSOC −=                        (11) 

 

0.929- 0111.1n CACA =                (12) 
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Un-normalized outputs 
 

0038.13V1591.1V
nbtchbtch +=                                  (25) 

 

1875.12E399.0E
nbb +=                                         (26) 

 

8375.1I5233.2I
nbb +=                                            (27) 

 

945.63R269.31R
nsdsd +=                                      (28) 

 

3394.2R5651.0R
nchch +=                                      (29) 

B. ANN Discharging Model 

Similarly for this model, the inputs are Time, SOC, C 
(capacity rate) ranges and the outputs are Vbt_discharging, 
Eb, Ib, Rsd and Rdch. The model consists of a hidden 
layer with log-sig function and 10 neurons and a 
second layer with pure-line function and 5 neurons as 
displayed in Fig 12.  
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Fig. 14- 2nd ANN Model with its layers, neurons, weights, 

and structures 
 

Again, the training data was well depicted in the 

following 3D figures for all inputs (Fig. 13-Fig. 15) 
and targets outputs (Fig. 16) and regression (Fig. 17).  
 

 
Fig. 15- 3D relation for Vbtdch, CA with time for Discharging 
Model 

 
Fig. 16- 3D relation for Vbtdch, Eb, with CA for Discharging 
Model 
 

 
 

Fig. 17- 3D relation for Rdch, CA with time for Discharging 
Model 
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Fig. 18- Discharge voltage comparisons for all capacity 
ranges 
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Fig. 19- Regression for Discharging Model 

 
The model mathematical formulation is presented in 
the following set of algebraic equations: 
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Un-normalized outputs 
 

5007.11098.1Vbtdch +=
nbtchV                                  (45) 

 

1875.12399.0Eb +=
nbE                                       (46) 

 

8375.15233.2I b +=
nbI                                            (47) 

 

945.63269.31Rsd +=
nsdR                                      (48) 

 

2383.17085.0Rdch +=
nchR                                      (49) 

 
From these charging and discharging figures, it is 
evident that; the battery electromotive force is linearly 
proportional to battery capacity; however, with time the 
relationship becomes non-linear. The relation between 
the remaining battery capacity against the storage time 
with the self-discharge resistance shows that this 
resistance value increase with the SOC until certain 
value as peak and then decreases with the time. The 
discharge resistance changes with the terminal voltage 
from the battery EMF especially during transient 
interval, and hence, depends on the discharge 
current. A rate of charge or discharge in Amperes is 
proportional to the capacity of the battery. As the state 
of charge increases, the internal resistance tends to 
decrease. Hence, the current increases leading to 
further increase of the state of charge accompanied by 
an increase in temperature. The linear assumption is 
usually not true. The nonlinearity is more evident for 
faster discharge rates. A better solution is to consider 
the manufacturer discharge curves and only use a linear 
approximation to interpolate the appropriate discharge 
curve. 
 
4. Conclusion 
In this paper, a review of different types of storage 
devices is presented with a focus on the modeling of 
Lead-Acid batteries that are the preferred choice as 



 

storage unit in many applications especially for green 
energy. A flexible and efficient modeling method is 
proposed and validated with a 12 V, 4 Ah Lead-Acid 
battery. The parameters of the battery model were 
derived as functions of the state of charge (SOC) of the 
battery using curve fitting techniques and compared 
with the NP4-12 YUASA battery  manufacturer's data 
sheet for different capacity rates. The discharge and 
charge characteristics of the battery model were studied 
and simulation results showed excellent matching. 
Furthermore, a neural network based learning system 
method with back-propagation techniques was 
implanted for parameters estimation using MATLAB 
which can readily be used to identify parameters and 
characteristics for this type of batteries with capacity 
ranging from 0.05 to 3 CA. It was shown that the 
neural models have the ability to predict values and 
also make interpolation between learning curves’ data 
at various operating conditions. Finally, closed form 
nonlinear equations linking inputs and outputs without 
the need to train the neural network were presented and 
validated. The results indicated that the proposed 
model closely matched the actual data of the Lead-Acid 
battery verified using NP4-12 YUASA battery data 
sheet. 
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